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1. Introduction

Moduli stabilization, the AdS-CFT correspondence and string phenomenology all require the
study of strings in non-trivial backgrounds. The method of choice to do so uses the supergravity
approximation. In order to go beyond supergravity one is currently forced to use d = 2 confor-
mal field theories, Landau-Ginzburg type descriptions, the pure spinor formalism or the σ -model
worldsheet description. The latter is limited to non-trivial NSNS backgrounds only. Particularly in-
teresting are non-linear σ -models in two dimensions with N = (2,2) supersymmetry [1], [2] which
play a central role in the worldsheet description of type II string theories in non-trivial NSNS back-
grounds. Even at the classical level these models exhibit a rich geometric structure which is the
main topic of the current review paper.

This paper closely follows the line of the talk. In the next section we introduce non-linear
σ -models and identify the geometries which allow for an N = (2,2) supersymmetry. Subsequently
we introduce Hitchin’s generalized Kähler geometry, the proper setting for the above mentioned
models. After this we present the full off-shell description of these models in N = (2,2) superspace.
Having an N = (2,2) superspace description allows one to perform various (T-)duality transforma-
tions keeping the supersymmetries manifest. These transformations typically alter the nature of
the superfields and we provide an exhaustive list of them. Finally we illustrate all of this using a
simple example: the Wess-Zumino-Witten model on SU(2)×U(1). We end with conclusions and
summarize our conventions in the appendix.

2. From N = (1,1) to N = (2,2) supersymmetry

In the absence of boundaries, a non-linear σ -model in two dimensions is classically fully
characterized by its D-dimensional target manifold M , a metric on the target manifold g and a
closed three-form H, dH = 0. The latter is known as the torsion or the NS-NS form and can be
locally written as H = d b with b the Kalb-Ramond two-form. The action is then given by1,

S =
∫

d2
σ ∂=| x

a(gab +bab
)
∂=xb , (2.1)

where xa, a ∈ {1, · · · ,D}, is a set of local coordinates on M .
Without adding any further geometric structure this action may be supersymmetrized provided

that the number of supersymmetries N is bounded by N ≤ (1,1). In this paper we will exclusively
focus on N = (1,1) and N = (2,2). The N = (1,1) supersymmetric version of eq. (2.1) in N = (1,1)
superspace is simply,

S = 4
∫

d2
σ d2

θ D+xa (gab +bab)D−xb . (2.2)

Integrating over θ+ and θ− we get the action in ordinary space,

S =
∫

d2
σ
(
∂=| x

a(gab +bab)∂=xb +2iψ
a
+ gab ∇

(+)
= ψ

b
++2iψ

a
− gab ∇

(−)
=| ψ

b
−

+ψ
a
−ψ

b
−R(−)

abcd ψ
c
+ψ

d
++2(Fa− iΓ

a
(−)cdψ

c
−ψ

d
+)gab(Fb− iΓ

b
(−)e f ψ

e
−ψ

f
+)
)
, (2.3)

1Our conventions are given in appendix A.
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where we introduced covariant derivatives ∇(+) and ∇(−) which use the (Bismut) connections Γ(+)

and Γ(−) resp.,

Γ(±) ≡ {}∓
1
2

g−1H , (2.4)

with {} the standard Levi-Civita connection. The curvature tensor on M calculated with the Γ(+)

and Γ(−) connection resp. is denoted by R(+) and R(−), they are related by R(+)
abcd = R(−)

cdab. From
eq. (2.3) it is clear that the physical fields xa and ψa

± are supplemented with a set of auxiliary fields
Fa.

We now investigate under which conditions the action eq. (2.2) exhibits an N = (2,2) super-
symmetry [1]-[3]. The most general expression we can write down for the two additional super-
symmetries taking into account super-Poincaré invariance and dimensions is given by,

δxa = ε
+Ja

+b(x)D+xb + ε
−Ja
−b(x)D−xb . (2.5)

