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1. Introduction

The hot Big-Bang model gives a robust description of the evolution of the Universe, from
the onset of Nucleosynthesis until present [1]. Key cosmological puzzles concerning the observed
large-scale smoothness, the flatness and horizon problems have inspired inflationary cosmology,
where a phase of rapid accelerated expansion occurs in the very early cosmological history, even-
tually settling into radiation-dominated evolution [2]. The model can be adapted so as to take into
account the current accelerating expansion of the Universe, as well as gravitational effects observed
in large scale structures, by introducing dark energy and dark matter [3]. Thus the resulting cosmo-
logical scenario involves a very rich phenomenological model, called theΛCDM model, based on
classical general relativity and quantum field theory, withhigh temperature eras, symmetry break-
ing phase transitions, and proportionally large amounts ofdark matter and dark energy dominating
the very late time evolution.

This standard cosmological model presents some of the greatest challenges to fundamental
physics. Two of these have proved to be particularly acute over the years. Firstly, if we extrapolate
the cosmological evolution back in time, using the equations of general relativity and quantum
field theory, we are driven to an initial singularity, where the Universe collapses to zero volume
and the description breaks down [4]. The second concerns thenature of dark energy. The simplest
explanation for it is a positive, however unnaturally small, cosmological constant,Λ ∼ 10−120M4

p,
many orders of magnitude smaller than the Planck and elementary particle physics scales. To date
no symmetry principle or mechanism is known to explain its value. (For a recent review concerning
the cosmological constant problem, see [5].) Moreover, if dark energy persists arbitrarily long, it
would imply that the Universe approaches de Sitter space in the far future, with a cosmic event
horizon, and so portions of space will remain unobservable,forever. The observable part of the
Universe is in a highly mixed state. Therefore, within the context of general relativity and the
Standard Model, we lack a coherent framework to analyze the cosmology of our Universe, from
beginning to end.

If string theory is a complete theory of quantum gravity, it should eventually provide a consis-
tent cosmological framework. The hope is that by incorporating fundamental duality symmetries
and stringy degrees of freedom in time-dependent settings,we will be able to obtain complete
cosmological histories, free of any essential singularities, and new tools for model building.

Indeed, string dualities have given us profound insights into the nature ofSpaceover the
years. New phenomena arise at short distances of order the string scale,ls =

√
α ′, or the Planck

length, lp, which do not admit a conventional field theory description,with Riemannian concepts
breaking down. Unlike a field theoretic incarnation, stringtheory is a UV finite theory of quan-
tum gravity. T-duality, or small/large volume duality, implies that shrinking radii past the string
scale does not produce a lower dimensional theory. The stringy spacetime uncertainty principles,
∆x∆t ∼ l2

s , ∆x∆t ∼ l2
p, point to a minimal length and an intrinsic non-commutativegeometry, lead-

ing to the UV/IR connection [6]. There are examples of singularity resolution, such as orbifold [7]
and conifold singularities [8], and topology change [9,10], where the appearance of extra massless
states, localized at the singularity, make it fuzzy and smooth. Non-conventional thermodynamics,
with Hagedorn and black hole phases, signal a maximal temperature and non-trivial phase transi-
tions [11–18]. Finally, there are robust examples of non-perturbative strong/weak coupling duali-
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ties – see e.g. [19] and references therein – and holographicgauge theory/gravity dualities [20,21],
illustrating how string theory can provide concrete answers to many of the puzzles one has to face
in trying to quantize Einstein’s theory of general relativity.

Some of the important lessons, relevant to the discussion below, are the following. Locality,
geometry and even topology are approximate concepts, acquiring a more precise definition at low
enough energies:E ≤ 1/ls [10,22]. From holography, we learn that gravity andSpacecan emerge
in special, quantum mechanical systems. E.g. a largeN maximally supersymmetric gauge theory in
4-dimensions gives rise to a 10-dimensional gravitationaltheory, a string theory onAdS5×S5 [21].
Finally, apparently singular regimes and/or geometries can be mapped via string dualities into non-
singular ones, with well defined effective descriptions [10, 22]. Much of this insight has been
obtained from studies of static, equilibrium configurations of superstrings, but given the principle
of relativity, it seems inevitable that similar results hold for the time-dependent cases.

Thus progress in String Cosmology can be achieved if we manage to extend the web of string
dualities to time-dependent, cosmological settings. See e.g. [23–28] [10] for work towards this
end. This endeavor is both technically and conceptually challenging. Indeed, in phases with (spon-
taneous) supersymmetry breaking and geometric variation the string equations can become very
difficult to solve, and in many cases even hard to formulate. With the moduli acquiring time-
dependence, these may wander through cross-over regions ofmoduli space, where we have no
control over the quantum corrections, and the effective field theory approach breaks down. At a
more fundamental level, it is hard to identify and compute the correct, precise observables, and we
lack a second quantized version of the theory to probe it directly off-shell.

It is also challenging to extend the web of holographic dualities to cosmological backgrounds.
The construction of the holographic theory is very sensitive to the global structure of spacetime,
with the dual variables living at the boundary of spacetime.For asymptotically de Sitter cosmolo-
gies (like our own), the natural boundaries lie to the infinite future, suggesting a form of spacelike
holography: E.g. thedS4/EuclideanCFT3 correspondence [29]. The dual holographic theory is
conjectured to be a 3-dimensional CFT living on the future (spacelike) boundary of de Sitter space.
Symmetry considerations fix the central charge of the CFT to be inversely proportional to the
square of the asymptotic value of the Hubble parameter – the Hubble parameterH(t) decreases
monotonically with time and asymptotes to a constant for asymptotically de Sitter cosmologies.
Thus,c∼ 1/[H(t → ∞)]2G.

Such a boundary CFT, if it exists, may be non-unitary, and in fact it was argued that the
finiteness of de Sitter entropy implies the existence of Poincare recurrences at very late time scales,
which in turn prevent the realization of local observables in the infinite time limit [30]. There is no
explicit, microscopic construction in string theory. If realized however, it would be a holographic
example whereTimeand the cosmological history emerge, perhaps as RG flow in theCFT. The
relation between the central charge and the Hubble parameter suggests that the field theory RG
flow gets mapped to the time-reversed cosmological evolution. Therefore, reconstructing the very
early Universe would amount to the difficult task of decodingthe hologram in the deep infrared
of the boundary CFT. Another conceptual difficulty is that nosingle observer can measure the
boundary CFT correlators.

In this lecture we will revisit the possibility of realizingeternal string cosmologies where an
initially contacting phase bounces/emerges into an expanding thermal phase. We will argue that
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string theory contains the ingredients which could resolvestrong curvature regimes, via duality
transformations that lead to a well-defined, effective description [23–28] [10]. Two classes of string
cosmological solutions will be discussed to illustrate this pattern. The first class consists of string
gas cosmologies associated to certain special, thermal configurations of type IIN = (4,0) models
[31–33]. Finite temperature is introduced along with non-trivial “gravito-magnetic” fluxes that
lift the Hagedorn instabilities of the canonical ensemble and restore thermal T-duality symmetry
[34–36] 1. The cosmological evolutions describe bouncing Universes, with the bounce occurring
at a stringy extended symmetry point. The second class consists of exact solutions to classical
string theory that admit a Euclidean description in terms ofcompact parafermionic worldsheet
systems [38,39]. The Euclidean target space corresponds toa non-singular, compact T-fold, which
can be used to construct a normalizable Hartle-Hawking wavefunction for the cosmology [39].

2. Bouncing string cosmologies

Before focusing on stringy examples, we review the situation in classical general relativity.
The singularity theorems of Penrose and Hawking show that a smooth reversal from contraction to
expansion is impossible unless an energy condition of the form

Tµνvµvν ≥ 0 (2.1)

is violated [4]. For the null energy condition (NEC),vµ stands for any null future pointing vector.
Let us see how these theorems apply for homogeneous and isotropic Friedmann-Robertson-Walker
(FRW) cosmologies:

ds2 = −dt2 +[a(t)]2dΩ2
k. (2.2)

As usuala stands for the scale factor and the Hubble parameter is givenby H = ȧ/a. We also
assume that the cosmological evolution is supported by various sources with total energy densityρ
and pressureP, which comprise together a perfect fluid.

