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1. Introduction

The hot Big-Bang model gives a robust description of the wia@h of the Universe, from
the onset of Nucleosynthesis until present [1]. Key cosiiokl puzzles concerning the observed
large-scale smoothness, the flathess and horizon problavesimspired inflationary cosmology,
where a phase of rapid accelerated expansion occurs in theady cosmological history, even-
tually settling into radiation-dominated evolution [2]h&@ model can be adapted so as to take into
account the current accelerating expansion of the Uniyasseell as gravitational effects observed
in large scale structures, by introducing dark energy amkl mhatter [3]. Thus the resulting cosmo-
logical scenario involves a very rich phenomenological elocalled theACDM model, based on
classical general relativity and quantum field theory, \hitjh temperature eras, symmetry break-
ing phase transitions, and proportionally large amountiadk matter and dark energy dominating
the very late time evolution.

This standard cosmological model presents some of theegteehallenges to fundamental
physics. Two of these have proved to be particularly acuée the years. Firstly, if we extrapolate
the cosmological evolution back in time, using the equatiohgeneral relativity and quantum
field theory, we are driven to an initial singularity, whehe tUniverse collapses to zero volume
and the description breaks down [4]. The second concernsatiuee of dark energy. The simplest
explanation for it is a positive, however unnaturally smedismological constanty ~ 10-20M3,
many orders of magnitude smaller than the Planck and el@mepaérticle physics scales. To date
no symmetry principle or mechanism is known to explain ilsi@a(For a recent review concerning
the cosmological constant problem, see [5].) Moreoveraikcenergy persists arbitrarily long, it
would imply that the Universe approaches de Sitter spacharfdr future, with a cosmic event
horizon, and so portions of space will remain unobservablever. The observable part of the
Universe is in a highly mixed state. Therefore, within theteat of general relativity and the
Standard Model, we lack a coherent framework to analyze dlsenology of our Universe, from
beginning to end.

If string theory is a complete theory of quantum gravityhiosld eventually provide a consis-
tent cosmological framework. The hope is that by incorppgatundamental duality symmetries
and stringy degrees of freedom in time-dependent settiwgswill be able to obtain complete
cosmological histories, free of any essential singuksijtand new tools for model building.

Indeed, string dualities have given us profound insights the nature ofSpaceover the
years. New phenomena arise at short distances of orderrthg stale,|s = v/a’, or the Planck
length, 1, which do not admit a conventional field theory descriptiaith Riemannian concepts
breaking down. Unlike a field theoretic incarnation, strthgory is a UV finite theory of quan-
tum gravity. T-duality, or small/large volume duality, ifigs that shrinking radii past the string
scale does not produce a lower dimensional theory. Theggtspacetime uncertainty principles,
DXAt ~ 12, AXOL ~ Ig, point to a minimal length and an intrinsic non-commutatie®metry, lead-
ing to the UV/IR connection [6]. There are examples of siagty resolution, such as orbifold [7]
and conifold singularities [8], and topology change [9, Mdhere the appearance of extra massless
states, localized at the singularity, make it fuzzy and dimolNon-conventional thermodynamics,
with Hagedorn and black hole phases, signal a maximal teatyrerand non-trivial phase transi-
tions [11-18]. Finally, there are robust examples of norttpbative strong/weak coupling duali-
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ties — see e.g. [19] and references therein — and hologrgghige theory/gravity dualities [20,21],
illustrating how string theory can provide concrete ansaemmany of the puzzles one has to face
in trying to quantize Einstein’s theory of general reldtivi

Some of the important lessons, relevant to the discussitmwbare the following. Locality,
geometry and even topology are approximate concepts, raugjai more precise definition at low
enough energie€ < 1/I5[10, 22]. From holography, we learn that gravity é®glacecan emerge
in special, guantum mechanical systems. E.g. a ldrgeximally supersymmetric gauge theory in
4-dimensions gives rise to a 10-dimensional gravitatitimeabry, a string theory cAdS x S5 [21].
Finally, apparently singular regimes and/or geometriesbsamapped via string dualities into non-
singular ones, with well defined effective descriptions, @2]. Much of this insight has been
obtained from studies of static, equilibrium configurai@f superstrings, but given the principle
of relativity, it seems inevitable that similar results ¢hébr the time-dependent cases.

Thus progress in String Cosmology can be achieved if we nettagxtend the web of string
dualities to time-dependent, cosmological settings. Sge[23—-28] [10] for work towards this
end. This endeavor is both technically and conceptuallylenging. Indeed, in phases with (spon-
taneous) supersymmetry breaking and geometric variatierstring equations can become very
difficult to solve, and in many cases even hard to formulateith\Whe moduli acquiring time-
dependence, these may wander through cross-over regiomgadili space, where we have no
control over the quantum corrections, and the effectivel fieeory approach breaks down. At a
more fundamental level, it is hard to identify and computecdhbrrect, precise observables, and we
lack a second quantized version of the theory to probe itctiyreff-shell.

Itis also challenging to extend the web of holographic digalito cosmological backgrounds.
The construction of the holographic theory is very sensity the global structure of spacetime,
with the dual variables living at the boundary of spacetife: asymptotically de Sitter cosmolo-
gies (like our own), the natural boundaries lie to the indiriiture, suggesting a form of spacelike
holography: E.g. thelS/EuclideanCF T3 correspondence [29]. The dual holographic theory is
conjectured to be a 3-dimensional CFT living on the futupa(glike) boundary of de Sitter space.
Symmetry considerations fix the central charge of the CFTetankersely proportional to the
square of the asymptotic value of the Hubble parameter — tigbld parameteH (t) decreases
monotonically with time and asymptotes to a constant fomaxgtically de Sitter cosmologies.
Thus,c~ 1/[H(t — »)]°G.

Such a boundary CFT, if it exists, may be non-unitary, andaict ft was argued that the
finiteness of de Sitter entropy implies the existence of @oiarecurrences at very late time scales,
which in turn prevent the realization of local observablethe infinite time limit [30]. There is no
explicit, microscopic construction in string theory. lfatzed however, it would be a holographic
example wherdimeand the cosmological history emerge, perhaps as RG flow i€HE The
relation between the central charge and the Hubble pararseggests that the field theory RG
flow gets mapped to the time-reversed cosmological evalufidverefore, reconstructing the very
early Universe would amount to the difficult task of decodihg hologram in the deep infrared
of the boundary CFT. Another conceptual difficulty is that single observer can measure the
boundary CFT correlators.

In this lecture we will revisit the possibility of realizingternal string cosmologies where an
initially contacting phase bounces/emerges into an expgritiermal phase. We will argue that
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string theory contains the ingredients which could resaliveng curvature regimes, via duality
transformations that lead to a well-defined, effective dpton [23—-28] [10]. Two classes of string
cosmological solutions will be discussed to illustrates fhattern. The first class consists of string
gas cosmologies associated to certain special, thermfigacations of type IL¥” = (4,0) models
[31-33]. Finite temperature is introduced along with nowidl “gravito-magnetic” fluxes that
lift the Hagedorn instabilities of the canonical ensembid eestore thermal T-duality symmetry
[34-36]1. The cosmological evolutions describe bouncing Univeraéth the bounce occurring
at a stringy extended symmetry point. The second class stensi exact solutions to classical
string theory that admit a Euclidean description in termaihpact parafermionic worldsheet
systems [38, 39]. The Euclidean target space corresporalado-singular, compact T-fold, which
can be used to construct a normalizable Hartle-Hawking fuanetion for the cosmology [39].