Calculating the algebra of these transformations yields,

[δ (ε1),δ (ε2)]xa = −iε+
1 ε

+
2 (J 2

+)
a

b∂=| x
b− iε−1 ε

−
2 (J 2

−)
a

b∂=xb

−2ε
+
1 ε

+
2 N [J+,J+]abcD+xbD+xc−2ε

−
1 ε
−
2 N [J−,J−]abcD−xbD−xc

+
(
ε
+
1 ε
−
2 + ε

−
1 ε

+
2

)
[J+,J−]ab

(
D+D−xb +Γ

b
(+)dcD+xcD−xd)+ · · · , (2.6)

where we omitted terms linear in ∇(+)J+ and ∇(−)J−. We denoted the Nijenhuis tensor2 by N .
The non closure terms in the last line of eq. (2.6) are proportional to the equation of motion for
x following from the action in eq. (2.2) and closure of the algebra is generically only guaranteed
on-shell. So one concludes that the transformations given in eq. (2.5) satisfy the supersymmetry
algebra on-shell if J+ and J− are both complex structures, i.e. J2

+ = J2
− = −1 and N [J±,J±] = 0.

In addition the complex structures should be covariantly constant, ∇(+)J+ = ∇(−)J− = 0.
The action eq. (2.2) is invariant under eq. (2.5) provided that the metric is hermitian with

respect to both complex structures, g(J±U,J±V ) = g(U,V ) and, as with the algebra, the complex
structures should be covariantly constant.

Given vectors U , V and W we can summarize the conditions under which the non-linear σ -
model possesses an N = (2,2) supersymmetry by:

• J+ and J− are two complex structures, i.e.,

J2
+ = J2

− =−1 , [U,V ]+ J±[J±U,V ]+ J±[U,J±V ]− [J±U,J±V ] = 0 . (2.7)

• The metric g is hermitian w.r.t. both complex structures:

g(J±U,J±V ) = g(U,V ) . (2.8)

2Out of two (1,1) tensors Ra
b and Sa

b, one constructs a (1,2) tensor N [R,S]abc, the Nijenhuis tensor, as
N [R,S]abc = Ra

dSd
[b,c]+Rd

[bSa
c],d +R↔ S. For an almost complex structure J, the vanishing of N [J,J] is equivalent

to [U,V ]+ J[JU,V ]+ J[U,JV ]− [JU,JV ] = 0 with U and V two vectors.

3
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• The exterior derivative of the two-forms ω±(U,V ) =−g(U,J±V ) is given by,

dω±
(
U,V,W

)
=∓H(J±U,J±V,J±W ) , (2.9)

The last condition is equivalent – using the previous conditions – to the requirement that the com-
plex structures are covariantly constant. A target space possessing these properties is often called
a bi-hermitian geometry.

The non-closure terms in the algebra eq. (2.6) are proportional to the commutator of the com-
plex structures, [J+,J−], so we expect that no auxiliary fields will be needed along ker[J+,J−] while
the requirement of off-shell closure will necessitate the introduction of additional auxiliary fields
along im

(
[J+,J−]g−1). In section 4 we present a full off-shell formulation of the model by refor-

mulating it in N = (2,2) superspace. However we first introduce a geometric formalism in which
the above structure finds a natural setting.

3. Generalized Kähler geometry and N = (2,2) non-linear σ -models

Because of the presence of the Kalb-Ramond two-form b, a coordinate transformation often
occurs in combination with a b gauge transformation. E.g. a coordinate transformation generated
by a vector X acts as g→ g+LX g and H → H +LX H on g and H. It is an isometry if g and
H are invariant. Using that on forms3 LX = dιx + ιX d holds, we find LX H = dLX b, so under
the coordinate transformation we get that b→ b+LX b+ dξ for some one-form ξ . Calculating
the commutator of two such transformations generated by (X ,ξ ) and (Y,η) we find that it closes
giving a transformation parameterized by ([X ,Y ],LX η −LY ξ + · · ·) where the dots stands for
closed terms.

This phenomenon was captured by Hitchin and Gualtieri in a natural generalization of Kähler
geometry called generalized Kähler Geometry (GKG) [4]. The central object is the bundle T ⊕T ∗,
where T and T ∗ are the tangent and the cotangent bundle resp., on which one defines a symmetric
bilinear pairing,

〈X,Y〉= 1
2
(ιX η + ιY ξ ) , (3.1)

where X = X + ξ , Y = Y +η ∈ T ⊕T ∗. This pairing has a large isometry group which includes
generalized coordinate transformations and b-transformations as subgroups. The latter act as,

X→ ebX= X+ ιX b , (3.2)

where b is a locally defined two-form. In addition this pairing supports a natural action of a bi-
vector.