The relevant equations are the Friedmann-Hubble equation

H2 =
8π
3

Gρ − k
a2 (2.3)

and the 1st law of thermodynamics for adiabatic evolution:

ρ̇ +3H(ρ +P) = 0. (2.4)

These two equations imply that

Ḣ = −4πG(ρ +P)+
k
a2 . (2.5)

Therefore, if the NEC is satisfied,
ρ +P≥ 0, (2.6)

for flat (k = 0) and open (k = −1) Universes, the Hubble parameter decreases monotonically with
time, Ḣ ≤ 0, and reversal from contraction (H < 0) to expansion (H > 0) is not possible. The two

1Additional work on thermal duality includes [37].
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phases are separated by a singularity, or the expanding phase is past geodesically incomplete. All
known (macroscopic) sources of energy and matter in our Universe satisfy the NEC.

For closed Universes (k = 1), we get

ä = −4π
3

Ga(ρ +3P), (2.7)

and so for the bounce to occur at a singularity the strong energy condition (SEC),

ρ ≥−3P, (2.8)

must be satisfied. There are field theoretic sources for whichthe NEC holds but the SEC is violated,
e.g. positive vacuum energy or a positive cosmological constant, and global de Sitter space is an
example of a closed FRW cosmology, where (at the classical level) a contracting phase smoothly
reverses to an expanding inflationary phase. The problem with such an initially exponentially
contracting phase is that it requires the Universe to be sufficiently empty for an infinite amount
of time. During exponential contraction perturbations grow large, and so the Universe is likely to
thermalize before expansion sets in, and within the field theoretic context, collapse to a singularity.
See [40] for further discussions.

Another possibility is to consider a Universe which is eternally inflating, or expanding suf-
ficiently fast forever (requiring thatHav > 0 throughout the cosmological history). Even without
requiring an energy condition, the authors of [41] show thatsuch a Universe cannot be past geodesi-
cally complete and must have a beginning, presumably an initial singularity. Scalar field driven
inflation cannot be the ultimate theory of the very early Universe.

There are various notable attempts to overcome the reversalproblem within the string theoretic
set-up. Let us summarize the main ideas of some of these.

• There are various incarnations of the pre Big Bang scenario [26]. Typically in the pre Big
Bang phase the dilaton runs from weak to strong coupling. As we approach strong coupling,
new terms in the effective action such as higher derivative interactions and potentials can
become relevant, invalidating some of the assumptions of the singularity theorems and thus
facilitating the bounce. The difficulty of these models is inmaintaining analytical control
over the strongly coupled dynamics at the bounce.

• Various (weakly coupled) null/spacelike orbifold models of the singularities, where the orb-
ifold is obtained by modding out with a boost [42,43]. Addinga particle in such a spacetime
amounts to also adding in the covering space an infinite number of boosted images, causing
strong backreaction, and possibly gravitational collapse[44]. See also [45] for a counterex-
ample.

• String gas cosmology [23, 24]. Here the idea is that the Universe starts as a compact space,
e.g. a 9-dimensional torus with all radii close to the stringscale and temperature close to (but
below) the Hagedorn temperature:T ∼ TH . There is a competition between the thermally
excited momentum modes, which keep the spatial torus from shrinking, and thermally ex-
cited winding modes which prevent the Universe from expanding. The system is presumed
to be in a quasi-static phase, until thermal fluctuations cause the winding states to annihilate
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and some dimensions to expand. At the level of the two derivative dilaton/gravity effective
action, there is a singularity a finite time in the past, wherealso the dilaton grows to strong
coupling.

• Modular cosmology [27,46], cosmological billiards [47], brane collisions and the Ekpyrotic
scenario [48] and matrix cosmology [49].

Further work on string cosmology includes [50].
We shall focus on another class of bouncing thermal string cosmologies, exploiting stringy

phase transitions and phenomena that can occur at temperatures close to the Hagedorn temperature.
The non-singular cosmological solutions are based on a mechanism that resolves the Hagedorn
instabilities of finite temperature strings, realizable ina large class of initiallyN = (4,0) type
II superstring models [31–33]. We also review some aspects of strings at finite temperature and
(partial) spontaneous supersymmetry breaking via geometrical fluxes.

2.1 Thermal configurations of type II N = (4,0) models

We consider weakly coupled type II(4,0) models on initially flat backgrounds:

Rd ×T10−d, (2.9)

where the internal toroidal radii are taken close to the string scale. There are 16 real spacetime
supersymmetries arising from the left-moving sector of theworldsheet. The right-moving susy
is broken spontaneously by twisting some of the internal radii with FR, the right-moving fermion
number. Under theZ2 symmetry(−1)FR the right-movingRsector changes sign.

This pattern of asymmetric susy breaking leads to extended symmetry points, when the internal
radii are at the fermionic point [31–36]. At finite temperature, such points in moduli space are
preferred, with the moduli participating in the breaking ofthe right-moving supersymmetries being
stabilized at the extended symmetry point values [51]. As a result the odd-FR sector is heavy, with
masses being bounded from below by the string scale:m2 ≥ 1/(2α ′).

As illustrative examples, consider the two dimensional Hybrid vacua, onR2×T8, where all
the internal radii are taken at the fermionic pointR= 1/

√
2 [31,36] – we work in string units where

α ′ = 1. At this point the eight compact supercoordinates can be replaced with 24 left-moving and
24 right-moving worldsheet fermions. The 24 left-moving fermions are split into two groups of 8
and 16. The one-loop partition function is given by

ZHyb =
V2

(2π)2

∫

F

d2τ
4(Imτ)2

1
η8 ΓE8(τ) (V8−S8)

(

V̄24− S̄24
)

, (2.10)

and exhibits holomorphic/anti-holomorphic factorization.
In the left-moving sector, the group of 8 fermions are described in terms of theSO(8) charac-

ters,

O8 =
θ4

3 + θ4
4

2η4 , V8 =
θ4

3 −θ4
4

2η4 ,

S8 =
θ4

2 −θ4
1

2η4 , C8 =
θ4

2 + θ4
1

2η4 , (2.11)
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as in the conventional superstring models, and the other 16 fermions are described by the chiral
E8 lattice: ΓE8. In the right-moving sector, the fermions are described in terms of theSO(24)
characters:

V̄24− S̄24 =
1

2η̄12

(

θ̄12
3 − θ̄12

4 − θ̄12
2

)

= 24. (2.12)

Despite the breaking of the right-moving supersymmetries,this sector exhibitsMassive Spectrum
Degeneracy Symmetry(MSDS) [35]. This degeneracy is broken at the right-moving massless sec-
tor, a fact that leads to the breaking of the right-moving supersymmetries. The left-moving super-
symmetry remains unbroken. The massless sector of the physical, level-matched, spectrum consists
of 24×8 bosons and 24×8 fermions arising in theV8V̄24 andS8V̄24 sectors respectively. Notice in
particular that the right movingRsector is massive.

The model can be also exhibited as a freely acting, asymmetric orbifold compactification of
the type II superstring to 2 dimensions. The relevant half-shifted (8,8) lattice is given by

Γ(8,8)

[ā
b̄

]

= ΓE8 × θ̄
[ā

b̄

]8 →
√

detGIJ

(
√

τ2)8 ∑
m̃I ,nJ

e−
π
τ2

(G+B)IJ(m̃+τn)I (m̃+τ̄n)J

× eiπ(m̃1ā+n1b̄+m̃1n1). (2.13)

The modular covariant cocycle describes the coupling of thelattice to the right-moving fermion
numberFR. In particular, only one internal cycle is twisted byFR. At the MSDS point, the met-
ric and antisymmetric B-field tensors,GIJ, BIJ take special values, leading to holomorphic/anti-
holomorphic factorization and enhanced gauge symmetry with the local gauge group given by [36]

U(1)8
L × [SU(2)R]8k=2. (2.14)

We have focused on the highly symmetric Hybrid vacua, where the presence of exact right-
moving MSDS symmetry leads to exact computations, as we willsee below, but a large class of
(4,0) models can be constructed in various dimensions [32–34].

