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1. Introduction

The last few years have seen a renewed interest in 3D supersymmetric theories. On the one
hand this was generated by the research triggered by the study of M2-brane dynamics and 3D
superconformal Chern-Simons theories [1, 2, 3]. On the other hand, new insights into the dynamics
of 3D massive gravity theories have been achieved. In particular Topological-Massive-Gravity
(TMG) [4], New-Massive-Gravity (NMG) and Generalized-Massive-Gravity (GMG), [5] received
a lot of attention. All these models include three-dimensional AdS3 space-time as a maximally
symmetric solution allowing for extended supersymmetry.

Superspace techniques can be used to construct general N -extended supergravity models in
3D. The N = 1 case was studied in [6, 7]. The N ≥ 2 cases were sketched in [8, 9] and then devel-
oped, in collaboration with S. M. Kuzenko and U. Lindström, in [10] for N -extended conformal
supergravity. The advantage of the superspace approach is that, extending the superconformal
results of [11], we provided formalisms to study general supergravity-matter systems with N ≤ 4.

By using components techniques, long ago, Achúcarro and Townsend gave a classification
of 3D N -extended anti-de Sitter (AdS) supergravity called (p,q) supergravities [12]. The two
non-negative integers p ≥ q are such that N = p+q and they classify the in-equivalent isometry
supergroups OSp(p|2;R)×OSp(q|2;R) of the AdS backgrounds.

In [13], using the results of [10], we deepened the study of 3D N = 2 AdS supergravities in
superspace and their (1,1) and (2,0) AdS geometry. Furthermore, we elaborated on rigid supersym-
metric theories in (1,1) and (2,0) AdS superspaces. The advantage in our superspace construction
was the possibility to write general matter couplings in the AdS supergravities.

Recently there was a renewed interest in studying field theories in curved spaces (see [14, 15,
16, 17, 18]). New superspace techniques for rigid supersymmetric theories on curved background
have clear applications if one is interested to lift off-shell theories from flat to curved backgrounds
[18]. Such problems have recently arisen in studying the partition function of gauge theories on
nontrivial, constant-curvature backgrounds when computing observables such as expectation val-
ues of Wilson loops and superconformal indices by using localization techniques [19].

A natural question was to complete the classification of AdS supersymmetry in superspace.
The classification of 3D (p,q) AdS superspaces and the study of general N = 3,4 supersymmetric
nonlinear sigma-models was given in [20, 21]. Compared to supersymmetry in 3D Minkowski,
in which the N = 3,4 sigma-model target spaces is a general hyper-Kähler manifold [11], the
various AdSs impose further non-trivial constraints. The target spaces of N = 3,4 AdS sigma-
models prove to be typically: (i) hyper-Kähler cones; and (ii) hyper-Kähler spaces with a U(1)
isometry group which acts non-trivially on the two-sphere of complex structures. In some critical,
N = 4, cases it is even possible to have unconstrained hyper-Kähler spaces.

This report is devoted to a review of the results of [10, 13, 20, 21] with an ultimate focus on
the results for the target space geometries of N = 2,3,4 supersymmetric non-linear sigma-models
in AdS3. Our review is organized as follow: In section 2, we review the superspace formulation of
3D (p,q) AdS superspaces as a background of N -extended conformal supergravity. In section 3,
we describe the properties of supersymmetric sigma-moldels in N = 2 AdS. Section 4 is devoted
to describe the target space geometries of the N = 3,4 supersymmetric sigma-models. In section
5 we finish with few conclusive comments.
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2. Three-dimensional (p,q) AdS superspaces

Our analysis of the sigma-model target space geometries will be based on the use of superspace
techniques. In this section, we then review the main properties of the differential geometry of three-
dimensional N -extended (p,q) AdS superspaces. We start by rewiewing the superspace geometry
of conformal supergravity.

2.1 Superspace geometry of N -extended conformal supergravity

All (p,q) AdS superspaces can be realised as special background configurations within the
3D N -extended conformal supergravity geometry that was originally sketched in [8] and then
developed in [10].