2. Bouncing string cosmologies

Before focusing on stringy examples, we review the sitmaiioclassical general relativity.
The singularity theorems of Penrose and Hawking show thatcth reversal from contraction to
expansion is impossible unless an energy condition of tira fo

TuwWHv >0 (2.2)

is violated [4]. For the null energy condition (NEG} stands for any null future pointing vector.
Let us see how these theorems apply for homogeneous anopisdiriedmann-Robertson-Walker
(FRW) cosmologies:

ds = —dt® + [a(t)]?dQZ. (2.2)

As usuala stands for the scale factor and the Hubble parameter is diyeh = a/a. We also
assume that the cosmological evolution is supported bypwaisources with total energy density
and pressur®, which comprise together a perfect fluid.
The relevant equations are the Friedmann-Hubble equation
8m k
=—G

pP—= (2.3)

H?2
3 a2

and the 1st law of thermodynamics for adiabatic evolution:

p+3H(p+P)=0. (2.4)
These two equations imply that
: k
H = —4nG(p+P)+ . (2.5)
Therefore, if the NEC is satisfied,
p+P>0, (2.6)

for flat (k = 0) and openK = —1) Universes, the Hubble parameter decreases monotgnveiili
time, H < 0, and reversal from contractiohl (< 0) to expansionH > 0) is not possible. The two

LAdditional work on thermal duality includes [37].
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phases are separated by a singularity, or the expanding Ehpast geodesically incomplete. All
known (macroscopic) sources of energy and matter in ourddsévsatisfy the NEC.
For closed Universek & 1), we get

5= _%"Ga(p+3p), 2.7)

and so for the bounce to occur at a singularity the strongggrendition (SEC),
p>—3P, (2.8)

must be satisfied. There are field theoretic sources for whe&MNEC holds but the SEC is violated,
e.g. positive vacuum energy or a positive cosmological tamisand global de Sitter space is an
example of a closed FRW cosmology, where (at the classieal)la contracting phase smoothly
reverses to an expanding inflationary phase. The probletm suith an initially exponentially
contracting phase is that it requires the Universe to becserffily empty for an infinite amount
of time. During exponential contraction perturbationsvgtarge, and so the Universe is likely to
thermalize before expansion sets in, and within the fieldrisigc context, collapse to a singularity.
See [40] for further discussions.

Another possibility is to consider a Universe which is etdlsninflating, or expanding suf-
ficiently fast forever (requiring thail,, > O throughout the cosmological history). Even without
requiring an energy condition, the authors of [41] show #sugh a Universe cannot be past geodesi-
cally complete and must have a beginning, presumably aialisingularity. Scalar field driven
inflation cannot be the ultimate theory of the very early @nse.

There are various notable attempts to overcome the reyaaakem within the string theoretic
set-up. Let us summarize the main ideas of some of these.

e There are various incarnations of the pre Big Bang scenafip [Typically in the pre Big
Bang phase the dilaton runs from weak to strong coupling. &spproach strong coupling,
new terms in the effective action such as higher derivatiteractions and potentials can
become relevant, invalidating some of the assumptionseo$itigularity theorems and thus
facilitating the bounce. The difficulty of these models ismiaintaining analytical control
over the strongly coupled dynamics at the bounce.

e Various (weakly coupled) null/spacelike orbifold modefgtee singularities, where the orb-
ifold is obtained by modding out with a boost [42,43]. Addmg@article in such a spacetime
amounts to also adding in the covering space an infinite nuwitd@oosted images, causing
strong backreaction, and possibly gravitational collgddé. See also [45] for a counterex-
ample.

e String gas cosmology [23, 24]. Here the idea is that the Uses/starts as a compact space,
e.g. a 9-dimensional torus with all radii close to the stsngle and temperature close to (but
below) the Hagedorn temperaturé:~ Ty. There is a competition between the thermally
excited momentum modes, which keep the spatial torus framlshg, and thermally ex-
cited winding modes which prevent the Universe from expagdiThe system is presumed
to be in a quasi-static phase, until thermal fluctuationsedhe winding states to annihilate
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and some dimensions to expand. At the level of the two dévevalilaton/gravity effective
action, there is a singularity a finite time in the past, whadse the dilaton grows to strong
coupling.

e Modular cosmology [27,46], cosmological billiards [47tabe collisions and the Ekpyrotic
scenario [48] and matrix cosmology [49].

Further work on string cosmology includes [50].

We shall focus on another class of bouncing thermal strirggnabogies, exploiting stringy
phase transitions and phenomena that can occur at temgsratase to the Hagedorn temperature.
The non-singular cosmological solutions are based on a amésiin that resolves the Hagedorn
instabilities of finite temperature strings, realizableaitterge class of initially. 4" = (4,0) type
Il superstring models [31-33]. We also review some aspdcssrings at finite temperature and
(partial) spontaneous supersymmetry breaking via gearakfluxes.

2.1 Thermal configurations of type Il .4/~ = (4,0) models

We consider weakly coupled type(4,0) models on initially flat backgrounds:
Rd x T10-d, (2.9)

where the internal toroidal radii are taken close to thengtscale. There are 16 real spacetime
supersymmetries arising from the left-moving sector of wweldsheet. The right-moving susy
is broken spontaneously by twisting some of the internaii kaith Fg, the right-moving fermion
number. Under th& symmetry(—1)™ the right-movingR sector changes sign.

This pattern of asymmetric susy breaking leads to extengladhetry points, when the internal
radii are at the fermionic point [31-36]. At finite tempenm&usuch points in moduli space are
preferred, with the moduli participating in the breakinglod right-moving supersymmetries being
stabilized at the extended symmetry point values [51]. Assalt the odd- sector is heavy, with
masses being bounded from below by the string seefe> 1/(2a’).

As illustrative examples, consider the two dimensional itybacua, onR? x T8, where all
the internal radii are taken at the fermionic pdi# 1/+/2 [31,36] — we work in string units where
a’ = 1. At this point the eight compact supercoordinates can placed with 24 left-moving and
24 right-moving worldsheet fermions. The 24 left-movingnigons are split into two groups of 8
and 16. The one-loop partition function is given by

V. d’r 1 - =
Z = Gz [, dimye e (D) (Vo) (Vou ), (2.10)

and exhibits holomorphic/anti-holomorphic factorizatio
In the left-moving sector, the group of 8 fermions are désatiin terms of th&Q(8) charac-

ters,
N RV B
2’74 ) 2’74 )
05 — 6 85 + 6
S = 22”41, s = 22041, (2.11)
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as in the conventional superstring models, and the otheetBidns are described by the chiral
Esg lattice: I'g,. In the right-moving sector, the fermions are describederms of theSQ(24)
characters:

— — 1 — — —
Vg — Soq = T (032 — 62— 63%) = 24. (2.12)

Despite the breaking of the right-moving supersymmettias, sector exhibitdlassive Spectrum
Degeneracy Symmet(MSDS) [35]. This degeneracy is broken at the right-movirgseiess sec-
tor, a fact that leads to the breaking of the right-movingesspmmetries. The left-moving super-
symmetry remains unbroken. The massless sector of thegalhylsivel-matched, spectrum consists
of 24 x 8 bosons and 24 8 fermions arising in th¥g\Vs, andSg\Va, Sectors respectively. Notice in
particular that the right movinB sector is massive.