Next we consider the models at finite temperature. To avoid strong Jeans instabilities and
gravitational collapse into black holes, we compactifyRd−1 on a large torus with each cycle having
radiusR≫ 1, and take the string coupling to be sufficiently weak. Backreaction can be ignored,
if the size of the thermal system is much larger than its Schwarzschild radius:RS∼ GM = GρR3

in 4 dimensions, where the energy density is set by the temperature. This allows for the following
range for the sizes of the radiiR:

1≪ R≪ 1√
Gρ

∼ 1
gs

, (2.15)

where the last equality follows for temperatures close to the string scale. Both inequalities can
be satisfied at sufficiently weak coupling. At larger values of the coupling constant, we cannot
ignore backreaction and we must take into account the induced cosmological evolution. The string
coupling must still be kept small so as to be able to maintain conditions of quasi-static thermal
equilibrium and trust the perturbative computations of various thermodynamical quantities.

In string theory new instabilities set in at temperatures close to the string scale,T ∼ 1/ls,
the Hagedorn instabilities, which signal non-trivial phase transitions [12–18]. The origin of these
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instabilities is due to the exponential rise in the density of (single-particle) string states at large
mass [11]:

n(m) ∼ eβHm. (2.16)

Because of the exponential growth, the single string partition function

Z ∼
∫ ∞

dmn(m)e−βm =
∫ ∞

dme−(β−βH )m (2.17)

diverges for temperatures above Hagedorn:T > TH = 1/βH . The Hagedorn temperature is set by
the coefficient of the exponent in the asymptotic formula forthe density of states and it is close to
the string scale:

βH = 2π
√

2α ′ (2.18)

in Type II superstrings.
Therefore the critical behavior asβ → βH is governed by string states of large massm≫ 1/ls,

or high levelN – recall thatm2 ∼ N/α ′. At weak coupling, the typical size of such a string state
is large, of orderl ∼ N1/4ls [52, 53]. We can think of it as a random walk ofN1/2 bits. Now the
entropy carried by an excited long string of massm is greater than the entropy ofn smaller strings,
each having massm/n. So close to the Hagedorn temperature, percolation phenomena take place
with multiple strings coalescing into fluctuations of a single long, tangled string.

The critical point can be also described by an effective fieldtheory of a massless complex
scalar field, manifesting a UV/IR connection [12–14, 16, 17]. In quantum field theory, the thermal
effective theory is obtained by compactifying Euclidean time on a circle with period set by the
inverse temperature, 2πR0 = 1/T, and imposing periodic boundary conditions for bosonic fields
and anti-periodic boundary conditions for fermions. In string theory, the thermal system can be
described in terms of a freely acting orbifold, obtained by twisting the Euclidean time circle with
the spacetime fermion numberF. For type II superstrings this amounts to coupling the Euclidean
time Γ1,1(R0) lattice with the following co-cycle [54]:

eiπ(m̃0(a+ā)+n0(b+b̄)). (2.19)

In this picture, the instabilities appear at a critical compactification radius set by the Hagedorn
temperature. Certain string winding modes, with(n0 6= 0), become massless precisely whenR0 =

RH = 1/(2πTH). They become tachyonic at smaller radii, whenR0 < RH . More precisely, two
winding modes pair up to form a complex scalar field, whose thermal mass is given by

m2(R0) = R2
0−R2

H . (2.20)

As a result, near the critical point the behavior of the partition function is captured by the thermal
scalar path integral:

Z ∼
∫

[dϕ ]e−S[ϕ ]

S[ϕ ] ∼
∫

dd−1x(∂iϕ∗∂ iϕ +m2(R0)ϕ∗ϕ). (2.21)

We can illustrate an aspect of this correspondence, by recovering the asymptotic formula for the
density of states at large mass [23,53,55]. With all spatialdimensions being compact and close to
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the critical point, the logarithm of the partition functionis dominated by the lowest eigenvalue of
the Klein-Gordon operator−∇2+m2(R0), given by the square of the mass:λ0 = m2(R0). Therefore

Zc = lnZ ∼− lnλ0 ∼− ln(R−RH) ∼
∫ ∞

dme−βmn(m). (2.22)

The logarithmic behavior asR→ RH can be reproduced for

n(m) = eβH m/m. (2.23)

Whend−1 spatial dimensions are non-compact, a similar computation yields [23,53,55]

n(m) ∼Vd−1eβH m/m(d+1)/2. (2.24)

So the Hagedorn divergence forR0 < RH can be interpreted as an IR instability of the un-
derlying Euclidean thermal background. Tachyon condensation gives a genus-zero contribution to
the free energy,F ∼ 1/g2

s, leading to large backreaction, which, presumably, bringsthe thermal
ensemble to a speedy end [14]. In type II(4,0) models, perturbatively stable configurations can be
produced, if in addition to temperature, we turn on vacuum potentials associated to the gravipho-
ton GI0 and BI0 fields, where the indexI is along an internal direction twisted byFR [34, 36].
See also [56]. In particular, we turn on theU(1)L combination,G0I + 2B0I , of these fields. At
finite temperature, such vacuum potentials cannot be gaugedaway, as they correspond to topolog-
ical vacuum parameters. Thesegravito-magneticfluxes modify the thermal masses of all states
charged under the graviphoton fields, and for large enough values, the tachyonic instabilities can
be lifted. Equivalently the contribution to the free energyof the massive oscillator states gets regu-
lated (refined), reducing the effective density of thermally excited states, and restoring asymptotic
supersymmetry [57].

The Hagedorn free models can be described in terms of freely acting asymmetric orbifolds of
the form(−1)FLδ0, whereδ0 is a Z2-shift along the Euclidean time circle [31, 32, 34, 36]. In the
Hybrid example, the partition function is given explicitlyby

ZHyb

V1
=

∫

F

d2τ
8π(Imτ)3/2

(V̄24− S̄24)
ΓE8(τ)

η8

×∑
m,n

(

V8 Γm,2n(R0)+O8Γm+ 1
2 ,2n+1(R0)−S8Γm+ 1

2 ,2n(R0)−C8Γm,2n+1(R0)
)

, (2.25)

and it is finite for all values of the thermal modulusR0. In fact, the model remains tachyon-
free under all deformations of the dynamical moduli associated with the compact, internal eight-
manifold [36].

All such models exhibit a number of universal properties, irrespectively of spacetime dimen-
sion [32]. The gravito-magnetic fluxes lead to a restorationof the stringy T-duality symmetry along
the thermal circle:

R0 → R2
c/R0, S8 ↔C8, (2.26)

where in all models, the self-dual point occurs at the fermionic point Rc = 1/
√

2. The partition
function is finite and duality invariant, but it is not a smooth function ofR0. At the self-dual point
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Rc additional thermal states become massless enhancing the gauge symmetry associated to the
Euclidean time circle,

U(1)L ×U(1)R → [SU(2)L]k=2×U(1)R, (2.27)

and inducing a conical structure inZ (as a function ofR0), signaling a stringy phase transition.
For example in the Hybrid model, 2×24 states in theO8V̄24 sector become massless, precisely

at the self-dual point:

m2 =

(

1
2R0

−R0

)2

. (2.28)

Away from the critical point the mass square is strictly positive, and the states do not become
tachyonic at smaller values of the radiusR0

2. The corresponding left-moving and right-moving
momentum charges and vertex operators are given by

pL = ±1, pR = 0, O± = ψ0
L e±iX0

L OR. (2.29)

So the additional massless states carry both non-trivial momentum and winding charges.
In the Hybrid model the thermal partition function can be computed exactly thanks to right-

moving MSDS symmetry [31,36]:

ZHyb

V1
= 24×

(

R0 +
1

2R0

)

−24×
∣

∣

∣

∣

R0−
1

2R0

∣

∣

∣

∣

. (2.30)

There is complete suppression of the massive oscillator contributions away from the critical point.
However, stringy behavior survives at the critical point giving rise to the conical structure. From the
thermal effective field theory point of view, such non-analytic behavior is induced after integrating
out the additional massless states. With one spatial dimension non-compact, each complex boson
becoming massless contributes a factor given by the absolute value of the mass:−|m|. Since in the
Hybrid model there are 24 such states, with masses given by equation (2.28), the non-analytic term
in the partition function is accounted for. Thermal configurations of non-critical heterotic strings
in two dimensions enjoy very similar properties [58].