In three dimensions, N -extended conformal supergravity can be described by using a curved
superspace which is parametrized by real bosonic (xm) and real fermionic (θ µ

I ) coordinates,

zM = (xm,θ
µ

I ) , m = 0,1,2 , µ = 1,2 , I = 1, · · · ,N , (2.1)

and is characterised by the structure group SL(2,R)×SO(N ). The superspace differential geom-
etry is encoded in covariant derivatives of the form

DA ≡ (Da,D
I
α) = EA

M
∂M +

1
2

ΩA
cdMcd +

1
2

ΦA
KLNKL , (2.2)

where EA = EA
M∂M is the supervielbein, with ∂M = ∂/∂ zM; Mbc and ΩA

bc are respectively the
Lorentz generators and connections; NKL and ΦA

KL are respectively the SO(N ) generators and
connections. For more details on our notation and conventions see Appendix A of [10].

To describe conformal supergravity, one can impose a set of conventional constrains [8]. Then
the Bianchi identities, ∑[ABC)[[DA,DB},DC}= 0, lead to the (anti) commutation relations1 [10]:

{D I
α ,D

J
β
} = 2iδ IJDαβ −2iεαβCγδ IJMγδ −4iSIJMαβ

+
(

iεαβ X IJKL−4iεαβ SK [I
δ

J]L + iCαβ
KL

δ
IJ−4iCαβ

K(I
δ

J)L
)
NKL , (2.3a)

[Dαβ ,D
K
γ ] = −

(
εγ(αCβ )δ

KL + εδ (αCβ )γ
KL +2εγ(αεβ )δ SKL

)
Dδ

L + · · · , (2.3b)

where the ellipses indicate dimension-3/2 curvature terms. The algebra is parametrized by three
tensor superfields of mass dimension-1, X IJKL, SIJ and Ca

IJ , which are real and have the symmetry
properties: X IJKL = X [IJKL], SIJ = S(IJ) and Ca

IJ = Ca
[IJ]. The components of the curvatures of

higher mass dimension can be determined by solving the Bianchi identities and are function of the
dimension-1 tensor superfields and their covariant derivatives. The Bianchi identities also imply a
set of differential constraints on the various dimension-1 fields as described in [10].

The supergravity gauge group is generated by local transformations that act on the covariant
derivatives DA and on a tensor superfield T respectively as

δKDA = [K,DA] , δKT = KT , K = KCDC +
1
2

KcdMcd +
1
2

KPQNPQ . (2.4)

1We only give the explicit expressions for the mass dimension-1 components of the torsion and the curvatures.
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The gauge parameters KC, Kcd and KPQ obey natural reality conditions but are otherwise arbitrary.
The fact that the previous superspace geometry describes conformal supergravity relies on its

invariance under the following super-Weyl transformations2

δσD I
α =

1
2

σD I
α +(Dβ I

σ)Mαβ +(DαJσ)N IJ , (2.5a)

δσDa = σDa +
i
2
(γa)

αβ (DK
α σ)DβK + εabc(D

b
σ)M c +

i
16

(γa)
αβ ([D

[K
α ,D

L]
β
]σ)NKL , (2.5b)

δσ SIJ = σSIJ− i
8
([D γ(I,D

J)
γ ]σ) , (2.5c)

δσCa
IJ = σCa

IJ− i
8
(γa)

αβ ([D
[I
α ,D

J]
β
]σ) , (2.5d)

δσ X IJKL = σX IJKL . (2.5e)

These provide a non-linear realization of local dilatations, S-supersymmetry and conformal boosts
transformations whose transformation parameters are all encoded in the real unconstrained super-
field σ . Note that the superfield X IJKL transforms homogeneously and is a superspace generaliza-
tion of the 3D Cotton tensor. Various components of the supergravity multiplet can be algebraically
gauged away leaving as physical fields: the vielbein ea

m; the gravitino Ψa
µ , the SO(N ) connection

Aa
KL; a tower of auxiliary fields whose lowest mass dimensional component is X IJKL|θ=0.

2.2 Definition of (p,q) AdS superspaces

We define the (p,q) AdS superspaces to be those conformal supergravity backgrounds which
satisfy the following requirements [20]: (i) the torsion and curvature tensors are Lorentz invariant;
(ii) the torsion and curvature tensors are covariantly constant. These conditions imply

Ca
IJ ≡ 0 , D I

αSJK = DaSJK = 0 , D I
αXJKLM = DaXJKLM = 0 . (2.6)

The complete algebra of covariant derivatives then takes the form:

{D I
α ,D

J
β
} = 2iδ IJDαβ −4iSIJMαβ + iεαβ

(
X IJKL−4SK [I

δ
J]L
)
NKL , (2.7a)

[Da,D
J
β
] = SJ

K(γa)β
γDK

γ , (2.7b)

[Da,Db] = −4S2 Mab , S2 :=
1

N
SIJSIJ ≥ 0 . (2.7c)

Note that, when S > 0, the vector-vector commutator in (2.7c) is exactly that of AdS3 with constant
curvature parameter S. When S = 0 the bosonic body of the superspace is flat.