The model can be also exhibited as a freely acting, asymenatiifold compactification of
the type Il superstring to 2 dimensions. The relevant haifted (8, 8) lattice is given by

3] ~ra)8
Mg lo] =Te x O[5 —
(\/T—Z)B r’h7nJ

The modular covariant cocycle describes the coupling ofidttece to the right-moving fermion
numberFg. In particular, only one internal cycle is twisted By. At the MSDS point, the met-
ric and antisymmetric B-field tensor&,;, B); take special values, leading to holomorphic/anti-
holomorphic factorization and enhanced gauge symmetitytivé local gauge group given by [36]

U (D)2 x [SU(2)R]R_2- (2.14)

We have focused on the highly symmetric Hybrid vacua, whieeepresence of exact right-
moving MSDS symmetry leads to exact computations, as wesedl below, but a large class of
(4,0) models can be constructed in various dimensions [32—34].

Next we consider the models at finite temperature. To avaimhgtJeans instabilities and
gravitational collapse into black holes, we compadgfy ! on a large torus with each cycle having
radiusR > 1, and take the string coupling to be sufficiently weak. Baaktion can be ignored,
if the size of the thermal system is much larger than its Schsehild radius:Rs ~ GM = GpR®
in 4 dimensions, where the energy density is set by the teatyoer This allows for the following
range for the sizes of the radit

1< Rk 1 ~ 1
VGP s’
where the last equality follows for temperatures close @4dtiing scale. Both inequalities can
be satisfied at sufficiently weak coupling. At larger valuéshe coupling constant, we cannot
ignore backreaction and we must take into account the irtlaosmological evolution. The string
coupling must still be kept small so as to be able to maintaimdiéions of quasi-static thermal
equilibrium and trust the perturbative computations ofouas thermodynamical quantities.
In string theory new instabilities set in at temperaturezsselto the string scald, ~ 1/Is,

the Hagedorn instabilities, which signal non-trivial phasansitions [12—18]. The origin of these

(2.15)
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instabilities is due to the exponential rise in the densitysmngle-particle) string states at large
mass [11]:
n(m) ~ &M, (2.16)

Because of the exponential growth, the single string pamtiiunction
7~ / dmn(m)e Am — / dme (B—Bom 2.17)

diverges for temperatures above Hageddrns Ty = 1/84. The Hagedorn temperature is set by
the coefficient of the exponent in the asymptotic formulatf@r density of states and it is close to
the string scale:

By = 2mv2a’ (2.18)

in Type Il superstrings.

Therefore the critical behavior #— B4 is governed by string states of large mass> 1/Is,
or high levelN — recall thatm? ~ N/a’. At weak coupling, the typical size of such a string state
is large, of ordet ~ N%/4l5[52,53]. We can think of it as a random walk Nf/2 bits. Now the
entropy carried by an excited long string of mass greater than the entropy nfsmaller strings,
each having mass/n. So close to the Hagedorn temperature, percolation phemotade place
with multiple strings coalescing into fluctuations of a $alpng, tangled string.

The critical point can be also described by an effective fielebry of a massless complex
scalar field, manifesting a UV/IR connection [12—14, 16, Id]quantum field theory, the thermal
effective theory is obtained by compactifying Euclideaméion a circle with period set by the
inverse temperature,/Ry = 1/T, and imposing periodic boundary conditions for bosoniael
and anti-periodic boundary conditions for fermions. Inngfrtheory, the thermal system can be
described in terms of a freely acting orbifold, obtained Wwisting the Euclidean time circle with
the spacetime fermion numbEr. For type 1l superstrings this amounts to coupling the Elaen
time 1 1(Ro) lattice with the following co-cycle [54]:

gm(m(at+a)+n°(b+b)) (2.19)

In this picture, the instabilities appear at a critical cawigication radius set by the Hagedorn
temperature. Certain string winding modes, with # 0), become massless precisely wh&n=
Ry = 1/(2mTy). They become tachyonic at smaller radii, wien< Ry. More precisely, two
winding modes pair up to form a complex scalar field, whosentla¢ mass is given by

m’(Ro) = RS — R (2.20)

As a result, near the critical point the behavior of the fiartifunction is captured by the thermal
scalar path integral:

T /[dme—sm
S¢]~ [ dK(@970'9 + E(Ro)9" ) @21)

We can illustrate an aspect of this correspondence, by egicmyvthe asymptotic formula for the
density of states at large mass [23, 53, 55]. With all spdiiaensions being compact and close to
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the critical point, the logarithm of the partition functiamdominated by the lowest eigenvalue of
the Klein-Gordon operator (02 + nm?(Ry), given by the square of the masgg: = n?(Ry). Therefore

Zc:InD%"N—In)\ON—In(R—RH)N/mdme’ﬁmn(m). 2.22)
The logarithmic behavior @& — Ry can be reproduced for
n(m) = e4™/m, (2.23)
Whend — 1 spatial dimensions are non-compact, a similar compugirelds [23, 53, 55]
n(m) ~ Vg_1eHm/m(d+1/2, (2.24)

So the Hagedorn divergence fBy < Ry can be interpreted as an IR instability of the un-
derlying Euclidean thermal background. Tachyon cond@nsafives a genus-zero contribution to
the free energyF ~ 1/¢2, leading to large backreaction, which, presumably, britgsthermal
ensemble to a speedy end [14]. In typ€4]0) models, perturbatively stable configurations can be
produced, if in addition to temperature, we turn on vacuurttempiials associated to the gravipho-
ton Gjp and By fields, where the index is along an internal direction twisted g [34, 36].
See also [56]. In particular, we turn on th 1), combination,Gg + 2By, of these fields. At
finite temperature, such vacuum potentials cannot be gaagey, as they correspond to topolog-
ical vacuum parameters. Theggrvito-magneticfluxes modify the thermal masses of all states
charged under the graviphoton fields, and for large enoufjfesathe tachyonic instabilities can
be lifted. Equivalently the contribution to the free eneaffhe massive oscillator states gets regu-
lated (refined), reducing the effective density of thersneltcited states, and restoring asymptotic
supersymmetry [57].

The Hagedorn free models can be described in terms of fre@ilygeasymmetric orbifolds of
the form (—1)™ &, whered, is a Zp-shift along the Euclidean time circle [31, 32, 34, 36]. leth
Hybrid example, the partition function is given explicithy

Zuyh d?t — < Tg(1)
Vi /y‘ 8m(Imrt)3/2 (Vaa — S4) ne
3 (VoI man(Ro) + 8Ty, 3 20 1(Ro) — Sl . 1 on(Ro) ~ Colmanta(Ro) ) (2.25)

and it is finite for all values of the thermal modul&s. In fact, the model remains tachyon-
free under all deformations of the dynamical moduli asgediavith the compact, internal eight-
manifold [36].

All such models exhibit a number of universal propertiegspectively of spacetime dimen-
sion [32]. The gravito-magnetic fluxes lead to a restoratitime stringy T-duality symmetry along
the thermal circle:

Ro— RE/Ro, S+ Cs, (2.26)

where in all models, the self-dual point occurs at the femaigoint R; = 1/v/2. The partition
function is finite and duality invariant, but it is not a smiodtinction ofRy. At the self-dual point
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R; additional thermal states become massless enhancing tlgee ggmmetry associated to the
Euclidean time circle,
U(1)L xU(1)r— [SU2)L|k=2 x U (DR, (2.27)

and inducing a conical structure 4h(as a function oRp), signaling a stringy phase transition.