With d− 1 spatial dimensions non-compact, the partition function acquires a higher order
conical structure:

∼
∣

∣

∣

∣

R0−
1

2R0

∣

∣

∣

∣

d−1

, (2.31)

implying a milder transition as a function ofR0. Recall however that to avoid non-perturbative
Jeans instabilities, we must keep all but at least one of the large spatial dimensions compact, and
so the infinite volume andR0 → Rc limits may not commute. Therefore, we can take a number of
spatial dimensions to be arbitrarily large (but compact), and still the conical structure be linear at
the critical point.

Thermal duality implies the existence of two dual asymptotic regimes dominated by the light
thermal momenta,R0 ≫ Rc, and the light thermal windings,R0 ≪ Rc, respectively. In the regime
of light thermal momenta the partition function is given by

Z
Vd−1

=
n∗Σd

(2πRc)d−1

(

Rc

R0

)d−1

+ O

(

e−R0/Rc

)

, (2.32)

2This is to be contrasted with heterotic strings at finite temperature, where the two dual phases, at small and large
values of the thermal modulusR0, are separated by an intermediate tachyonic region.
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giving rise to the characteristic behavior of massless thermal radiation ind dimensions. The tem-
perature is given by the inverse period of the Euclidean timecircle,T = 1/2πR0; n∗ is the number
of effectively massless degrees of freedom andΣd stands for the Stefan-Boltzmann constant of
massless thermal radiation ind dimensions.

By duality, we get that in the regime of light thermal windings,R0 ≪ Rc, the partition function
is given by

Z
Vd−1

=
n∗Σd

(2πRc)d−1

(

R0

Rc

)d−1

+ O

(

e−Rc/R0

)

. (2.33)

Notice in particular thatZ → 0 asR0 → 0. Now in standard thermodynamics the thermal partition
function decreases monotonically as the temperature decreases. So the correct definition of tem-
perature cannot beT = 1/2πR0 in this regime. That is, the temperature in this regime is notset by
the inverse period of the Euclidean time circle. The light winding excitations are non-local inX0,
but are local in the T-dual ofX0. In fact by T-duality, we can interpret them as ordinary thermal
excitations associated with the large T-dual circle, whoseradius is given byR̃0 = R2

c/R0. So the
temperature in this regime is given byT = 1/2πR̃0 = R0/(2πR2

c), and the system at small radius
R0 is again effectively cold.

Thus the thermal system has two dual, asymptotically cold phases as the value of the thermal
modulusR0 varies. Each thermal phase arises via spontaneous symmetrybreaking, as we deform
away from the intermediate extended symmetry point. The twophases are distinguished by the
light thermally excited spinors. At large radii,R0 > Rc, these transform under theS8-Spinor of the
SO(8) symmetry group, while at small radii,R0 < Rc, the light thermally excited spinors transform
in terms of the conjugateC8-Spinor. The extended symmetry point is purely stringy; it has no
precise thermal interpretation but instead is T-duality invariant.

Operators associated with the extra massless states inducetransitions between the purely mo-
mentum and winding modes. The operatorsO+ andO−, given in equation (2.29), raise and lower
pL by one unit but leavepR unchanged. In particular since they transform in the vectorrepresenta-
tion of the symmetry groupSO(8), they induce transitions between the purely momentumS8 and
purely windingC8 spinors, which become light in the two asymptotically cold regimes respectively:

< C8|O−| S8 > 6= 0. (2.34)

As a result the stringy phase transition atRc can be resolved in the presence of genus-zero con-
densates of the additional massless thermal states, which can mediate transitions between purely
winding and momentum states,“gluing together” the asymptotic regimes[31–33]. These con-
densates can be described in terms of non-trivial textures,which define embeddings of the spatial
manifold into the field configuration space via non-zero spatial gradients of the fields associated to
the extra massless states:∇⊥ϕ I 6= 0 [32]. As we will argue, in the Lorenztian description, where
the temperature becomes time dependent, the condensates give rise to a spacelike brane (S-brane)
configuration with negative pressure contributions localized at a time slice at which the temperature
reaches its critical value.

Therefore thermal duality implies the existence of a maximal critical temperatureT ≤ Tc.
The stringy system conceals its short distance behavior [22]. Defining the thermal modulusσ
via R0/Rc = eσ , T-duality acts by reversing its sign:σ → −σ . In terms ofσ and the critical
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temperatureTc, the physical temperature can be written in a duality invariant way as follows:

T = Tc e−|σ |, Tc =
1

2πRc
=

1√
2π

. (2.35)

The expression is valid in both asymptotically cold regimes. Consequently the energy density and
pressure are boundedρ ≤ ρc, P ≤ Pc, never exceeding certain maximal values. This is a crucial
difference from thermal field theory models.

In the Hybrid model, the thermal partition function can be written as

Z
V1

= (24
√

2) e−|σ | = Λ T, Λ =
24
√

2
Tc

. (2.36)

and so the pressure, energy density and maximal energy density are given by

P = ρ = Λ T2, ρc = Λ T2
c =

24
π

. (2.37)

So in each thermal phase the equation of state is effectivelythat of thermal massless radiation in two
dimensions thanks to right moving MSDS symmetry. In the higher dimensional cases, the exact
right-moving MSDS structure gets replaced byright moving asymptotic supersymmetry, ensuring
that well up to the critical point, the partition function isdominated by the contributions of the
thermally excited massless states:Z ∼ Td−1 [32]. In order to maintain semi-quantitative control in
the remaining part of this work, we will ignore stringy corrections to the one-loop string partition
function in the higherd cases close to the critical point, and approximate the thermal system with
that of massless thermal radiation up to the critical temperature. We will incorporate however the
crucial localized pressure contributions induced by the additional massless thermal states at the
critical point.

2.2 Cosmological evolutions

The backreaction on the initially flat metric and dilaton background will induce a cosmological
evolution. We consider first the case where the underlying thermal modulusσ is a monotonic
function of time scanning all three regimes of the string thermal system [31,32]. Correspondingly
the temperature grows from small values, reaching its maximal valueTc, and then drops again
to zero. Each regime admits a local effective theory description, associated with adistinct α ′-
expansion:

• Rc/R0 ≫ 1, (σ ≪ 0); the regime of light thermal windings:{W (σ < 0)}.

• |R0/Rc−Rc/R0| ≪ 1, (σ ∼ 0); the intermediateSU(2) extended symmetry point, where
additional thermal states become massless:{B(σ = 0)}.

• R0/Rc ≫ 1, (σ ≫ 0); the regime of light thermal momenta:{M (σ > 0)}.

So a stringy transition occurs atTc (σ = 0), connecting two asymptotically cold phases. In
each of these phases the source comprises a thermal gas of strings coupled to the dilaton/gravity
system. NearTc condensates associated with the extra massless thermal scalars can form and decay

12
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giving rise to an S-brane configuration3 – see [59] for discussions concerning stringy S-branes in
various contexts. Precisely at the critical point, the equations of motion of the thermal effective
theory allow for non-trivial (genus-0) backgrounds, in which the gradients of the fields associated
to the extra massless thermal states satisfy [32]

GIJ∇µ̂ϕ I ∇ν̂ϕJ =
κ

(d−1)
gµ̂ ν̂ , (2.38)

whereGIJ is the metric on the field configuration space;gµ̂ ν̂ is the metric on the spatial manifold
andκ is a positive constant that sets the strength of the condensates. The resulting stress tensor
is compatible with the symmetries of the spatial metric, which we require to be homogeneous and
isotropic. Effectively, the condensates amount tonegative pressure contributions, proportional to
−κ , which are well localized around the transition surface T= Tc in the Lorentzian.