The previous algebra clearly needs to satisfy the Bianchi identities. Moreover, for consistency
of the condition (ii), the superfields SIJ and X IJKL have to satisfy the integrability conditions

{D I
α ,D

J
β
}SKL = 0 , {D I

α ,D
J
β
}XKLMN = 0 . (2.8)

By analyzing the Bianchi identities and eq. (2.8) one gets the following constraint on SIJ:

SIKSK
J = S2

δ
IJ . (2.9)

2In the general N -extended conformal supergravity case, the super-Weyl transformations were described in full
details in [10, 20]. For N = 8 supergravity, the finite form of super-Weyl transformations first appeared in [9].
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When S2 > 0, which correspond to a non-trivial AdS3 background, SIJ is a nonsingular symmetric
N ×N matrix, and, due to (2.9), SIJ/S is an orthogonal matrix. Local SO(N ) transformations
can be then used to diagonalise SIJ in the form

SIJ = Sdiag(

p︷ ︸︸ ︷
+1, · · · ,+1 ,

q=N −p︷ ︸︸ ︷
−1, · · · ,−1) , S > 0 . (2.10)

Such a frame is called diagonal frame. In this frame the structure group of the AdS superspace
is reduced from SO(N ) to SO(p)×SO(q). This corresponds to the R-symmetry group of the
classification of (p,q) supersymmetry in AdS3 originally introduced in [12].

Given SIJ of a particular (p,q) AdS superspace, we can then analyze the implications of the
Bianchi identities and of the integrability condition (2.8) on the curvature superfield X IJKL. There
are two different cases:

q > 0 : =⇒ X IJKL = 0 , (2.11a)

(N ,0) : =⇒ XN
IJ[KXLPQ]N = 0 . (2.11b)

These equations tell us that the covariantly constant superfield X IJKL act as a deformation parameter
for (N ,0) superspaces, while for (p,q) AdS superspaces with q > 0 such deformation is not
allowed. When N = 1,2,3 the superfield X IJKL, being completely antisymmetric, does not exist
and (2.11b) can be neglected. On the other hand, it is of particular interest the first non-trivial case,
N = 4, where the general solution of (2.11b) is given by:

N = 4 : X IJKL = ε
IJKL X , (2.12)

with ε IJKL the SO(4) invariant Levi-Civita tensor (ε1234 = 1) and X an arbitrary real scalar and
SO(4) invariant superfield [20]. Such a deformation is possible thanks to the violation of the
Dragon’s theorem in 3D [10]. In dimensions higher than three similar deformations are not known.

It is interesting to notice that when S = 0 the consistent algebra of covariant derivatives is

{D I
α ,D

J
β
} = 2iδ IJDαβ + iεαβ X IJKLNKL , (2.13a)

[Da,D
J
β
] = 0 , [Da,Db] = 0 . (2.13b)

This superspace is of Minkowski type for N = 1,2,3. However, for N ≥ 4 there may exist a
non-zero constant antisymmetric tensor X IJKL = ε IJKLX such that the resulting superspace is a
deformation of the N –extended Minkowski superspace.

2.3 Maximal supersymmetry and conformal flatness of (p,q) AdS superspaces

One of the main properties of the AdS backgrounds in various dimension is that the supersym-
metry transformation preserve the same number of supersymmetry as in the flat case. By using our
superspace construction, it is indeed possible to see that every (p,q) AdS superspace preserve all
the N supersymmetries. To investigate this statement, we can proceed by studying the isometry
transformations in a given (p,q) superspace. These, by definition, are a particular combination
of diffeomorphism and structure group transformations that preserve the covariant derivatives. In
particular, they are generated by Killing vector fields

ξ = ξ aDa +ξ α
I D I

α , (2.14)

5
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which by definition obeys the equation[
ξ + 1

2 ΛIJNIJ +
1
2 ΛabMab,DC

]
= 0 , (2.15)

for some parameters ΛIJ and Λab. It turns out that the previous equation completely define ξ α
I , ΛIJ

and Λab in terms of first spinor derivatives of ξ a [10]. The latter is then subject to extra constraints
including the standard Killing vector equation

Daξb +Dbξa = 0 . (2.16)

In this description of the isometry group, the supersymmetry transformation parameters, are the
θ -independent component of ξ α