The Courant bracket replaces the Lie bracket,

JX,YK = [X ,Y ]+LX η−LY ξ − 1
2

d
(
ιX η− ιY ξ

)
. (3.3)

3We define the interior product so that the vector is always contracted with the first argument of the form. I.e.
ιX ω = ω(X , · · ·) .
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While anti-symmetric, the Courant bracket only satisfies the Jacobi identities on an isotropic sub-
space4 of T ⊕ T ∗ provided it acts involutively on that isotropic subspace. The b-transformation
eq. (3.2) acts as ,

Jeb(X),eb(Y)K = ebJX,YKdb , (3.4)

where JX,YKdb = JX,YK+ ιY ιX db. Thus the isometries of the of the inner product which hold as
symmetries of the Courant bracket consist of GL(D) transformations (evident from the index free
formulation) and the action of closed two-forms.

The spinor representation of the isometry group of eq. (3.1) is realized on the exterior algebra
on T ∗. For X= X +ξ ∈ T ⊕T ∗ we introduce a “gamma matrix” ΓX which act on φ ∈ ∧•T ∗ as,

ΓX ·φ = ιX φ +ξ ∧φ . (3.5)

A direct check shows that the poly-forms ∧•T ∗ do indeed provide a module for the Clifford algebra
since: {

ΓX,ΓY
}
·φ = 2〈X,Y〉φ . (3.6)

Having the gamma matrices, one gets the spin representation of the isometry group of the bilinear
form in the usual way. E.g. for the b transform, see eq. (3.2), one gets,

φ → e−b∧
φ . (3.7)

Similarly a spinor transforms under a coordinate transformation as a density,

x→ x′(x)⇒ φ(x)→ φ
′(x′) =

√
det

∂x′

∂x
φ(x) . (3.8)

In fact this transformation law implies the isomorphism between spinors and poly-forms is actually
given by

S∼= (detT )
1
2 ∧• T ∗ . (3.9)

The Mukai pairing gives an invariant (under the isometry group of 〈·, ·〉 connected to the identity)
bilinear for the spinors, (

φ1,φ2
)
= σ(φ1)∧φ2|top , (3.10)

where φ1, φ2 ∈ ∧•T ∗ and σ acts as,

σ
(
dx1∧dx2∧·· ·∧dxr)= dxr ∧dxr−1∧·· ·∧dx1 . (3.11)

That this bilinear produces a top-form rather than a scalar is reflected by the isomorphism eq. (3.9).

4An isotropic subspace L⊂ T ⊕T ∗ is defined by ∀X, Y ∈ L : 〈X,Y〉= 0. If the dimension of T ⊕T ∗ is 2m, then the
maximal dimension of L is given by m. Whenever the dimension of L is m, we talk about a maximal isotropic subspace.
A simple but important example of a maximal isotropic is T ⊂ T ⊕T ∗.
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There is a natural way to associate an isotropic subspace L of T ⊕T ∗ to a given spinor φ :

X ∈ L⇔ ΓX ·φ = 0 . (3.12)

Using eq. (3.6) one immediately shows that L is indeed isotropic. When L is maximally isotropic
one calls φ a pure spinor. As shown by Gualtieri, any non-degenerate pure spinor can be written in
the form,

φ = κ ∧ eiΩ+Ξ , (3.13)

where Ω and Ξ are real two-forms and κ is a complex decomposable k-form where k is the type of
the generalized complex structure.

A generalized complex structure (GCS) is defined as a linear map J : T ⊕ T ∗ → T ⊕ T ∗,
satisfying J 2 = −1, for which the natural pairing is “hermitian”, 〈JX,JY〉 = 〈X,Y〉 for all
X,Y ∈ T ⊕T ∗ and for which the +i eigenbundle is involutive under the Courant bracket,

JX,YK+J JJX,YK+J JX,JYK− JJX,JYK = 0. (3.14)

In order for a GCS to exist the manifold M should be even dimensional and we take dimM = 2m.
Note that if J is integrable w.r.t. the bracket J·, ·K then e−bJ eb is integrable w.r.t. the bracket

J·, ·Kdb. Writing (T ⊕T ∗)⊗C= L⊕ L̄ where L (L̄) is the +i (−i) eigenbundle of J , we see that L
is a maximal isotropic subspace of (T ⊕T ∗)⊗C. As a consequence, any GCS comes with a pure
spinor φ defined by ΓX ·φ = 0, ∀X ∈ L. For a physicist this is just the highest weight vector of the
spinor representation.