At finite string coupling, we expect the thickness or duration of the S-brane in time to be
very short, set by the string scale. So in the Lorentzian effective action we treat the S-brane as
a δ -function source (thin-brane limit). (Later on we will explore the possibility of spreading the
intermediate regime, with the temperature being constant at its critical value, for a long period in
time.) Integrating out the extra massless thermal scalars via equation (2.38), we obtain the brane
contribution to the effective action [31,32]:

Sbrane= −κ
∫

dσdd−1x
√

g⊥e−2φ δ (σ) →

−κ
∫

dτdd−1x
√

g⊥e−2φ δ (τ − τc), (2.39)

whereτc is the time at which the temperature reaches its critical value,σ(τc) = 0, andg⊥ stands for
the determinant of the induced metric on the constant time slice τ = τc. The tension of the brane
is set byκ . The energy density of such a spacelike brane vanishes (consistently with reflecting
boundary conditions on the first time derivative of the dilaton field [31]), but it gives negative
pressure contributions in the spatial directions. Thus it provides the violation of the null energy
condition (NEC) which can lead to a transition from a contracting phase to an expanding phase
(when the cosmology is viewed in the Einstein frame). Henceforth we will refer to the intermediate
regime as the “Brane Regime”.

The first class of non-singular string cosmologies we discuss consists of transitions from a
“Winding regime” to a “Momentum regime” via such a thin S-brane:

C (τ) ≡ {W (τ < τc)}⊕{B(τ = τc)}⊕{M (τ > τc)}. (2.40)

Without loss of generality we may chooseτc = 0. Since we take the string coupling to be weak and
the size of the spatial manifold to be much larger than the string scale, our discussions above lead to
the following effective action for the cosmological dynamics, which is valid in both the asymptotic
regimes and also close to the critical point:

S=
∫

ddx e−2φ √−g

(

1
2

R+2(∇φ)2
)

+
∫

ddx
√−g P−κ

∫

ddx
√

g⊥e−2φ δ (τ). (2.41)

3It would be interesting to associate this configuration withformation and decay of long, tangled strings spread in
space.
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The first term is the genus-0 dilaton-gravity action writtenin string frame, while the second is
the contribution of the thermal effective potential−P. In terms of the genus-1 thermal partition
function, the energy density and pressure are given by

P = T
Z

Vd−1
, ρ = −P+T

∂P
∂T

∼ (d−1)P. (2.42)

The equation of stateρ = P is exact in the 2d Hybrid models.

We concentrate on spatially flat homogeneous and isotropic solutions

ds2 = −N(τ)2dτ2 +a(τ)2dxidxi , (2.43)

wherea is the string frame scale factor andN is the lapse function. Homogeneous and isotropic
solutions with negative spatial curvature can be also constructed. Since in both thermal phases the
Universe is asymptotically cold, this must be a bouncing cosmology. Irrespectively of the running
dilaton, the thermal entropy (per co-moving cell of unit coordinate volume, physical volumead−1)

S=
ad−1

T
(ρ +P)∼ (aT)d−1 (2.44)

is conserved, implying that in each of the two asymptotic thermal phases the scale factor and
temperature satisfy:

aT = constant. (2.45)

Therefore, during the initial “Winding Regime” where the temperature increases, the Universe is
in a contracting phase, which reverses to expansion once theUniverse enters into the “Momentum
Regime” with decreasing temperature. Moreover, since the temperature and all thermodynamical
quantities are bounded from above by critical values, whichthey attain at the brane, the scale factor
must be bounded from below by its value at the brane:a≥ ac. This critical value of the scale factor
is given in terms of the entropy and the maximal critical temperature:

ac =

(

STc
ρc +Pc

)1/d−1

∼ S1/d−1

Tc
. (2.46)

In particularac can be kept large in string units if the entropyS is large. The bounce is facilitated
by the extra negative pressure provided by the S-brane at thetransition surface, inducing also a
bounce on the dilaton. The singular regimea→ 0 of classical general relativity is absent.

Notice that continuity of the scale factor across the brane,ensures the continuity of the thermal
entropy across the transition surface, as in second order phase transitions. The reversal of contrac-
tion to expansion via the S-brane is what makes the transition between the two asymptotically cold
phases possible, avoiding a “heat death” and maintaining adiabaticity throughout and across the
brane.

From the action (2.41), we can obtain the equations of motion[32]. Varying with the lapse
functionN, we get the following first order equation

1
2
(d−1)(d−2)H2 = 2(d−1)H φ̇ −2φ̇2 +e2φ N2ρ , (2.47)
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consistently with the vanishing of the brane contribution to the energy density. For the scale factor
a, we get

(d−2)

(

ä
a
−H

Ṅ
N

)

+
1
2
(d−2)(d−3)H2

= 2φ̈ +2(d−2)H φ̇ −2φ̇2−2
Ṅ
N

φ̇ −e2φ N2P+ κNδ (τ), (2.48)

including the localized negative pressure contributions from the S-brane. Finally the equation of
motion of the dilaton is

φ̈ +(d−1)H φ̇ − φ̇2− Ṅ
N

φ̇−d−1
2

(

ä
a
−H

Ṅ
N

)

− 1
4
(d−1)(d−2)H2 = −1

2
κNδ (τ). (2.49)

Irrespectively of spacetime dimension, the structure of these equations is such that the dilaton
experiences an impulsive force at the brane, 2φ̈ =−κNcδ (τ)+ . . ., while ä is smooth. So the brane
induces a discontinuity in the first time derivative of the dilaton field

2(φ̇+ − φ̇−) = −Ncκ , (2.50)

while the first time derivative of the scale factor ˙a remains continuous. Criticality of the temperature
at the brane – this is a crucial string theory input – leads to the vanishing of the first time derivative
of the scale factor: ˙a = 0. Continuity of the dilaton field and the metric across the brane, and the
first order equation (2.47) then imply thatφ̇+ = −φ̇−. In other words, the dilaton undergoes an
elasticbounce across the brane:

φ̇+ = −φ̇− = −Ncκ/4. (2.51)

Since the brane tensionκ is positive, the dilaton must be initially increasing. It crosses the brane
and then decreases. As a result, the dilaton is bounded from above by its value at the brane:φ ≤ φc.
The critical value of the dilaton and the maximal energy density set the slope of the dilaton just
before the transition, the brane tensionκ , and hence the strength of the condensates associated to
the extra massless thermal scalars, via equation (2.47):

κ = 2eφc
√

2ρc. (2.52)

These boundary conditions are in accordance with entropy conservation throughout and across
the brane:

ρ̇ +(d−1)H(ρ +P) = 0. (2.53)

Assuming massless thermal radiation up to the critical point, from both sides of the transition,
the pressure is given byP = n∗ΣdTd and the conserved thermal entropy byS= d(aT)d−1n∗Σd =

constant. Then we obtain the following expressions

acTc = aT =

(

S
dn∗Σd

)1/(d−1)

, κ = 2
√

2(d−1)
√

n∗Σd Td/2
c eφc (2.54)

for the critical value of the scale factor and the relation between the brane tension and the critical
value of the dilaton.
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With massless thermal radiation up to the critical point, wecan obtain exact cosmological
solutions to the equations of motion. In the conformal gauge, N = a, the string frame scale factor
and dilaton are given by [32]

ln

(

a
ac

)

=
1

d−2

[

η+ ln

(

1+
ωac|τ |

η+

)

−η− ln

(

1+
ωac|τ |

η−

)]

,

φ = φc +

√
d−1
2

[

ln

(

1+
ωac|τ |

η+

)

− ln

(

1+
ωac|τ |

η−

)]

, (2.55)

where

4ω = κ
d−2√
d−1

, η± =
√

d−1±1. (2.56)

The solutions are invariant under time reversal,τ →−τ , in accordance with the gluing conditions
across the brane discussed above. In the neighborhood of thebrane,|κacτ | ≪ 1, the metric is
regular while the dilaton exhibits a conical structure:

ln

(

a
ac

)

=
1

16(d−1)
(κacτ)2 +O(|κacτ |3)

φ = φc−
|κacτ |

4
+O((κacτ)2). (2.57)

In the far past and future,|κacτ | ≫ 1, the dilaton asymptotes to a constant, the temperature drops
and the scale factor tends to infinity. Asymptotically we get

a∼ |τ |2/d−2, (2.58)

recovering the characteristic relation between the scale factor and conformal time in a radiation
dominated Universe.