For example in the Hybrid model,»224 states in th©gV,4 sector become massless, precisely
at the self-dual point: ,

1
m = <ﬁ — Ro> . (2.28)

Away from the critical point the mass square is strictly pigsj and the states do not become
tachyonic at smaller values of the radiBg 2. The corresponding left-moving and right-moving
momentum charges and vertex operators are given by

pL==1 pr=0, O.=yleXor (2.29)

So the additional massless states carry both non-trivimhemum and winding charges.
In the Hybrid model the thermal partition function can be pomed exactly thanks to right-
moving MSDS symmetry [31, 36]:

1
“ Rl (2.30)
There is complete suppression of the massive oscillatdribations away from the critical point.
However, stringy behavior survives at the critical poiniiigg rise to the conical structure. From the
thermal effective field theory point of view, such non-atialypehavior is induced after integrating
out the additional massless states. With one spatial dimem®n-compact, each complex boson
becoming massless contributes a factor given by the alesedliie of the mass:|m|. Since in the
Hybrid model there are 24 such states, with masses givenuatieq (2.28), the non-analytic term
in the partition function is accounted for. Thermal confagions of non-critical heterotic strings
in two dimensions enjoy very similar properties [58].

With d — 1 spatial dimensions non-compact, the partition functioguaes a higher order
conical structure:

b 24 = )-24
Vi X <Ro+ 2R0> X

1 d-1

Ro— Rl (2.31)

implying a milder transition as a function &,. Recall however that to avoid non-perturbative
Jeans instabilities, we must keep all but at least one ofatyelspatial dimensions compact, and
so the infinite volume an&; — R; limits may not commute. Therefore, we can take a number of
spatial dimensions to be arbitrarily large (but compaaty still the conical structure be linear at
the critical point.

Thermal duality implies the existence of two dual asymptotigimes dominated by the light
thermal momentaR, > R, and the light thermal windingRy < R, respectively. In the regime
of light thermal momenta the partition function is given by

z NS R.\ 9t -
Vo (ZHRC)dd*1 <%> + ﬁ(e Ro/RC), (2.32)

2This is to be contrasted with heterotic strings at finite terapure, where the two dual phases, at small and large
values of the thermal modull, are separated by an intermediate tachyonic region.

~

10
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giving rise to the characteristic behavior of masslessttlagéradiation ind dimensions. The tem-
perature is given by the inverse period of the Euclidean tirede, T = 1/21Ry; n* is the number
of effectively massless degrees of freedom agdstands for the Stefan-Boltzmann constant of
massless thermal radiationdndimensions.

By duality, we get that in the regime of light thermal windn&y < R, the partition function
is given by

yd Nz d-1
.- ch)dd_l (%) + 0 (eR/R). (2.33)
Notice in particular thaZ — 0 asRy — 0. Now in standard thermodynamics the thermal partition
function decreases monotonically as the temperature agese So the correct definition of tem-
perature cannot b€ = 1/27Ry in this regime. That is, the temperature in this regime issedby
the inverse period of the Euclidean time circle. The lightaing excitations are non-local X°,

but are local in the T-dual ok°. In fact by T-duality, we can interpret them as ordinary thak
excitations associated with the large T-dual circle, whashus is given byRy = R2/Ro. So the
temperature in this regime is given By= 1/2nRy = Ry/(2nR2), and the system at small radius
R is again effectively cold.

Thus the thermal system has two dual, asymptotically coltbeh as the value of the thermal
modulusRy varies. Each thermal phase arises via spontaneous symbmneaking, as we deform
away from the intermediate extended symmetry point. Thephases are distinguished by the
light thermally excited spinors. At large radiy > R, these transform under tt8-Spinor of the
SQ(8) symmetry group, while at small radRy < R, the light thermally excited spinors transform
in terms of the conjugat€g-Spinor. The extended symmetry point is purely stringy;ds mo
precise thermal interpretation but instead is T-dualitsaiant.

Operators associated with the extra massless states itrdnsé@ions between the purely mo-
mentum and winding modes. The operatdrs andO_, given in equation (2.29), raise and lower
pL by one unit but leavepr unchanged. In particular since they transform in the vaspresenta-
tion of the symmetry grouQ(8), they induce transitions between the purely momen$grand
purely windingCg spinors, which become light in the two asymptotically cadimes respectively:

< CglO_| S5 >#£0. (2.34)

As a result the stringy phase transitiorRatcan be resolved in the presence of genus-zero con-
densates of the additional massless thermal states, waitimediate transitions between purely
winding and momentum stategluing together” the asymptotic regimel81-33]. These con-
densates can be described in terms of non-trivial textuwbish define embeddings of the spatial
manifold into the field configuration space via non-zero igpgradients of the fields associated to
the extra massless statés; ¢' £ 0 [32]. As we will argue, in the Lorenztian description, wéer
the temperature becomes time dependent, the condensataisgito a spacelike brane (S-brane)
configuration with negative pressure contributions laealiat a time slice at which the temperature
reaches its critical value.

Therefore thermal duality implies the existence of a makiongical temperaturel < Te.
The stringy system conceals its short distance behavidr [B2fining the thermal modulus
via Ry/R; = €%, T-duality acts by reversing its signo — —o. In terms ofo and the critical
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temperaturd,, the physical temperature can be written in a duality irrrivay as follows:

1 1
T=Teld T=—"r=—". 2.35
Cc C anc \/zn ( )
The expression is valid in both asymptotically cold regim@snsequently the energy density and
pressure are boundgu< p., P < P, never exceeding certain maximal values. This is a crucial
difference from thermal field theory models.

In the Hybrid model, the thermal partition function can betten as

z 24,/2
v - WD AT, A= T\f. (2.36)
C

and so the pressure, energy density and maximal energytylansigiven by

P=p=AT? p=ATZ=2 (2.37)

Soin each thermal phase the equation of state is effectivatyof thermal massless radiation in two
dimensions thanks to right moving MSDS symmetry. In the aigiimensional cases, the exact
right-moving MSDS structure gets replacedrimyht moving asymptotic supersymmetensuring
that well up to the critical point, the partition function @minated by the contributions of the
thermally excited massless stat&s: T9-1[32]. In order to maintain semi-quantitative control in
the remaining part of this work, we will ignore stringy cartiens to the one-loop string partition
function in the highed cases close to the critical point, and approximate the thkesgstem with
that of massless thermal radiation up to the critical teraipee. We will incorporate however the
crucial localized pressure contributions induced by theitamhal massless thermal states at the
critical point.

2.2 Cosmological evolutions

The backreaction on the initially flat metric and dilaton kground will induce a cosmological
evolution. We consider first the case where the underlyimgntlal moduluso is a monotonic
function of time scanning all three regimes of the stringtin system [31, 32]. Correspondingly
the temperature grows from small values, reaching its malxiralue T;, and then drops again
to zero. Each regime admits a local effective theory desarip associated with distinct a’-
expansion:

e R./Ro> 1, (0 < 0); the regime of light thermal windingg# (o < 0)}.

e |[Ry/R:—R:/Ro| < 1, (0 ~ 0); the intermediateSU(2) extended symmetry point, where
additional thermal states become massl¢sé(o = 0)}.

e Ry/R; > 1, (0> 0); the regime of light thermal moment&:# (o > 0)}.