I : εα
I := ξ α

I |θ=0. The number of real independent supersymmetry
parameters is 2N = 2(p+ q) exactly as in the flat limit. Hence the (p,q) AdS3 backgrounds are
maximally supersymmetric. Note that in the diagonal frame ΛIJ takes value in SO(p)×SO(q).
Indeed, it turns out that, with X IJKL = 0, the full isometry group is factorized and the Killing vector
fields parametrize the AdS supergroup OSp(p|2;R)×OSp(q|2;R). For the (N ,0) and X IJKL 6= 0
cases, the isometry group is deformed and there are cases in which the R-symmetry group is a
proper subgroup of SO(N ). We will give specific examples in the N = 4 case.

It is well known that in any dimensions the AdS space-times are conformally flat. In four
dimensions it was proven that all N -extended AdS superspaces are conformally flat [22]. A natural
question is wether our (p,q) AdS superspaces are conformally flat. Because the X IJKL superfield in
the conformal supergravity geometry represent the supersymmetric extension of the Cotton tensor,
it can be proven that a necessary and sufficient condition for a background to be conformally flat is
that X IJKL = 0. This implies that our (p,q) AdS superspaces are conformally flat iff the deformation
parameter X IJKL = 0. In this case, it is possible to explicitly construct a local conformally flat
parametrization of the (p,q) AdS superspaces. This is defined in terms of a superfield σ such that

eσ = 1− s2x2− iΘs−
1
8

s2(Θ)2 , θ
IJ := θ

γI
θ

J
γ = θ

JI , (2.17a)

s :=
√

sKLsKL/N = S , sIJ = const , Θs := sIJ
θIJ , Θ := δ

IJ
θIJ . (2.17b)

The covariant derivatives and the covariantly constant SIJ tensor take the form

D I
α = e

1
2 σ

(
DI

α +(Dβ I
σ)Mαβ +(DαJσ)N IJ

)
, (2.18a)

Da = eσ

(
∂a +

i
2
(γa)

αβ (DK
(ασ)Dβ )K + εabc(∂

b
σ)M c− i

8
(γa)

αβ (Dρ

Kσ)(DK
ρ σ)Mαβ

+
i

16
(γa)

αβ ([D[K
(α ,D

L]
β )]σ)NKL +

3i
8
(γa)

αβ (D[K
(ασ)(DL]

β )σ)NKL

)
, (2.18b)

SIJ = sIJ +2is2 θ IJ− sK(IsJ)LθKL +2sK(Iθ
J)
γ θδKxγδ −θ IJΘs + sK(Iθ J)

KΘ

1− s2x2−Θs +
1
4 s2Θ2

, (2.18c)

where DA = (∂a,DI
α) are the covariant derivatives of flat N -extended 3D Minkowski superspace.

3. AdS SUSY and target spaces

The main question of the papers [13, 20, 21] was to understand what are the constraints on the
target space geometry of a non-linear sigma-model living in the AdS space-time and possessing

6
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(p,q) supersymmetry. The (1,0) case is trivial. in fact it can be easily proven that any Rimaniann
manifold is a good target space for 3D N = 1 AdS supersymmetry. With N > 1 there are non-
trivial constraints that depend on the (p,q) isometries and the transformations of the matter fields.
In the following we will summarize the results of [13, 20, 21] for the N = 2,3,4 cases. Our results
are based on the use of the (p,q) AdS superspaces but in the following we will avoid proofs and
technical details that the reader can find in the aforementioned papers.

Note that the same question has already been studied in the case of sigma-models in flat 3D
Minkowski space-time, see for example [11]. In the flat case, for N = 2 the target space is a
general Kähler manifold while both for the N = 3 and N = 4 the target space is a general hyper-
Kähler space. We will see that, depending on the specific case, lifting the sigma-models to AdS
impose additional constraints on the target spaces.

3.1 AdS supersymmetry and target space geometry: N = 2

The N = 2 story is pretty simple but still nontrivial and worth to be discussed in details. It
was studied in [13]. It is useful to analyze the N = 2 geometry by defining complex Grassmannian
coordinates zM = (xm,θ µ , θ̄µ), θ µ = θ̄ µ , and covariant derivatives (Da,Dα ,D̄α) that closely mimic
the well known 4D N = 1 covariant derivatives. 3D N = 2 off-shell matter multiplets are typically
described by chiral superfields. We then consider a set of covariantly chiral superfields φ a, D̄αφ a =

0. Here a = 1, · · · ,d with d the target space complex dimension. The general matter model that can
be constructed in terms of φ a takes the form

S =
∫

d3xd4
θ E K(φ a, φ̄ ā)+

{∫
d3xd2

θ E W (φ a)+ c.c.
}
. (3.1)

As in the flat case K is the target space Kähler potential, while W is a superpotential. It is worth to
explicitly distinguish the specific features of the (1,1) and (2,0) cases.