The string coupling is bounded by its critical value at the brane: gs ≤ gc = eφc. Hence our
perturbative approach is valid when this critical coupling, gc, is sufficiently small. The Ricci scalar
curvature also attains its maximal value at the brane, whichis set by the brane tension:

Rc = κ2/4 = O(g2
c). (2.59)

In particular the curvature is finite throughout the cosmological evolution; there isno essential sin-
gularity. Since the critical coupling sets the value of the brane tension in string units, we conclude
thatboth gs andα ′ corrections remain under control,provided thatgc is small enough.

We may transform to the Einstein frame via

(NE,aE,1/TE) = e−
2φ

d−2 (N,a,1/T). (2.60)

Thus the geometrical quantities in the Einstein frame inherit the conical structure of the dilaton
field. The discontinuities of the Hubble parameter in the Einstein frame and the first time derivative
of the dilaton (across the transition surface atTc) are resolved by the brane pressure, in accordance
with the Israel junction conditions [60], which require that the induced metric on the transition
surface be continuous and the extrinsic curvature to jump bya factor determined by the localized
pressure [61].
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Before we conclude this section, we make a comparison between the string cosmologies we
obtained, which incorporate the transition across the stringy S-brane, with the corresponding so-
lutions in the classical dilaton-gravity theory, coupled to massless thermal radiation, where such
a phase transition is not possible. The latter are given by the solutions in equation (2.55)without
the absolute value on the time variable,and coincide with the stringy solutions in the “Momentum
Regime”. Removing the absolute value on the time variable, we see that the dilaton becomes a
monotonic function of time, and grows without a bound in the past. So the dilaton-gravity system
is strongly coupled in the past, and perturbation theory breaks down. The string frame scale fac-
tor still undergoes a bounce atτ = 0, but as we evolve backwards in time, its first time derivative
develops a singularity a finite time in the past, leading to a curvature singularity. In the Einstein
frame, we recover the singular regimeaE → 0 of classical general relativity.

The situation is drastically different in the stringy cases. Starting in the contracting phase,
the Einstein frame temperature increases monotonically with time. The analysis of [17] reveals
that additional thermal states become massless at a critical temperature determined by the string
coupling, “protecting” the system from entering the regimeaE → 0 of classical general relativity.
If at this critical point the coupling is weak, then the additional thermal states are the perturbative
winding modes discussed above, and the analysis of this section applies on how to follow the
transition via the stringy S-branes. Large enough entropy is needed in order to keep the string
frame scale factor parametrically larger than the string scale, in accordance with equation (2.54).
If on the other hand the coupling at the critical point is large, then the extra massless thermal states
are non-perturbative in nature, but still these can source the required localized pressure needed
for a reversal to expansion. Non-perturbative string dualities can be applied in order to map to a
weakly coupled description. It would be interesting to apply such dualities so as to complete the
cosmological history in these cases as well.

2.2.1 Spreading the “Brane Regime”

We observe that at the brane, the first time derivative of the temperature vanishes,Ṫ = 0, with
the temperature reaching its maximal, critical valueTc. We explore in this section the possibility of
“spreading” the “Brane regime” for an arbitrarily long period of time in the past [33]. During such
a long “Brane regime,” the string frame temperature remainsconstant, frozen at its critical value.
It follows via the entropy conservation law, equations (2.44) and (2.53), that the string frame scale
factor must also be constant:a = ac. Modulo the running dilaton, such a model shares features
with the “emergent cosmological scenario” [62] where the Universe is in a long quasi-static phase,
with H = 0, before it exits into an expanding phase.

At the critical point, various condensates associated withthe extra massless fields may give
rise to a dilaton effective potentialV(φ). In order for the temperature and string frame scale factor
to remain constant during the backreacted cosmological evolution, this potential must take the
following form [33]

V(φ) = B+Ce−2φ , B = Pc; (2.61)

that is, the constant part has to be equal to the value of the thermal pressure at the critical tempera-
ture, while the coefficient of the exponential term can be arbitrary. It turns out that the parametersB
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andC can be obtained in terms of fluxes in the underlying effectivegauged supergravity description
of the thermal system at the extended symmetry point (σ = 0).

Recall that at the critical point, theU(1)L gauge symmetry associated to the Euclidean time
circle gets enhanced to anSU(2)L gauge symmetry. Also, there is at least one spatial circle with
radius fixed at the fermionic point, which couples to the right-moving fermion numberFR and
contributes to the spontaneous breaking of the right-moving supersymmetries. TheU(1)R gauge
symmetry associated to this circle gets enhanced to anSU(2)R gauge symmetry. So at the fermionic
extended symmetry point, symmetries reorganize in such a way so that an alternative description
is possible, where the diagonalS1 cycle blows up to anSU(2)-manifold with string-scale volume
and flux. As a result, at the critical point, the target space can be described in terms of ad + 2-
dimensional space.

Now consider the underlyingd+2-dimensional gauged supergravity. Once fluxes and gradi-
ents along the 2 compact directions are turned on, the kinetic terms of the internal massless scalars,
graviphotons and matter gauge bosons give rise respectively to the following dilaton effective po-
tential [33,63]:

Ae−2φ +B(U )+C̃e−2φ , (2.62)

whereU stands for the volume of the 10−d internal, toroidal manifold. This form for the effective
potential persists when the theory is dimensionally reduced to d-dimensions, since the extra com-
pactSU(2)k=2/U(1) manifold has fixed volume at the string scale. So to support a long “Brane
Regime” requires to turn on non-trivial fluxes and gradientsso that

• B(U ) = Pc

• A+C̃ = C, which can be arbitrary.

Thus during a “Brane Regime” the only non-trivial evolutionis that of the dilaton, which
depends on the flux parameterC of the effective potential. The only equation that remains to be
satisfied is the Friedmann equation, which, for constant scale factor and dilaton potential given by
equation (2.61), takes the form:

2φ̇2 = a2
c

[

(ρc +Pc)e
2φ +C

]

. (2.63)

The solutions corresponding toC = 0 andC > 0 are given as follows [33]

C = 0 : e−φ = ac

√

ρc +Pc

2
(−τ), ∀ τ ≤ τ+ < 0,

C > 0 : e−φ =

√

ρc +Pc

C
sinh

[

ac

√

C
2

(−τ)
]

, ∀ τ ≤ τ+ < 0. (2.64)

• In both cases the “Brane regime” starts atτ = −∞, with super-weak string coupling.

• At time τ+ < 0, this regime can exit via a thin S-brane to the “Momentum, radiation regime,”
described in the previous section. The reason for choosing the upper end of the “Brane
Regime” to be negative is to maintain the validity of perturbation theory throughout the cos-
mological evolution. Notice that throughout the “Brane Regime” the dilaton is monotonically

18



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
8
3

String Cosmology Nicolaos Toumbas

increasing. When it crosses the thin S-brane, it undergoes abounce and starts to decrease.
The junction conditions on the first time derivative of the dilaton just before and after the
transition surface can thus be met, as required by a positivetension brane.

• The choice ofτ+ determines the critical string coupling at the transition towards the “Mo-
mentum dominated phase”:φ+ = φ(τ = τ+).