Both a regular complex structure J and a symplectic structure (a closed non-degenerate two-
form) ω give rise to a GCS,

Jc =

(
J 0
0 −Jt

)
, Js =

(
0 ω−1

−ω 0

)
. (3.15)

A generic GCS interpolates between these two extreme cases. Gualtieri extended the Newlander-
Nirenberg (for complex structures) and the Darboux theorem (for symplectic structures) to an ar-
bitrary GCS: by an appropriate diffeomorphism and b-transformation one can always turn a GCS
to the standard product GCS Ck× (R2m−2k,ω). The integer k is called the type of the GCS. So a
2m dimensional manifold with a generalized complex structure is foliated by 2m−2k dimensional
leaves of the form R2m−2k×{point} on which a symplectic form ω is properly defined. Transverse
to the leaves, complex coordinates zi with i ∈ {1, . . . ,k} are introduced such that the leaves are
located at zi = constant(∀ i). A generic feature of generalized complex geometry is that loci might
exist where the type jumps, one calls this phenomenon type changing. Gualtieri’s theorem holds
for neighborhoods of regular points (i.e. where no type changing occurs).

A generalized Kähler structure (GKS) requires two mutually commuting GCS’s, J+ and J−
such that,

G
(
X,Y

)
= 〈J+X,J−Y〉, (3.16)

6
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defines a positive definite metric on T ⊕T ∗. Gualtieri showed that a GKS is exactly equivalent to
the previously introduced N = (2,2) non-linear σ -model gemometry (see section 2),

J± =
1
2

(
1 0
−b 1

)(
J+± J− ω

−1
+ ∓ω

−1
−

−(ω+∓ω−) −(Jt
+± Jt

−)

)(
1 0
+b 1

)
. (3.17)

We call the types of the generalized complex structures J+ and J− , k+ and k− resp. From
eq. (3.17) we get that (

k+,k−
)
=

1
2
(

dimker(J+− J−),dimker(J++ J−)
)
. (3.18)

As J+ and J− commute, we can write,(
T ⊕T ∗

)
⊗C= L++⊕L+−⊕L−−⊕L−+, (3.19)

where L++ is the +i eigenbundle for both J+ and J−; L+− is the +i eigenbundle for J+ and
the −i eigenbundle for J−; etc. Denoting X+ ∈ L++, X− ∈ L+−, X̄+ ∈ L−− and X̄− ∈ L−+, we
can introduce pure spinors φ+ and φ− for J+ and J− resp. defined by,

ΓX+ ·φ+ = ΓX− ·φ+ = 0, ΓX+ ·φ− = ΓX̄− ·φ− = 0. (3.20)

Eq. (3.20) does not fix the normalization of the pure spinors φ+ and φ−. It can be shown [4] that
the integrability of the generalized complex structures guarantees the existence of Y+ and Y− such
that,

dφ± = ΓY± ·φ± . (3.21)

Finally, a generalized Calabi-Yau geometry is a generalized Kähler geometry for which the
pure spinors φ+ and φ− are globally defined, closed and they satisfy,(

φ+, φ̄+

)
= c
(
φ−, φ̄−

)
6= 0 , (3.22)

with c constant.

4. The off-shell realization of N = (2,2) supersymmetry

We now pass to N = (2,2) superspace. Because of dimensional reasons the Lagrange density
for the N = (2,2) non-linear σ -model will be a function of scalar superfields so all dynamics will
arise from the constraints satisfied by the superfields. We will only consider constraints linear in
the derivatives. The maximal set of constraints we can impose on a set of scalar superfields xa

consistent with dimensions and super-Lorentz invariance is [5],

D̂+xa = Ja
+b(x)D+xb , D̂−xa = Ja

−b(x)D−xb . (4.1)

Eqs. (A.4) then imply integrability conditions which state that J+ and J− are complex structures,
i.e. J2

+ = J2
− = −1 and N [J±,J±] = 0. From {D̂+, D̂−} = 0 follows that J+ and J− commute,

[J+,J−] = 0 and that M [J+,J−] vanishes5.
5Out of two commuting (1,1) tensors R and S one constructs the tensor M [R,S], M [R,S](U,V ) =

[RU,SV ] − R[U,SV ] − S[RU,V ] + RS[U,V ]. It is related to the Nijenhuis tensor by N [R,S](U,V ) =
1
2 (M [R,S](U,V )+M [S,R](U,V )).