(1,1) AdS SUSY Given a holomorphic function F(φ), in the (1,1) AdS case, it holds3

∫
d3xd2

θ E F(ϕ) =
∫

d3xd4
θ E

1
S

F(ϕ) . (3.2)

The previous equation relates every chiral integral of a holomorphic function to a full superspace
integral. It means that a superpotential can always be reabsorbed in the Kähler potential. This also
implies that Kähler transformations, K(φ , φ̄)→ K(φ , φ̄)+Λ(φ)+ Λ̄(φ̄), are not well defined in
(1,1) AdS3 and hence the sigma-model Lagrangian should be globally defined on the target space.
As a consequence, the Kähler two-form, Ω = 2igab̄ dϕa ∧ dϕ̄ b̄, associated with the Kähler metric
gab̄ := ∂a∂b̄K, is exact and hence the target space is necessarily non-compact. The situation is
exactly the same as the 4D N = 1 AdS case recently studied in [17, 18, 16]. Then we see that the
σ -model couplings in (1,1) AdS are more restrictive than in the 3D Minkowski case.

For the analysis of the N > 2 cases it is crucial to keep in mind that (1,1) AdS supersymmetry
necessarily implies the target space to be non-compact.

3In the complex basis the (1,1) AdS superspace is naturally parametrized by a complex parameter µ such that
|µ|= S. Here we ignore its phase and use µ = S.
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(2,0) AdS SUSY In the (2,0) case, in the complex basis, the SO(2) symmetry becomes a U(1)
R-symmetry phase transformation of the complex covariant derivatives. In general, if the com-
plex superfields φ a are charged under the U(1)R, they transformation as δU(1)Rφ a = ξ a(φ). For
R-invariance, the Kähler potential K(φ , φ̄) and the superpotential W (φ) should obey:

ξ
aKa = ξ̄

āKā , ξ
aWa =−2W . (3.3)

This implies that ξ a is a holomorphic Killing vector field on the target space and hence the sigma-
model Kähler manifold possesses an induced U(1) isometry.

On the other hand, if δU(1)Rφ a = 0, then the sigma-model target space can be a general Kähler
manifold. The price is that in this case the superpotential necessary have to be identically zero.

We conclude by pointing out an important difference between the (2,0) and (1,1) cases. We
have observed that, due to eqs. (3.2), the (1,1) sigma-models target spaces need to be non-compact.
In the (2,0) case there is no analogue of eq. (3.2), the full and chiral superspace integrals are
separated objects and holomorphicity is well defined since it actually holds

∫
d3xd2θ E F(ϕ) = 0

exactly as in flat superspace. This means that Kähler transformations, K(φ , φ̄)→K(φ , φ̄)+Λ(φ)+

Λ̄(φ̄), leave invariant the sigma-model action and the Kähler potential doesn’t need to be globally
defined. Then, the (2,0) supersymmetry does not restrict the target space to be compact.

3.2 Kähler cones

There is one subclass of N = 2 sigma-models that is of particular interests. These are Kähler
cones which are the target spaces for general 3D N = 2 conformal sigma-models.

A Kähler manifold (M ,gab̄) parametrized by local complex coordinates φ a is called a Kähler
cone if it possesses a homothetic conformal Killing vector or infinitesimal dilatation

χ = χ
a ∂

∂φ a + χ̄
ā ∂

∂ φ̄ ā ≡ χ
µ ∂

∂ϕµ
, (3.4)

with the property

∇ν χ
µ = δν

µ ⇐⇒ ∇bχ
a = δb

a , ∇b̄χ
a = ∂b̄χ

a = 0 .

In particular, χ is holomorphic. The properties of χ include the following:

gab̄ χ
a
χ̄

b̄ = K , χa := gab̄ χ̄
b̄ = ∂aK =⇒ χ

aKa = K , (3.5)

where K := gab̄ χaχ̄ b̄ can be used as a global Kähler potential, gab̄ = ∂a∂b̄K. Complex coordinates
for M can be chosen such that

χ = φ
a ∂

∂φ a + φ̄
ā ∂

∂ φ̄ ā −→ φ
aKa(φ , φ̄) = K(φ , φ̄) . (3.6)

We will see that a large class of N = 3,4 sigma-models is necessarily a Kähler cone.