So a stringy transition occurs & (o = 0), connecting two asymptotically cold phases. In
each of these phases the source comprises a thermal gamg$ stoupled to the dilaton/gravity
system. Neal; condensates associated with the extra massless therr@absian form and decay

12
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giving rise to an S-brane configuratidn- see [59] for discussions concerning stringy S-branes in
various contexts. Precisely at the critical point, the ¢éigna of motion of the thermal effective
theory allow for non-trivial (genus-0) backgrounds, in alinthe gradients of the fields associated
to the extra massless thermal states satisfy [32]

K

Gi Dﬂ¢| DO‘PJ = mgﬂfn

(2.38)
whereG,; is the metric on the field configuration spagg; is the metric on the spatial manifold
andk is a positive constant that sets the strength of the contEEnsdhe resulting stress tensor
is compatible with the symmetries of the spatial metric,clhive require to be homogeneous and
isotropic. Effectively, the condensates amounhégative pressure contributions, proportional to
—K, which are well localized around the transition surface=TT; in the Lorentzian

At finite string coupling, we expect the thickness or dunmatad the S-brane in time to be
very short, set by the string scale. So in the Lorentziancéi{fe action we treat the S-brane as
a o-function source (thin-brane limit). (Later on we will expé the possibility of spreading the
intermediate regime, with the temperature being constaits aritical value, for a long period in
time.) Integrating out the extra massless thermal scalarequation (2.38), we obtain the brane
contribution to the effective action [31, 32]:

Sorane= —K/dadd_lx gJ_e_Z(pé(a) -

—K/drdd‘lx g.e 295(1 —1¢), (2.39)

wherert, is the time at which the temperature reaches its criticalesat (7;) = 0, andg, stands for
the determinant of the induced metric on the constant tince sl= 17.. The tension of the brane
is set byk. The energy density of such a spacelike brane vanishesigtamtty with reflecting
boundary conditions on the first time derivative of the dirafield [31]), but it gives negative
pressure contributions in the spatial directions. Thusadwvigdes the violation of the null energy
condition (NEC) which can lead to a transition from a cortirar phase to an expanding phase
(when the cosmology is viewed in the Einstein frame). Heortlefwe will refer to the intermediate
regime as the “Brane Regime”.

The first class of non-singular string cosmologies we disamsists of transitions from a
“Winding regime” to a “Momentum regime” via such a thin S-bea

C)={V(a<t)e{Br=1)e{A(1>1)} (2.40)

Without loss of generality we may chooge= 0. Since we take the string coupling to be weak and
the size of the spatial manifold to be much larger than thiegstrcale, our discussions above lead to
the following effective action for the cosmological dynasyiwhich is valid in both the asymptotic
regimes and also close to the critical point:

S= /ddx e /=g (% R+ 2(qu)2> +/ddx /=g P— K/ddx\/gje-wa(r). (2.41)

31t would be interesting to associate this configuration \dttmation and decay of long, tangled strings spread in
space.
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The first term is the genus-0 dilaton-gravity action writienstring frame, while the second is
the contribution of the thermal effective potentiaP. In terms of the genus-1 thermal partition
function, the energy density and pressure are given by
VA oP
P=T — =—P+T—~(d-1)P 2.42
The equation of state = P is exact in the 2d Hybrid models.
We concentrate on spatially flat homogeneous and isotrapitiens

ds* = —N(1)%d12 4 a(1)%dxdX, (2.43)

wherea is the string frame scale factor ahdis the lapse function. Homogeneous and isotropic
solutions with negative spatial curvature can be also cocistd. Since in both thermal phases the
Universe is asymptotically cold, this must be a bouncingraaegy. Irrespectively of the running
dilaton, the thermal entropy (per co-moving cell of unit mtinate volume, physical volurma®—1)

ad—l

S=—(p+P)~ (aT)d-? (2.44)

is conserved, implying that in each of the two asymptotiartted phases the scale factor and
temperature satisfy:

aT = constant (2.45)

Therefore, during the initial “Winding Regime” where therigerature increases, the Universe is
in a contracting phase, which reverses to expansion onddrtlverse enters into the “Momentum
Regime” with decreasing temperature. Moreover, sinceaghgerature and all thermodynamical
guantities are bounded from above by critical values, wttiely attain at the brane, the scale factor
must be bounded from below by its value at the brane:a.. This critical value of the scale factor
is given in terms of the entropy and the maximal critical tenagure:

1/d-1 1/d—1
:< St > LS (2.46)

pC + I:’C TC

In particulara. can be kept large in string units if the entroys large. The bounce is facilitated
by the extra negative pressure provided by the S-brane dtahsition surface, inducing also a
bounce on the dilaton. The singular regime- 0 of classical general relativity is absent.

Notice that continuity of the scale factor across the bransures the continuity of the thermal
entropy across the transition surface, as in second or@eepinansitions. The reversal of contrac-
tion to expansion via the S-brane is what makes the trandi@ween the two asymptotically cold
phases possible, avoiding a “heat death” and maintainimgpaticity throughout and across the
brane.

From the action (2.41), we can obtain the equations of mdB@h Varying with the lapse
function N, we get the following first order equation

1

é(ol—l)(ol—:Z)Hz:2(o|—1)H£p—2c;>2+eZ<!’N2p, (2.47)
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consistently with the vanishing of the brane contributiothie energy density. For the scale factor
a, we get

(d—2) (g— H%) +%(d—2)(d—3)H2
=2¢0+2(d—2)Hp—2¢? — 2§¢— €?N?P + kNS (T), (2.48)

including the localized negative pressure contributicsnfthe S-brane. Finally the equation of
motion of the dilaton is

. .., N. d-1/4 N\ 1 , 1
@+ (d—1Hp— ¢?— N(p_T (5 —H N) — Z(d —1)(d—2)H* = —EKN5(T). (2.49)

Irrespectively of spacetime dimension, the structure e$¢hequations is such that the dilaton
experiences an impulsive force at the brang=2—kN.d(1) + ..., while dis smooth. So the brane
induces a discontinuity in the first time derivative of thiattn field

2(¢. — @) = —Nek, (2.50)

while the first time derivative of the scale factoremains continuous. Criticality of the temperature
at the brane —this is a crucial string theory input — leadbeov/ainishing of the first time derivative
of the scale factora = 0. Continuity of the dilaton field and the metric across thaney; and the
first order equation (2.47) then imply th@t = —¢@_. In other words, the dilaton undergoes an
elasticbounce across the brane:

@ = —@_ = —Nk /4. (2.51)

Since the brane tensianis positive, the dilaton must be initially increasing. lbosses the brane
and then decreases. As a result, the dilaton is bounded foouedy its value at the braneg:< @..

The critical value of the dilaton and the maximal energy dgreet the slope of the dilaton just
before the transition, the brane tensionand hence the strength of the condensates associated to
the extra massless thermal scalars, via equation (2.47):

K = 2e*,/2pc. (2.52)

These boundary conditions are in accordance with entropgezeation throughout and across
the brane:

p+(d—1)H(p+P)=0. (2.53)

Assuming massless thermal radiation up to the critical tpdiom both sides of the transition,
the pressure is given by = n*Z4T9 and the conserved thermal entropy ®y d(aT)d 1n*zy =
constant. Then we obtain the following expressions

S
dn*Z4

1/(d-1)
acT=aT = ( ) L K=22(d—1) \/nzg T2 e (2.54)

for the critical value of the scale factor and the relatiotbwsen the brane tension and the critical
value of the dilaton.
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With massless thermal radiation up to the critical point, @@ obtain exact cosmological
solutions to the equations of motion. In the conformal galye: a, the string frame scale factor
and dilaton are given by [32]

a 1 wac|r|> < wac|r|>}
n{—)=-——= In{ 1+ —n_In{ 1+ ,
(&)= [rn (155 o (5

cp:<n3+7‘d_l {In <1+M>—In <1+M>], (2.55)
2 n+ n-
where d_2
40 = K—— =vd—1+1. 2.56

The solutions are invariant under time reversals —1, in accordance with the gluing conditions
across the brane discussed above. In the neighborhood dfdhe,|ka:T| < 1, the metric is
regular while the dilaton exhibits a conical structure:

a 1

Ikact|

4
In the far past and futurékact| > 1, the dilaton asymptotes to a constant, the temperatupesdro
and the scale factor tends to infinity. Asymptotically we get

o=q@— +0((kacT)?). (2.57)

a~ |7]%/972, (2.58)

recovering the characteristic relation between the st and conformal time in a radiation
dominated Universe.