7
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So J+ and J− are mutual commuting complex structures which can be simultaneously diago-
nalized. This gives rise to two cases: either both J+ and J− have the same eigenvalue or they have
opposite eigenvalues. In the first case we call them chiral superfields, in a complex basis they
satisfy,

D̄+z = D̄−z = 0 , D+z̄ = D−z̄ = 0 . (4.2)

The latter case gives rise to twisted chiral superfields [1] satisfying,

D̄+w = D−w = 0 , D+w̄ = D̄−w̄ = 0 . (4.3)

The only possibility left is constraining a single chirality. In order to get a σ -model action they
need to come in pairs satisfying constraints of opposite chirality. They are called semi-chiral
superfields [6] and they are defined by,

D̄+l = D̄−r = 0, D+ l̄ = D−r̄ = 0, (4.4)

An unconstrained N = (2,2) superfield consists of four independent N = (1,1) superfields. When
dealing with chiral or twisted chiral superfields, the constraints reduce the number of components
of an N = (2,2) superfield to those of an N = (1,1) superfield. A semi-chiral superfield describes
twice as many degrees of freedom compared to an N = (1,1) superfield, half of which will turn out
to be auxiliary.

Decomposing the tangent space as T = ker(J+− J−)⊕ ker(J++ J−)⊕ im
(
[J+,J−]g−1

)
, one

can show that ker(J−− J−), ker(J++ J−) and im
(
[J+,J−]g−1) can be integrated to chiral, twisted

chiral and semi-chiral fields resp. (this was conjectured in [7] and proven in [8]).
The most general action involving these superfields in N = (2,2) superspace is given by,

S = 4
∫

d2
σ d2

θ d2
θ̂ V (l, l̄,r, r̄,w, w̄,z, z̄), (4.5)

where the Lagrange density V (l, l̄,r, r̄,w, w̄,z, z̄) is an arbitrary real function of the semi-chiral, lα̃ ,
l ¯̃α , rµ̃ , r ¯̃µ , α̃, ¯̃α, µ̃, ¯̃µ ∈ {1, · · ·ns}, the twisted chiral, wµ , wµ̄ , µ, µ̄ ∈ {1, · · ·nt}, and the chiral
superfields, zα , zᾱ , α, ᾱ ∈ {1, · · ·nc}. It is defined modulo a generalized Kähler transformation,

V →V +F(l,w,z)+ F̄(l̄, w̄, z̄)+G(r̄,w, z̄)+ Ḡ(r, w̄,z). (4.6)

As for the usual Kähler case these generalized Kähler transformations are essential for the global
consistency of the model, see e.g. [9]. Finally, there is the local mirror transformation which sends
J− to −J− which at the level of the generalized Kähler potential amounts to,

V (l, l̄,r, r̄,w, w̄,z, z̄)→V (l, l̄, r̄,r,z, z̄,w, w̄) . (4.7)

Before proceeding, we introduce some notation. We write,

MAB =

(
Vab Vab̄

Vāb Vāb̄

)
, (4.8)

8
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where, (A,a)∈{(l, α̃), (r, µ̃), (w,µ), (z,α)} and (B,b)∈{(l, β̃ ), (r, ν̃), (w,ν), (z,β )}. The subindices
on V denote derivatives with respect to those coordinates. In this way e.g. we get that Mwl is the
2nt ×2ns matrix given by,

Mwl =

(
V

µβ̃
V

µ
¯̃
β

V
µ̄β̃

V
µ̄

¯̃
β

)
. (4.9)

We also introduce the matrix J,

J≡ i

(
1 0
0 −1

)
, (4.10)

with 1 the unit matrix and using this we write,

CAB ≡ JMAB−MAB J, AAB ≡ JMAB +MAB J. (4.11)

Starting from the action eq. (4.5) one passes to N = (1,1) superspace and eliminates the aux-
iliary fields. Comparing this to eqs. (4.1) and (2.2) one gets explicit expressions for the complex
structures, the metric and the Kalb-Ramond two-form. The complex structures are given by,