8



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
9
0

Extended supersymmetric sigma-models in 3D AdS Gabriele Tartaglino-Mazzucchelli

4. N = 3,4 AdS supersymmetry and sigma-models target space geometries

With 3D N = 3,4 flat Poincaré supersymmetry the sigma-model target spaces are constrained
to be arbitrary hyper-Kähler manifolds; see [11] and references therein. In the 3D N = 3,4 (p,q)
AdS supersymmetric case, the target spaces are hyper-Kähler manifolds of restricted type [20, 21].
Let us make some general quite intuitive observations.

It is clear that every N = 3,4 (p,q) AdS sigma-model will automatically be N = 2 super-
symmetric.

In particular, remember that for q > 0, the AdS isometry group is OSp(p|2;R)×OSp(q|2;R).
It is clear that it always exist both a (1,1) OSp(1|2;R)×OSp(1|2;R) and a (2,0) OSp(2|2;R)×
SL(2;R) proper subgroup of the full (p,q) isometries. This fact is equivalent to the observation
that every (p,q) AdS superspace with q> 0 can be reduced to both (1,1) and (2,0) AdS. This simple
observation intuitively tells us that for sure the target space geometry will be a non-compact Kähler
manifold possessing a U(1) symmetry.4

When q= 0, the isometry group is a proper subgroup of OSp(N |2;R)×SL(2;R). There is no
(1,1) AdS subgroup. This intuitively tells us that in this case it might be possible to have compact
target spaces.

Depending on the particular (p,q), the R-symmetry group of such supersymmetric sigma-
models includes SU(2) as a subgroup which induce a SO(3) symmetry on the target space. It
is interesting to note that in 4D N = 2 it was proved that possessing a SO(3) R-symmetry is a
sufficient condition for a sigma-model to have as target space a hyper-Kähler cone. The latter are
the target spaces of extended superconformal models [11].

To explicitly classify all possible types of hyper-Kähler target space geometries for AdS N =

3,4, in [20, 21] we developed two different and complementary realizations for the most general
(p,q) supersymmetric sigma-models: (i) off-shell formulation in terms of N = 3,4 projective
supermultiplets; (ii) on-shell formulation based on (2,0) AdS covariantly chiral superfields.

Both approaches are quite technical and we are not going to explain in details their use. But be-
fore presenting the results of the classification, we can comment about the general ideas underlying
the two approaches.

In the case (i), one uses the off-shell projective superspace formalism developed in [10] for
general supergravity-matter couplings applied to the particular N = 3,4 AdS backgrounds (see
[23] and references therein for review of the projective superspace approach). The main dynamical
fields in the projective superspace approach are charged hyper-multiplets described by arctic super-
fields ϒI(z,ζ ) which are holomorphic functions of an extra complex variable ζ . The dependence
on ζ implies that ϒI(z,ζ ) has an infinite number of ordinary auxiliary fields encoded in their Taylor
expansion. The superfield ϒI(z,ζ ) satisfies an analyticity constraint that makes it effectively a func-
tion only of half of the full superspace coordinates [10]. It can also be proven that the projective
superfields can be consistently reduced to (2,0) superfields for all N = 3,4 (p,q) AdS [20, 21]. In
fact, one can write the general N = 3,4 AdS sigma-model action as

S =
∮

γ

dζ

2πiζ

∫
d3xd4

θ E L(ϒI(ζ ), ϒ̆J̄(ζ )) , (4.1)

4The possibility of having uncharged fields under the (2,0) U(1)R is not consistent with extra supersymmetry since
the sigma-models are based on hyper-multiplets.
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where the superspace integration is over the reduced (2,0) superspace and the function L is con-
strained depending on the type of (p,q) supersymmetry [21]. The beauty of this approach is that
by construction the action is fully off-shell supersymmetric. The drawback is that the geometrical
datas of the sigma-modes are partially hidden. The way to explicitly read-off such data and com-
pute the hyper-Kähler potential of the sigma-models in principle is to integrate out all the auxiliary
superfields in (4.1) by computing the integral over the ζ variables. By doing so, one remains with
an action written only in terms of (2,0) chiral variables and that in general is N = 3,4 supersym-
metric only on-shell. See [21] for the discussion of this “top-botton” procedure.