In summary, this cosmology can be represented pictorially as follows

C (τ) ≡ {B(τ ≤ τc)}⊕{M (τ > τc)}. (2.65)

Initially the Universe has constantσ -model temperature and scale factor,T = Tc anda = ac. The
string coupling grows from very weak values in the very earlypast reaching a maximal valuegc at
τc, at which point the Universe exits into the radiation dominated “Momentum regime”. Bothgs

andα ′ corrections are under control provided thatgc is small enough.
Finally let us note that the caseC < 0 allows us to obtain a “Brane regime” of finite time

duration [33]:

C < 0 : e−φ =

√

ρc +Pc

|C| sin
[

ac

√

|C|
2

(−τ)
]

τ− ≤ τ ≤ τ+ < 0, (2.66)

opening up the possibility of constructing string cosmological solutions, where an initial “Winding
Regime” undergoes a transition to a “Momentum Regime” via a thick S-brane. One possibility of
realizing this case is by introducing positive spatial curvature [33], and so this would be an example
of a closed stringy cosmology, which avoids both the Big-Bang and Big-Crunch singularities of
classical general relativity. Of course we would still needto investigate the stability of such a
Universe against collapse in the presence of extra matter and fluctuations.

3. Parafermionic cosmologies

In this section we consider a class of exact cosmological solutions to classical string theory,
which are described at the worldsheet level by superconformal field theories (SCFT) of the form
[38,39]

SL(2,R)−|k|/U(1) × K. (3.1)

The first factor corresponds to a gauged Wess-Zumino-Wittenmodel based on theSL(2,R) group
manifold, with the levelk taken to be negative. The second factor stands for a suitableinternal,
compact CFT. In global coordinates, the sigma-model metricand dilaton field are given by

(α ′)−1ds2 = (|k|+2)
−dT2 +dX2

1+T2−X2

e2Φ =
e2Φ0

1+T2−X2 . (3.2)

In the superstring case, this sigma-model metric is exact toall orders in theα ′ expansion [64].
Additional work on these types of models includes [65].
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surfaces of constant t

Figure 1: TheSL(2,R)/U(1) cosmology.

The geometry consists of a singularity-free light-cone region, and there are time-like curvature
singularities in the regions outside the light-cone horizons, where the dilaton field is also singular.
See figure 1. The singularities occur at the hyperbolas

X = ±
√

1+T2. (3.3)

Despite the fact that the singularities follow acceleratedtrajectories, their proper distance (as mea-
sured by the length of the slicesT =constant) remains finite in string units:

L =
√

(|k|+2)α ′
∫

√
1+T2

−
√

1+T2

dX√
1+T2−X2

= π
√

(|k|+2)α ′. (3.4)

It can be kept parametrically larger than the string scale for large level|k|. So in a sense we can
think of the cosmology as being spatially closed [39]. Observe also that if we perform a double
analytic continuation on the coordinates, we obtain Witten’s 2-dimensional black hole solution
[66]. This double analytic continuation is equivalent to changing the sign of the levelk and rotating
the Penrose diagram of the cosmology by 90 degrees.

At the singularities the sigma-model geometrical description breaks down, but as we will see,
the underlying worldsheet CFT gives a prescription to describe them. The cosmological region
of interest is the future part of the lightcone region. Parametrizing this region with a new set of
coordinates(t,x), defined via

T = t coshx, X = t sinhx, (3.5)

the metric and dilaton are given by

(α ′)−1ds2 = (|k|+2)
−dt2 + t2dx2

1+ t2 , e2Φ =
e2Φ0

1+ t2 . (3.6)

Therefore we obtain an expanding, asymptotically flat geometry, with the string coupling vanishing
at late times. Asymptotically we get a timelike linear dilaton background. The surfaces of constant
time t are shown in figure 1.

The cosmological observer never encounters the singularities, as these lie behind the visible
horizons atT = ±X. However, signals from the singularities can propagate into the lightcone
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region, through the surfacet = 0, and influence its future evolution. In this sense, the cosmology is
similar to a Big-Bang cosmology.

The central charge of the superconformalSL(2,R)/U(1) model at negative levelk is given by

c = 3− 6
|k|+2

, ĉ = 2− 4
|k|+2

. (3.7)

In superstring theory we must tensor it with other conformalfield theories so as to satisfy the
condition ĉtot = 10 for worldsheet gravitational anomalies to cancel. To obtain an effectively four
dimensional cosmological model, we add two large (however compact) supercoordinates(y, z),
with radii Ry,z = R≫ ls, together with a compact SCFT system of central charge

δ ĉ = 6+4/(|k|+2). (3.8)

Since the cosmological region of interest is non-compact (and asymptotically flat), the model ad-
mits the desired four dimensional interpretation [39].This is so irrespectively of how small the
level|k| is. As an example consider the case|k|= 2. Then we may set the internal CFT factor to be

K ≡ T2
y,z×T7, (3.9)

where the volume of the 7-dimensional toroidal manifold is chosen to be at the string scale. Since
the central charge of theSL(2,R)/U(1) factor is smaller than the central charge corresponding to
two flat macroscopic directions, the models are in fact super-critical.

The metric in the Einstein frame is given by

ds2
E = (|k|+2)α ′(−dt2 + t2dx2)+R2 (1+ t2)(dy2 +dz2), (3.10)

thus describing an anisotropic cosmology. At late times however, and for largeR, it asymptotes
to an isotropic flat Freedmann model with scale factor growing linearly with time: a ∼ t. The
effective energy density and pressure supporting this kindof cosmological evolution must satisfy
the following equation of state:

ρeff = −3Peff. (3.11)

Therefore theSL(2,R)/U(1) cosmology is at the cross-point between accelerating and decelerating
Universes.

Upon rotation to Euclidean signature, we obtain a disk parametrized by a radial coordinate
ρ ≤ 1 and an angular variableφ ∈ [0, 2π). The Euclidean metric and dilaton are given by

(α ′)−1ds2 = (|k|+2)
dρ2 + ρ2dφ2

1−ρ2 , e2Φ =
e2Φ0

1−ρ2 , (3.12)

with the singularity occurring at the boundary circleρ = 1. The characteristic feature of this
geometry is that the radial distance of the center to the boundary of the disk is finite, but the
circumference of the boundary circle atρ = 1 is infinite. Geometrically the space looks like a bell.

The Euclidean background admits a superconformal field theory description based on the
SU(2)/U(1) coset model at level|k|. See e.g. [67] for a review. The interesting feature is that
the Euclidean CFT iscompactand unitary. In fact since it corresponds to anN = 2 minimal model,
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the level|k| must be quantized. So in order for the Euclidean theory to be well defined, we set|k|
to be a positive integer.

This worldsheet CFT is perfectly well behaved aroundρ = 1, where the geometrical sigma-
model description breaks down. Near this region the gauged WZW action is given by

SWZW = −|k|+2
2π

∫

d2zφFzz̄+ . . . , (3.13)

with the leading term in the expansion corresponding to a simple topological theory. From the form
of the action nearρ = 1, we also learn that worldsheet instantons for which,

∫

Fzz̄ = 2π in, break the
U(1) symmetry shifting the angleφ to a discrete symmetryZ|k|+2, in accordance with the algebraic
description of the worldsheet system in terms ofZ|k|+2 parafermionic currents [68]. It is clear that
in the presence of such instantons, the Euclidean path integral is invariant only under discrete shifts
of the angleφ : δφ = 2πm/(|k|+2).

We argue now that the non-singular description of the theoryis an almost-geometrical one
[39], in terms of a compact T-fold [70]. In order to constructthis, we first perform a T-duality
transformation along the angular directionφ . The resulting sigma model is based on the following
metric and dilaton

(α ′)−1ds′2 =
(|k|+2)

1−ρ ′2

(

dρ ′2 +
ρ ′2

(|k|+2)2 dφ ′2
)

e2Φ′
=

e2Φ0

(|k|+2)(1−ρ ′2)
, ρ ′ = (1−ρ2)

1
2 . (3.14)

The transformation on the radial coordinateρ exchanges the boundary of the disk and its center.
The T-dual description isweakly couplednearρ = 1 or ρ ′ = 0, where the original metric and
dilaton field were singular. The only singularity there is a benign orbifold singularity. In fact the
T-dual description is equivalent to theZ|k|+2 orbifold of the original model [67, 69]. Despite the
presence of a conical singularity in the geometry, the string theory amplitudes are finite and well
behaved.