J+ =


J 0 0 0

M−1
lr Cll M−1

lr JMlr M−1
lr Clw M−1

lr Clz

0 0 J 0
0 0 0 J

 ,

J− =


M−1

rl JMrl M−1
rl Crr M−1

rl Arw M−1
rl Crz

0 J 0 0
0 0 −J 0
0 0 0 J

 ,

(4.12)

where we labeled rows and columns in the order l, l̄, r, r̄, w, w̄, z, z̄. Note that once semi-chiral
fields are present, neither of the complex structures is diagonal. One easily shows [7] that making
a coordinate transformation,

rµ̃ →Vα̃ , r ¯̃µ →V ¯̃α , (4.13)

while keeping the other coordinates unchanged diagonalizes J+. Similarly, the coordinate transfor-
mation,

lα̃ →Vµ̃ , l ¯̃α →V ¯̃µ , (4.14)

with the other coordinates fixed diagonalizes J−. This observation led to a reinterpretation in [8]
of the generalized Kähler potential as the generating function for a canonical transformation which
interpolates between the coordinate system in which J+ is diagonal and the one in which J− is
diagonal.

9
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From the second order action one reads off the metric g and the torsion two-form potential b.
One finds two natural expressions,(

g−b+
)
(X ,Y ) = Ω

+(X ,J+Y ) = dB+ (X ,J+Y ) ,(
g+b−

)
(X ,Y ) = Ω

−(X ,J−Y ) = dB− (X ,J−Y ) . (4.15)

where Ω+ and Ω− are two (locally defined) closed two-forms linear in the generalized Kähler
potential and H = db+ = db−. From eq. (4.15) one gets that b± are (2,0)+(0,2) forms w.r.t. J±.
Explicitly we get,

Ω
+ =−1

2


Cll Alr Clw Alz

−Arl −Crr −Arw −Crz

Cwl Awr Cww Awz

−Azl −Czr −Azw −Czz

 , Ω
− =

1
2


Cll Clr Clw Clz

Crl Crr Crw Crz

Cwl Cwr Cww Cwz

Czl Czr Czw Czz

 . (4.16)

where we labeled rows and columns in the order (l, l̄,r, r̄,w, w̄,z, z̄) and locally we get Ω± = dB±

where6,

2B+ = iVl dl− iVl̄ dl̄− iVr dr+ iVr̄ dr̄+ iVw dw− iVw̄ dw̄− iVz dz+ iVz̄ dz̄ ,

2B− = −iVl dl + iVl̄ dl̄− iVr dr+ iVr̄ dr̄− iVw dw+ iVw̄ dw̄− iVz dz+ iVz̄ dz̄ . (4.17)

There is a certain freedom in the definition of Ω±,

Ω
±(X ,Y )'Ω

±(X ,Y )+dξ
±(X ,J±Y ) , (4.18)

where dξ+ and dξ− are (2,0)+ (0,2) forms w.r.t. J+ and J− resp. Examples of this are ξ+ =

Vl dl +Vl̄ dl̄, ξ+ = iVl dl− iVl̄ dl̄, ξ− = Vr dr+Vr̄ dr̄ and ξ− = iVr dr− iVr̄ dr̄. For the choice in
eq. (4.16) one gets that when no chiral fields are present we can write Ω+ as [10],

Ω
+(X ,Y ) = 2g

(
X ,(J+− J−)−1Y

)
. (4.19)

Similarly, when there are no twisted chiral fields we get,

Ω
−(X ,Y ) = 2g

(
X ,(J++ J−)−1Y

)
. (4.20)

Note that these expressions only exist in regular neighborhoods, at loci where type changing occurs
they might not exist. Using the previous expressions one also finds,

b−−b+ =
1
2

d
(
−Vl dl−Vl̄ dl̄ +Vr dr+Vr̄ dr̄−Vw dw−Vw̄ dw̄+Vz dz+Vz̄ dz̄

)
. (4.21)

In [11] the 1-loop β -function for a general N = (2,2) σ -model in superspace was calculated.
The counter term which was found reads,

S1−loop ∼
1
ε

∫
d2

σ d2
θ d2

θ̂ ln
det
(
N+

)
det
(
N−
) , (4.22)