The string coupling is bounded by its critical value at thana: gs < g. = €®. Hence our
perturbative approach is valid when this critical coupligg is sufficiently small. The Ricci scalar
curvature also attains its maximal value at the brane, wisiskt by the brane tension:

Re=K%/4=0(g). (2.59)

In particular the curvature is finite throughout the cosmgalal evolution; there igo essential sin-
gularity. Since the critical coupling sets the value of the braneidenis string units, we conclude
thatboth g, and a’ corrections remain under contrghrovided thaty is small enough.

We may transform to the Einstein frame via

(Ne,ag,1/Te) = e 2 (N,a,1/T). (2.60)

Thus the geometrical quantities in the Einstein frame itiee conical structure of the dilaton
field. The discontinuities of the Hubble parameter in theskim frame and the first time derivative
of the dilaton (across the transition surfacdgtare resolved by the brane pressure, in accordance
with the Israel junction conditions [60], which require thhe induced metric on the transition
surface be continuous and the extrinsic curvature to juma factor determined by the localized
pressure [61].

16



String Cosmology Nicolaos Toumbas

Before we conclude this section, we make a comparison batieestring cosmologies we
obtained, which incorporate the transition across thagjriS-brane, with the corresponding so-
lutions in the classical dilaton-gravity theory, coupledntassless thermal radiation, where such
a phase transition is not possible. The latter are given éysdtutions in equation (2.5%)ithout
the absolute value on the time variabdad coincide with the stringy solutions in the “Momentum
Regime”. Removing the absolute value on the time variabke see that the dilaton becomes a
monotonic function of time, and grows without a bound in tlastp So the dilaton-gravity system
is strongly coupled in the past, and perturbation theorpksalown. The string frame scale fac-
tor still undergoes a bounce at= 0, but as we evolve backwards in time, its first time deriativ
develops a singularity a finite time in the past, leading tavature singularity. In the Einstein
frame, we recover the singular regiage — 0 of classical general relativity.

The situation is drastically different in the stringy cas&tarting in the contracting phase,
the Einstein frame temperature increases monotonicallly tvhe. The analysis of [17] reveals
that additional thermal states become massless at a Ctdéitgerature determined by the string
coupling, “protecting” the system from entering the regiage— 0 of classical general relativity.

If at this critical point the coupling is weak, then the adxhl thermal states are the perturbative
winding modes discussed above, and the analysis of thigosespplies on how to follow the
transition via the stringy S-branes. Large enough entrgpyeieded in order to keep the string
frame scale factor parametrically larger than the strirajesdn accordance with equation (2.54).
If on the other hand the coupling at the critical point is &rthen the extra massless thermal states
are non-perturbative in nature, but still these can soureeréquired localized pressure needed
for a reversal to expansion. Non-perturbative string diealican be applied in order to map to a
weakly coupled description. It would be interesting to gpglch dualities so as to complete the
cosmological history in these cases as well.

2.2.1 Spreading the “Brane Regime”

We observe that at the brane, the first time derivative ofaéheperature vanishes,= 0, with
the temperature reaching its maximal, critical valgeWe explore in this section the possibility of
“spreading” the “Brane regime” for an arbitrarily long pediof time in the past [33]. During such
a long “Brane regime,” the string frame temperature remearsstant, frozen at its critical value.

It follows via the entropy conservation law, equations 42.dnd (2.53), that the string frame scale
factor must also be constard:= a.. Modulo the running dilaton, such a model shares features
with the “emergent cosmological scenario” [62] where thévgrse is in a long quasi-static phase,
with H = 0, before it exits into an expanding phase.

At the critical point, various condensates associated thighextra massless fields may give
rise to a dilaton effective potentigl(@). In order for the temperature and string frame scale factor
to remain constant during the backreacted cosmologicdligon, this potential must take the
following form [33]

V(p)=B+Ce % B=F; (2.61)

that is, the constant part has to be equal to the value of grendd pressure at the critical tempera-
ture, while the coefficient of the exponential term can béty. It turns out that the parametdds
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andC can be obtained in terms of fluxes in the underlying effeajieged supergravity description
of the thermal system at the extended symmetry paint Q).

Recall that at the critical point, tHé (1), gauge symmetry associated to the Euclidean time
circle gets enhanced to &U(2). gauge symmetry. Also, there is at least one spatial circte wi
radius fixed at the fermionic point, which couples to the fgioving fermion numbefFg and
contributes to the spontaneous breaking of the right-ngpgimpersymmetries. THé(1)g gauge
symmetry associated to this circle gets enhanced 8LK8)r gauge symmetry. So at the fermionic
extended symmetry point, symmetries reorganize in suchyaswdhat an alternative description
is possible, where the diagon@l cycle blows up to arBU(2)-manifold with string-scale volume
and flux. As a result, at the critical point, the target speae loe described in terms ofdat 2-
dimensional space.

Now consider the underlyind + 2-dimensional gauged supergravity. Once fluxes and gradi-
ents along the 2 compact directions are turned on, the kitextins of the internal massless scalars,
graviphotons and matter gauge bosons give rise respgctvéhe following dilaton effective po-
tential [33, 63]:

Ae 2+ B(%)+Ce %, (2.62)

where% stands for the volume of the 10d internal, toroidal manifold. This form for the effective
potential persists when the theory is dimensionally reduoal-dimensions, since the extra com-
pactSU(2)k—»/U (1) manifold has fixed volume at the string scale. So to suppoohg Brane
Regime” requires to turn on non-trivial fluxes and gradiesut$hat

L] B(%) — PC
e A+C =C, which can be arbitrary.

Thus during a “Brane Regime” the only non-trivial evolutienthat of the dilaton, which
depends on the flux parametérof the effective potential. The only equation that remam&e
satisfied is the Friedmann equation, which, for constariedeator and dilaton potential given by
equation (2.61), takes the form:

2¢% = a2 [(pc+P.)E¥? +CJ. (2.63)

The solutions corresponding ®= 0 andC > 0 are given as follows [33]

(—1), Vi<t <0,

2
C>0: e“”:\/pcgpcsinh{ac\/g(—r)} Vi<t <O (2.64)

e In both cases the “Brane regime” startgat —o, with super-weak string coupling.

e Attime 1, < 0, this regime can exit via a thin S-brane to the “Momenturdiatéon regime,”
described in the previous section. The reason for choosiagupper end of the “Brane
Regime” to be negative is to maintain the validity of peratrbn theory throughout the cos-
mological evolution. Notice that throughout the “Brane Regj’ the dilaton is monotonically
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increasing. When it crosses the thin S-brane, it undergdesiace and starts to decrease.
The junction conditions on the first time derivative of théttin just before and after the
transition surface can thus be met, as required by a poségon brane.

e The choice oft, determines the critical string coupling at the transitiowards the “Mo-
mentum dominated phase, = @(T = 1,.).

In summary, this cosmology can be represented pictorialfipiows
C(r)={B(1<1)}{A(T>T1)}. (2.65)

Initially the Universe has constaot-model temperature and scale factbr= T, anda = a;. The
string coupling grows from very weak values in the very egdgt reaching a maximal valgg at
T¢, at which point the Universe exits into the radiation dorteda’Momentum regime”. Botlgs
anda’ corrections are under control provided thais small enough.