The T-fold can now be constructed as follows [39]. We take theoriginal disk and cut-off
the region past a non-singular circle, e.g. the region past the circleρ = ρ ′ = 1/

√
2, ρ > 1/

√
2,

containing the apparent singularity atρ = 1. The cut-off region is replaced with the interior of
the T-dual geometry,ρ ′ < 1/

√
2, with a well behaved geometrical description (in terms of the T-

dual variables). The two patches are glued together along this non-singular circle via a T-duality
transformation. In particular the Euclidean T-fold is compact, and it does not have any boundaries
or singularities. We emphasize that the gluing of the T-dualpatches isnon-geometrical,as it
involves a T-duality transformation on the metric and otherfields.

For the cosmology as well, we can obtain a regular T-fold description as the target space of
the CFT. Here we observe that T-duality interchanges the light-cone and the singularities [38]. We
must glue the T-duals along a hyperbola in between the lightcone and the singularities. The gluings
are shown in figure 2. The resulting almost-geometrical description is very similar to 2-dimensional
de-Sitter space, which we can think of as a hyperboloid embedded in three-dimensional flat space.

We may think of the Euclidean T-fold (or the corresponding compact CFT) as describing a
string field theory instanton, similar in fact to the case of the round sphere which is an instanton
solution to Einstein’s classical theory of general relativity in the presence of a positive cosmological
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T

T

A A

Figure 2: The cosmological T-fold. As we cross the hyperbola (stripedblack line) in the original patch
moving towards the apparent singularity (dotted blue line), we pass to the T-dual patch, and continue motion
towards the non-singular lightcone region.

constant. In the latter case, the radius of curvature of the sphere is set by the cosmological constant,
while in the string theoretic case the effective radius of curvature is set by the quantized levelk.

The T-fold construction allows us toformally define a Hartle-Hawking wavefunction [71]
for the cosmology, which we can think of as a vector in the Hilbert space of the 2nd quantized
string field theory. To this extend, we need to perform a “halfT-fold” Euclidean path integral over
fluctuations of alltarget space fields with specified values on the boundary [39]:

Ψ[h∂ ,φ∂ , . . .] =

∫

[dg][dφ ] . . .e−S(g,φ ,...). (3.15)

More explicitly, we cut the cosmological T-fold in two alonga slice of time reversal symmetry, the
T = 0 slice in each patch, and replace the past geometry with its Euclidean counterpart. Values for
the target space fields must be specified on thisT = 0 slice. See figure 3. No other condition needs
to be specified since the full Euclidean T-fold has no boundaries or singularities, thus generalizing
the Hartle-Hawking no boundary proposal to string field theory.

The wavefunction is hard to compute, but we can understand some of its global properties by
computing its norm. The norm of the wavefunction is given in terms of the full Euclidean path
integral, over fluctuations around the on-shell closed string background. The full path integral
can be computed in a 1st quantized formalism by summing over all closed worldsheet topologies,
including a sum over disconnected diagrams. In fact it is equal to the exponential of thetotal,
connectedstring partition functionZstring,

||Ψ||2 = eZstring, (3.16)

calculable perturbatively as a sum over all (connected) closed Riemann surfaces of genus 0,1,2, . . . ,

if the string couplinge2Φ0 is small enough. Two crucial conditions for the norm to be finite are
that the underlying SCFT be compact and to lead to atachyon freeEuclidean model [39]. In the
superstring case the latter condition can be satisfied by imposing a suitable GSO projection [72].
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Figure 3: The gluing of the half-disk to the cosmology.

As in the case of de Sitter space, the norm of the wavefunctioncan be interpreted as a thermal
ensemble. In the de Sitter case, the norm is given in terms of the cosmological constantΛ by

||ΨdS||2 = e3/(8G2Λ), (3.17)

with 3/8G2Λ corresponding to the finite de Sitter entropy [71]. Likewisein the case of the stringy
cosmology at hand,Zstring corresponds to a thermal string amplitude [39]. But unlike the de Sitter
case, the genus-zero contribution toZstring vanishes. This is because when the underlying CFT
is compact, the spherical CFT partition function is finite and we must divide it with the infinite
volume of the conformal Killing group in order to get the string theory result. Also since the on-
shell background satisfies the sigma-modelβ -function equations, its tree-level action vanishes. As
a result in perturbative string theory, the leading contribution arises at the genus-1 level.

The effective physical temperature of theSL(2,R)/U(1) cosmological model is set by the
inverse of a radius, which depends on the levelk as follows [39,73]:

T = 1/2πR, R=
√

(|k|+2)α ′. (3.18)

So it is below the Hagedorn temperature,R > RH =
√

2α ′, for all |k| > 0. As a result, the cor-
responding genus-1 thermal string amplitude is finite andΨ is normalizable. For example, when
|k| = 2, the parafermionic factor of the cosmology has central charge ĉ = 1, and it is equivalent
to a fermion together with a compact boson at radius 2

√
α ′ > RH . One way to see that this is the

correct value for the radius is that for this radius, the T-dual is equivalent to theZ4 orbifold of the
original model. Explicit computations of the one-loop thermal string partition function in this case
can be found in [39]. Observe that the effective temperaturebecomes equal to Hagedorn,R= RH ,
at |k| = 0, precisely when the cosmology disappears from the target space.

Hence the norm of the wavefunction||Ψ||2 is finite, and in fact it is a function of the moduli
associated to the internal CFTK [39]. It would be very interesting to use it in order to define relative
probabilities for different string compactifications, related to these parafermionic cosmologies, as
well as precise stringy observables associated to the cosmology. To this end, notice that in the
asymptotically flat region of the cosmology, we can define scattering states, and so an “S-vector”
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can be in turn defined, in terms of the overlaps of these scattering states with the Hartle-Hawking
state associated to the cosmology.

4. Conclusions

In this lecture we have uncovered cosmological implications of certainstringy gluing mech-
anisms, realizable in a large class of thermal type IIN = (4,0) models, which connect distinct
string effective theories. The mechanisms are triggered byadditional thermal states, which become
massless at a critical, maximal temperatureTc. The region around the critical temperature admits
a “brane interpretation,” with the brane tension sourced bynon-trivial spatial gradients associated
to the extra massless thermal scalars. In the Einstein frame, the cosmological solutions describe
bouncing Universes, connecting in some of the examples two asymptotically cold thermal phases.
Unlike many versions of pre Big Bang models in the existing literature, these cosmological so-
lutions remain perturbative throughout the evolution, provided that the critical value of the string
coupling at the brane is sufficiently small. Indeed this class of bouncing cosmologies provides the
first examples, whereboth the Hagedorn instabilities as well as the classical BigBang singularity
are successfully resolved,remaining in a perturbative regime throughout the evolution.

Eternal, bouncing cosmologies open new perspectives, to address the cosmological puzzles
of standard hot Big Bang cosmology. Most of these problems are based on the assumption that
the Universe starts out very small and hot, with Planckian size and temperature. In our set up,
however, the minimal size of the Universe can be parametrically larger than the string or Planck
scale. The horizon problem in particular is essentially nullified. Causal contact over large scales is
assured given the fact that the Universe was in a contractingphase for an arbitrarily long period of
time. The large entropy problem does not arise either. If theUniverse begins cold and large (larger
than the present-day Universe), it will by dimensional analysis be likely to contain a sufficient
amount of entropy. The stringy cosmologies we obtained openup the possibility to study the
homogeneity problem within a concrete set-up. Indeed the study of the growth and propagation
of cosmological perturbations from the contracting to the expanding phase via the stringy S-brane
is currently underway [61], opening up the possibility of realizing the “Matter Bounce” scenario
in string theory that produces a scale invariant spectrum ofprimordial cosmological fluctuations
[74]. If successful these stringy bouncing cosmologies canform a basis, alternative to inflation, of
realizing phenomenologically viable models with complete, singularity free cosmological histories.
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