6The notation we use is such that Vl dl stands for ∂lα̃ V dlα̃ , Vl̄ dl̄ for ∂l ¯̃α V dl ¯̃α , etc.
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where,

N+ =

 Vll̄ Vlr Vlw̄

Vr̄l̄ Vr̄r Vr̄w̄

Vwl̄ Vwr Vww̄

 , (4.23)

and,

N− =

Vll̄ Vlr̄ Vlz̄

Vrl̄ Vrr̄ Vrz̄

Vzl̄ Vzr̄ Vzz̄

 . (4.24)

It vanishes if,

det
(
N+

)
det
(
N−
) =±| f+(l,w,z)|2| f−(r, w̄,z)|2 , (4.25)

for some functions f+ and f−.
Let us now return to the generalized Kähler geometry. The closed pure spinors, eqs. (3.20),

are given by [12], [13],

φ+ = dz̄1∧dz̄2∧·· ·∧dz̄nc ∧ eiΩ++Ξ+
,

φ− = dw̄1∧dw̄2∧·· ·∧dw̄nt ∧ eiΩ−+Ξ− , (4.26)

where Ω± are given in eq. (4.16) and Ξ± are given by,

Ξ
+ =

1
2

d
(
Vl dl +Vl̄ dl̄−Vz dz−Vz̄ dz̄

)
,

Ξ
− =

1
2

d
(
Vr dr+Vr̄ dr̄−Vw dw−Vw̄ dw̄

)
. (4.27)

Using this one gets the Mukai pairings,(
φ+, φ̄+

)
= (−1)nc(nc+1)/2+nt+ns 2nt+2ns detN+(

φ−, φ̄−
)
= (−1)nt(nt+1)/2 2nc+2ns detN− , (4.28)

from which one gets the generalized Calabi-Yau condition eq. (3.22),

det
(
N+

)
det
(
N−
) = constant 6= 0 . (4.29)

It is clear that eq. (4.29) is stronger than eq. (4.25) which reflects the fact that the vanishing of the
β -functions is necessary but not sufficient for the background to solve the supergravity equations
of motion. For a more detailed discussion see e.g. [12] and references therein.

5. Duality transformations

In N = (2,2) supersymmetric models there exists a variety of duality transformations which
allows one to change the nature of the superfields. A complete catalogue of duality transformations

11
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in N = (2,2) superspace was obtained in [14], the extension of this to the case where boundaries
are present was developed in [15]. A first class of duality transformations is always possible and
is a consequence of the constraints satisfied by N = (2,2) superfields. One imposes the constraints
on the superfields through Lagrange multipliers (unconstrained superfields). In such a first order
formulation the original fields are then unconstrained superfields. Integrating over the Lagrange
multipliers results in the original model; integrating over the original unconstrained fields yields
the dual formulation. In this way a (twisted) chiral field is dual to a (twisted) complex linear
superfield, so the dual models involve superfields satisfying constraints which are quadratic in the
derivatives, a case we do not consider any further here. More interesting are semi-chiral fields
where one has a total of 4 dual formulations.

The starting point is the first order action,

S = −
∫

d2
σ d2

θ d2
θ̂

(
V (l, l̄,r, r̄, · · ·)−Λ

+ D̄+l− Λ̄
+D+ l̄−Λ

− D̄−r− Λ̄
−D−r̄

)
, (5.1)

where l, l̄, r and r̄ are unconstrained bosonic complex superfields and Λ± and Λ̄± are unconstrained
complex fermionic superfields. Integrating over the Lagrange multipliers constrains l and r to form
a semi-chiral multiplet. Upon partial integration we can rewrite the action in three ways,

S = −
∫

d2
σ d2

θ d2
θ̂

(
V (l, l̄,r, r̄, · · ·)− l l′− l̄ l̄′−Λ

− D̄−r− Λ̄
−D−r̄

)
= −

∫
d2

σ d2
θ d2

θ̂

(
V (l, l̄,r, r̄, · · ·)−Λ

+ D̄+l− Λ̄
+D+ l̄− r r′− r̄ r̄′

)
= −

∫
d2

σ d2
θ d2

θ̂

(
V (l, l̄,r, r̄, · · ·)− l l′− l̄ l̄′− r r′− r̄ r̄′

)
, (5.2)

where we introduced the notation l′= D̄+Λ+, l̄′=D+Λ̄+, r′= D̄−Λ−, r̄′=D−Λ̄−. Integrating over
the unconstrained fields (l, l̄,Λ−, Λ̄−), (Λ+, Λ̄+,r, r̄) or (l, l̄,r, r̄) resp. yields three dual formulations
of the model. This is perfectly consistent with the interpretation of the generalized Kähler potential
as the generating function for a canonical transformation interpolating between coordinates where
J+ or J− is diagonal as the generating function of a canonical transformation also exists in four
versions connected by Legendre transformations.