Finally let us note that the cage< 0 allows us to obtain a “Brane regime” of finite time
duration [33]:

P . C
C<0:e%= pc’a Csm[ac\/%’(—r)] T_<1<714 <0, (2.66)

opening up the possibility of constructing string cosmatagsolutions, where an initial “Winding
Regime” undergoes a transition to a “Momentum Regime” vikiektS-brane. One possibility of
realizing this case is by introducing positive spatial auve [33], and so this would be an example
of a closed stringy cosmology, which avoids both the Big-®and Big-Crunch singularities of
classical general relativity. Of course we would still ndednvestigate the stability of such a
Universe against collapse in the presence of extra matteflactuations.

3. Parafermionic cosmologies

In this section we consider a class of exact cosmologicaitisols to classical string theory,
which are described at the worldsheet level by supercordbfimld theories (SCFT) of the form
[38,39]

SLU2,R)_j/U(1) x K. (3.1)

The first factor corresponds to a gauged Wess-Zumino-Wittedel based on th8L(2, R) group
manifold, with the levek taken to be negative. The second factor stands for a suitatelenal,
compact CFT. In global coordinates, the sigma-model matritdilaton field are given by

—dT2+dX?
n—-1 _
e?%o
® __
& S el (3.2)

In the superstring case, this sigma-model metric is exadlltorders in thea’ expansion [64].
Additional work on these types of models includes [65].
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surfaces of constani

N

Figure 1: TheSL(2,R)/U (1) cosmology.

The geometry consists of a singularity-free light-coneaegand there are time-like curvature
singularities in the regions outside the light-cone harizovhere the dilaton field is also singular.
See figure 1. The singularities occur at the hyperbolas

X =+V1+T2 (3.3)

Despite the fact that the singularities follow accelerategkctories, their proper distance (as mea-
sured by the length of the slicds=constant) remains finite in string units:

— J(K+2)a /ﬁ\/lﬂxf (K +2)a. (3.4)
It can be kept parametrically larger than the string scaldaime levellk|. So in a sense we can
think of the cosmology as being spatially closed [39]. Obsealso that if we perform a double
analytic continuation on the coordinates, we obtain Wistéadimensional black hole solution
[66]. This double analytic continuation is equivalent t@obing the sign of the levé&land rotating
the Penrose diagram of the cosmology by 90 degrees.

At the singularities the sigma-model geometrical desianpbreaks down, but as we will see,
the underlying worldsheet CFT gives a prescription to descthem. The cosmological region
of interest is the future part of the lightcone region. Patining this region with a new set of
coordinategt, x), defined via

T =tcoshx, X =tsinhx, (3.5)

the metric and dilaton are given by

—dt? +t2dx o %

n—1 _ — __
(o) 1€ = (K +2 17— s

(3.6)
Therefore we obtain an expanding, asymptotically flat gaomeith the string coupling vanishing
at late times. Asymptotically we get a timelike linear dilatbackground. The surfaces of constant
timet are shown in figure 1.

The cosmological observer never encounters the singalgrias these lie behind the visible
horizons atT = +X. However, signals from the singularities can propagate ihe lightcone
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region, through the surfade= 0, and influence its future evolution. In this sense, the @sgy is
similar to a Big-Bang cosmology.
The central charge of the superconforr8al2, R) /U (1) model at negative levédis given by

6 4

c=3—-———, €=2———.
k| +2 kl+2

(3.7)
In superstring theory we must tensor it with other conforfirglld theories so as to satisfy the
condition Gt = 10 for worldsheet gravitational anomalies to cancel. Tawban effectively four
dimensional cosmological model, we add two large (howewengact) supercoordinatey, z),
with radii R, ; = R> I, together with a compact SCFT system of central charge

56=6+4/(|K +2). (3.8)

Since the cosmological region of interest is non-compaud @symptotically flat), the model ad-
mits the desired four dimensional interpretation [33his is so irrespectively of how small the
level [k| is. As an example consider the cdkp= 2. Then we may set the internal CFT factor to be

K=TZxT7, (3.9)

where the volume of the 7-dimensional toroidal manifoldhissen to be at the string scale. Since
the central charge of th®L(2,R)/U (1) factor is smaller than the central charge corresponding to
two flat macroscopic directions, the models are in fact sagécal.

The metric in the Einstein frame is given by

d€2 = (K +2)a’(—dt? +t2dx®) + R? (1+t?)(dy? + d2), (3.10)

thus describing an anisotropic cosmology. At late timesdwas, and for largeR, it asymptotes
to an isotropic flat Freedmann model with scale factor grgwinearly with time: a~t. The
effective energy density and pressure supporting this &fntbsmological evolution must satisfy
the following equation of state:

Peft = —3Peft- (3.11)

Therefore theSL(2,R) /U (1) cosmology is at the cross-point between accelerating aceletating
Universes.

Upon rotation to Euclidean signature, we obtain a disk patdred by a radial coordinate
p <1 and an angular variablg € [0, 2r7). The Euclidean metric and dilaton are given by

dp?+ p?d¢? 20 _ %o

n—1 _
(@) 1 = (K+2) = 5 T

(3.12)

with the singularity occurring at the boundary cirghe= 1. The characteristic feature of this
geometry is that the radial distance of the center to the daynof the disk is finite, but the
circumference of the boundary circle@t= 1 is infinite. Geometrically the space looks like a bell.
The Euclidean background admits a superconformal fieldryhdescription based on the
SU(2)/U (1) coset model at levek|. See e.g. [67] for a review. The interesting feature is that
the Euclidean CFT isompactand unitary. In fact since it corresponds toNia= 2 minimal model,
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the level|k| must be quantized. So in order for the Euclidean theory to &edefined, we seji|
to be a positive integer.

This worldsheet CFT is perfectly well behaved aroyme: 1, where the geometrical sigma-
model description breaks down. Near this region the gaug&u\éction is given by

K|+2
Swzw= _Hz—n / R (3.13)

with the leading term in the expansion corresponding to akdropological theory. From the form
of the action neap = 1, we also learn that worldsheet instantons for whjodhz = 27in, break the
U (1) symmetry shifting the angle to a discrete symmeti® . », in accordance with the algebraic
description of the worldsheet system in termsZgf, » parafermionic currents [68]. Itis clear that
in the presence of such instantons, the Euclidean pathrattisgnvariant only under discrete shifts
of the anglep: d¢ = 2rm/(|k| + 2).

We argue now that the non-singular description of the thé®mgn almost-geometrical one
[39], in terms of a compact T-fold [70]. In order to constrilis, we first perform a T-duality
transformation along the angular directipnThe resulting sigma model is based on the following
metric and dilaton

N1 2_(’k‘+2)< ?2 p'2 2>
(@) s = P (A0 (50

S = (1-p?) (3.14)
(K+2a-p7 P =P '
The transformation on the radial coordingteexchanges the boundary of the disk and its center.
The T-dual description isveakly couplechearp = 1 or p’ = 0, where the original metric and
dilaton field were singular. The only singularity there isemign orbifold singularity. In fact the
T-dual description is equivalent to tl&,,, orbifold of the original model [67, 69]. Despite the
presence of a conical singularity in the geometry, the gtifreory amplitudes are finite and well
behaved.