In the approach (ii), which is “botton-top”, we start directly from a (2,0) sigma-model and then
we impose that the following extra supersymmetry transformations

δφ
a =

i
2
D̄2(ρ̄ Ω

a(φ , φ̄)) , (4.2)

closes, in general on-shell, and that the (2,0) action is left invariant. Here ρ̄ contains the informa-
tions about the (p,q) extra supersymmetries [21]. Along this line, the Kähler potential K(φ , φ̄) and
the superfields5 Ωa(φ , φ̄) turn out to satisfy a number of constraints that will define the (p,q) target
space geometries.

Let us finally list the results for all the possible cases.

4.1 (3,0) case

The (3,0) isometries include an SO(3)∼=SU(2) R-symmetry group. This property ultimately
implies that, for any supersymmetric sigma-model, the (3,0) target space must be a hyper-Kähler
cone [20]. Hyper-Kähler cones are the target spaces of N = 3 superconformal sigma models [11].
All hyper-Kähler cones are non-compact.

Let us explain in more details what an hyper-Kähler cone is. It simply is a hyper-Kähler
manifold (M ,gµν ,JA

µ
ν) admitting an infinitesimal dilatation χ . Here JA

µ
ν are the three integrable

quaternionic complex structures

JAJB =−δABI+ εABCJC . (4.3)

Associated with the conformal Killing vector field χ are three Killing vectors XA
µ := JA

µ
ν χν ,

which leave the Kähler potential invariant, XA
µ∂µK = 0. These obey the SU(2) algebra

[XA,XB] =−2εABCXC . (4.4)

Such triplet of Killing vectors is the one ultimately induced by the SU(2) R-symmetry transforma-
tions of the hyper-multiplets.

4.1.1 (2,1) case

In the (2,1) case the R-symmetry group is reduced to SO(2)∼=U(1). The hyper-multiplets have
to be charged under the U(1)R and this induces a U(1) isometry on the target space Kähler manifold.
Moreover, there is a proper (1,1) supersymmetry, hence the manifold has to be non-compact.

5The superfield Ωa(φ , φ̄) ultimately generate the quaternionic structures of the hyper-Kähler geometries [21].
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Under detailed analysis it turns out that the (2,1) sigma-model target space must be a non-
compact hyper-Kähler manifold endowed with a Killing vector field which generates an SO(2)
group of rotations of the two-sphere of quaternionic complex structures. Let us see some properties
of such a class of manifolds.

Let M be a hyper-Kähler manifold equipped with three complex structures JA
µ

ν along with a
U(1) isometry V µ which acts as a rotation on them. Without loss of generality, V µ is holomorphic
w.r.t. J3

LV J1 =−J2 , LV J2 =+J1 , LV J3 = 0 .

The three closed Kähler two-forms are

ΩA =
1
2
(ΩA)µν dφ

µ ∧dφ
ν , (ΩA)µν = gµρ(JA)

ρ
ν .

From Ω1 and Ω2 one can construct the complex (2,0) and (0,2) forms with respect to J3

Ω± =
1
2

Ω1±
i
2

Ω2 , LV Ω± =±iΩ± . (4.5)

Note that Ω+ is holomorphic with respect to J3. Each of these two-forms is closed by construction.
Moreover, due to the properties of the Killing vector V µ , the complex structures Ω+ and Ω− prove
to be exact. Indeed, if one considers the form ρ+ := −i ıV Ω+, which is (1,0) holomorphic with
respect to J3, it can be seen that dρ+ = Ω+. Because some of the Kähler two-forms are exact, M

is non-compact [20, 21].
It is interesting to note that the target spaces of (2,1) supersymmetric sigma-models in AdS3

are the same as those of N = 2 supersymmetric sigma models in AdS4 [16] and N = 1 super-
symmetric sigma models in AdS5 [15].

4.2 (3,1) and (2,2) cases

In the N = 4 case, the conformal supergravity has SO(4) ∼=
(
SU(2)L× SU(2)R

)
/Z2 as R-

symmetry part of the structure group. The decomposition in left and right SU(2) groups has a very
simple implication on the target space geometry of all the 3D N = 4 sigma models. In fact, these
target spaces are decomposable

ML×MR , (4.6)

where ML and MR are certain hyper-Kähler manifolds. The reason of such decomposition is very
simple. Most general N = 4 sigma models are described by N = 4 hyper-multiplets. There are
two independent set of hyper-multiplet charged either under the left or right SU(2) [10]. The same
remain true in the AdS cases even though the R-symmetry group is reduced depending on the cases.

The classification of the (3,1) and (2,2) target spaces is exactly the same as in N = 3 case.
The same arguments apply in these N = 4 cases. In particular it holds that [21]:

(3,1): For any supersymmetric sigma model, its left and right target spaces must be hyper-Kähler
cones. This is not surprizing due to the residual SU(2) R-symmetry.

11
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(2,2): Left and right target spaces must be non-compact hyper-Kähler manifolds possessing a
Killing vector field which generates an SO(2) group of rotations of the two-sphere of com-
plex structures. This is the N = 4 analogue of the (2,1) case.

The story is much more interesting in the (4,0) case where we have the deformation parameter X
playing a new role.

4.3 (4,0) case

Let us start by writing the (4,0) AdS superspace geometry

{D I
α ,D

J
β
}= 2iδ IJDαβ −4iSδ IJMαβ + iεαβ

(
Xε IJKLNKL−4SN IJ

)
, (4.7a)

[Da,DJ
β
] = S (γa)β

γDJ
γ , [Da,Db] =−4S2 Mab . (4.7b)

The constant X is a free parameter that does not affect the bosonic AdS3 body of the (4,0) super-
space. The algebra simplifies if we switch from SO(4) isovector indices, to pairs of SU(2)L×SU(2)R

isospinor indices. The (4,0) algebra in isospinor notations takes the form6

{D iī
α ,D

j j̄
β
} = 2iε i j

ε
ī j̄Dαβ +2iεαβ ε

ī j̄(2S+X)Li j +2iεαβ ε
i j(2S−X)Rī j̄−4iSε

i j
ε

ī j̄Mαβ , (4.8a)

[Da,D
j j̄

β
] = S (γa)β

γD j j̄
γ , [Da,Db] = −4S2 Mab . (4.8b)

It is clear that for general values of X the structure group of the (4,0) algebra is the full SU(2)L×SU(2)R.
On the other hand, there are two critical cases

X =±2S , (4.9)

where either SU(2)L or SU(2)R disappear from the algebra. Then there are different isometry
groups depending on the choice of X . This property is lifted to the structure of the left and right
target spaces ML and MR. In fact, depending on the values of X it holds [21]:

X = 0: Both the left and right target spaces must be hyper-Kähler cones. This is intuitively associ-
ated with the fact that the whole SU(2)L×SU(2)R is preserved. With X = 0 the sigma-models
turns out to be superconformal.

X 6=±2S: Similarly to the X = 0 case, its left and right target spaces must be hyper-Kähler cones. The
crucial difference when X 6= 0 is that the sigma-model is not superconformal. The presence
of X leads to non-trivial scalar potentials in both the left and right sectors.

X =±2S: One of the two target spaces, either left or right, must be a hyper-Kähler cone but not super-
conformal due to the presence of X . On the other hand, the other target space, associated to
the sector in which the SU(2) disappears, is an arbitrary hyper-Kähler manifold; in particular,
it may be compact.

S = 0 In the flat case, the presence of a X 6= 0 leads to the appearance of nontrivial potentials in both
left and right sectors. This implies that the parameter X can be used as a new mechanism to
generate massive sigma models in 3D N = 4 Minkowski superspace.

6Here the isospinor indices are i = 1,2, ī = 1̄, 2̄ with the SU(2) invariants ε i j =−ε ji, ε ī j̄ =−ε j̄ī and ε12 = ε 1̄2̄ = 1.
The SU(2)L and SU(2)R generators are respectively Li j and Rī j̄ [10].
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5. Conclusion

We have reviewed our recent construction of three-dimensional (3D) (p,q) Anti-de Sitter su-
perspaces and the classification of the target space geometries associated with general supersym-
metric N = 2,3,4 nonlinear sigma-models in AdS3 based on [10, 13, 20, 21].

From the superspace point of view, it would be interesting to classify more general 3D Lorentzian
and Euclidian superspaces admitting various off-shell supersymmetries in analogy to the recent lit-
erature on supersymmetry on curved superspaces (see e.g. [18, 24]) In fact, by using general
superspace supergravity-matter couplings [20] we then have a formalism to define supersymmetric
models in general 3D curved manifolds. This might then find application in studying QFT on such
supersymmetric backgrounds along the lines of the localization literature.

Our (p,q) AdS superspaces might also be used to study 3D supersymmetric higher-spin field
theories.
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