The T-fold can now be constructed as follows [39]. We takedhginal disk and cut-off
the region past a non-singular circle, e.g. the region pastirclep = p’ = 1/v/2, p > 1/V/2,
containing the apparent singularity @t= 1. The cut-off region is replaced with the interior of
the T-dual geometryp’ < 1/1/2, with a well behaved geometrical description (in termshef T-
dual variables). The two patches are glued together alasgitim-singular circle via a T-duality
transformation. In particular the Euclidean T-fold is camnf and it does not have any boundaries
or singularities. We emphasize that the gluing of the T-cuatthes isnon-geometrical,as it
involves a T-duality transformation on the metric and offeds.

For the cosmology as well, we can obtain a regular T-fold digion as the target space of
the CFT. Here we observe that T-duality interchanges the-tigne and the singularities [38]. We
must glue the T-duals along a hyperbola in between the logig@nd the singularities. The gluings
are shown in figure 2. The resulting almost-geometrical rilgtsan is very similar to 2-dimensional
de-Sitter space, which we can think of as a hyperboloid exhedh three-dimensional flat space.

We may think of the Euclidean T-fold (or the correspondingnpact CFT) as describing a
string field theory instanton, similar in fact to the caselw tound sphere which is an instanton
solution to Einstein’s classical theory of general reigtiin the presence of a positive cosmological

Nl

e =

22



String Cosmology Nicolaos Toumbas

Figure 2: The cosmological T-fold. As we cross the hyperbola (stripitk line) in the original patch
moving towards the apparent singularity (dotted blue limg pass to the T-dual patch, and continue motion
towards the non-singular lightcone region.

constant. In the latter case, the radius of curvature ofggherg is set by the cosmological constant,
while in the string theoretic case the effective radius afature is set by the quantized level

The T-fold construction allows us tformally define a Hartle-Hawking wavefunction [71]
for the cosmology, which we can think of as a vector in the &fillspace of the 2nd quantized
string field theory. To this extend, we need to perform a “Adibld” Euclidean path integral over
fluctuations of altarget space fields with specified values on the boundary [39]

Why, @,...] = /[dg] dg]...e 509, (3.15)

More explicitly, we cut the cosmological T-fold in two aloagslice of time reversal symmetry, the
T = 0 slice in each patch, and replace the past geometry withuithdean counterpart. Values for
the target space fields must be specified onThis0 slice. See figure 3. No other condition needs
to be specified since the full Euclidean T-fold has no bouedasr singularities, thus generalizing
the Hartle-Hawking no boundary proposal to string field tigeo

The wavefunction is hard to compute, but we can understame €6 its global properties by
computing its norm. The norm of the wavefunction is givendmis of the full Euclidean path
integral, over fluctuations around the on-shell closedhgtbhackground. The full path integral
can be computed in a 1st quantized formalism by summing diveloged worldsheet topologies,
including a sum over disconnected diagrams. In fact it isabtm the exponential of thotal,
connectedstring partition functiorZsring,

||W][% = efsting, (3.16)

calculable perturbatively as a sum over all (connectededdriemann surfaces of genug @, ...,
if the string couplinge?® is small enough. Two crucial conditions for the norm to betdirzire
that the underlying SCFT be compact and to lead tachyon freeEuclidean model [39]. In the
superstring case the latter condition can be satisfied bpsing a suitable GSO projection [72].
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Figure 3: The gluing of the half-disk to the cosmology.

As in the case of de Sitter space, the norm of the wavefuncaorbe interpreted as a thermal
ensemble. In the de Sitter case, the norm is given in terntseafdsmological constant by

|Was| |2 = /BN (3.17)

with 3/8G?A corresponding to the finite de Sitter entropy [71]. Likewiis¢he case of the stringy
cosmology at hanZsing corresponds to a thermal string amplitude [39]. But unlie de Sitter
case, the genus-zero contributionZgiing vanishes. This is because when the underlying CFT
is compact, the spherical CFT partition function is finitelame must divide it with the infinite
volume of the conformal Killing group in order to get the stritheory result. Also since the on-
shell background satisfies the sigma-ma@ié¢linction equations, its tree-level action vanishes. As
a result in perturbative string theory, the leading contiin arises at the genus-1 level.

The effective physical temperature of tB&(2,R)/U (1) cosmological model is set by the
inverse of a radius, which depends on the ldvas$ follows [39, 73]:

T=1/2nR  R=+/(K+2)a". (3.18)

So it is below the Hagedorn temperatuRe;> Ry = +/2a’, for all [k| > 0. As a result, the cor-
responding genus-1 thermal string amplitude is finite @hid normalizable. For example, when
|k| = 2, the parafermionic factor of the cosmology has centratgghd= 1, and it is equivalent
to a fermion together with a compact boson at radiyg12> Ry. One way to see that this is the
correct value for the radius is that for this radius, the &lds equivalent to th&, orbifold of the
original model. Explicit computations of the one-loop theait string partition function in this case
can be found in [39]. Observe that the effective temperdtemmes equal to HagedoR= Ry,
at|k| = 0, precisely when the cosmology disappears from the tapgetes

Hence the norm of the wavefunctiop||? is finite, and in fact it is a function of the moduli
associated to the internal CKI[39]. It would be very interesting to use it in order to defie&ative
probabilities for different string compactifications, atdd to these parafermionic cosmologies, as
well as precise stringy observables associated to the doggnoTo this end, notice that in the
asymptotically flat region of the cosmology, we can defindtedag states, and so an “S-vector”
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can be in turn defined, in terms of the overlaps of these stajtstates with the Hartle-Hawking
state associated to the cosmology.

4. Conclusions

In this lecture we have uncovered cosmological implicatiohcertainstringy gluing mech-
anisms realizable in a large class of thermal type ' = (4,0) models, which connect distinct
string effective theories. The mechanisms are triggereadoltional thermal states, which become
massless at a critical, maximal temperatlige The region around the critical temperature admits
a “brane interpretation,” with the brane tension sourcetdy-trivial spatial gradients associated
to the extra massless thermal scalars. In the Einstein frmaecosmological solutions describe
bouncing Universes, connecting in some of the examples symptotically cold thermal phases.
Unlike many versions of pre Big Bang models in the existirigréture, these cosmological so-
lutions remain perturbative throughout the evolution,vided that the critical value of the string
coupling at the brane is sufficiently small. Indeed this lasbouncing cosmologies provides the
first examples, wherboth the Hagedorn instabilities as well as the classical Bang singularity
are successfully resolvetkmaining in a perturbative regime throughout the evolutio

Eternal, bouncing cosmologies open new perspectives, doessl the cosmological puzzles
of standard hot Big Bang cosmology. Most of these problerasbased on the assumption that
the Universe starts out very small and hot, with Planckiae sind temperature. In our set up,
however, the minimal size of the Universe can be paramdyritaager than the string or Planck
scale. The horizon problem in particular is essentiallyifiedl. Causal contact over large scales is
assured given the fact that the Universe was in a contraptiage for an arbitrarily long period of
time. The large entropy problem does not arise either. Ifthiwerse begins cold and large (larger
than the present-day Universe), it will by dimensional gsial be likely to contain a sufficient
amount of entropy. The stringy cosmologies we obtained apgethe possibility to study the
homogeneity problem within a concrete set-up. Indeed thaysof the growth and propagation
of cosmological perturbations from the contracting to tkeamding phase via the stringy S-brane
is currently underway [61], opening up the possibility céliging the “Matter Bounce” scenario
in string theory that produces a scale invariant spectrupriafiordial cosmological fluctuations
[74]. If successful these stringy bouncing cosmologiesfoam a basis, alternative to inflation, of
realizing phenomenologically viable models with complstegularity free cosmological histories.
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