In fact when considering the global picture of an N = (2,2) model one should allow on the
overlap of two coordinate patches not only for a generalized Kähler transformation eq. (4.6) but for
Legendre transformations of the potential as well. We will see an example of this in section 6.

A second class of dualities consists of T-dualities where the N = (2,2) supersymmetry is kept
manifest. These dualities require the existence of an isometry and the idea is to gauge the isometry
while – using Lagrange multipliers – enforcing the gauge fields to be pure gauge. Integrating over
the Lagrange multipliers returns us to the original model while integrating over the gauge fields
yields the dual model. There are three main cases.

5.1 The duality between a pair of chiral and twisted chiral fields and a semi-chiral multiplet

A first class of T-duality transformations exchanges a pair of chiral and twisted chiral su-
perfields for a semi-chiral multiplet or vice-versa7. The starting point is a potential of the form

7While this duality transformation was already found in [14], the elucidation of the underlying gauge structure was
done in [16].
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V
(
z+ z̄,w+ w̄, i(z− z̄−w+ w̄), · · ·

)
. This clearly exhibits the isometry z→ z+ ia, w→ w+ ia,

with a an arbitrary real constant. The first order action is,

S = −
∫

d2
σ d2

θ d2
θ̂

(
V
(
Y,Ỹ ,Ŷ , · · ·

)
+Λ

+D̄+

(
Y − Ỹ − iŶ

)
+ Λ̄

+D+

(
Y − Ỹ + iŶ

)
−Λ

−D̄−
(
Y + Ỹ − iŶ

)
− Λ̄

−D−
(
Y + Ỹ + iŶ

))
(5.3)

where Λ± and Λ̄± are unconstrained complex fermionic superfields and Y , Ỹ and Ŷ are uncon-
strained real bosonic superfields. Integrating over the Lagrange multipliers Λ± and Λ̄± returns us
to the original model. Integrating by parts results in,

S = −
∫

d2
σ d2

θ d2
θ̂

(
V
(
Y,Ỹ ,Ŷ , · · ·

)
+Y
(
l + l̄− r− r̄

)
− Ỹ
(
l + l̄ + r+ r̄

)
−iŶ

(
l− l̄− r+ r̄

))
(5.4)

where we introduced the semi-chiral multiplet l = D̄+Λ+, l̄ = D+Λ̄+, r = D̄−Λ− and r̄ = D−Λ̄−.
Integrating over Y , Ỹ and Ŷ yields the dual model.

The inverse transformation starts from a potential of the form V
(
l+ l̄,r+ r̄, i(l− l̄−r+ r̄), · · ·

)
.

The basic relations are given by,

S = −
∫

d2
σ d2

θ d2
θ̂

(
V
(
Y,Ỹ ,Ŷ , · · ·

)
+ iuD̄+D̄−

(
Y − Ỹ − iŶ

)
+i ūD+D−

(
Y − Ỹ + iŶ

)
− i vD̄+D−

(
Y + Ỹ − iŶ

)
− i v̄D+D̄−

(
Y + Ỹ + iŶ

))
= −

∫
d2

σ d2
θ d2

θ̂

(
V
(
Y,Ỹ ,Ŷ , · · ·

)
+Y
(
z+ z̄−w− w̄

)
− Ỹ
(
z+ z̄+w+ w̄

)
−iŶ

(
z− z̄−w+ w̄

))
(5.5)

where u, v ∈ C and Y, Ỹ , Ŷ ∈ R are unconstrained superfields and where we defined z = iD̄+D̄−u,
z̄ = iD+D−ū, w = iD̄+D−v and w̄ = iD+D̄−v̄.

5.2 The duality between a chiral and a twisted chiral field

The duality transformation between a chiral and a twisted chiral superfield was proposed in
[1]. Starting from a potential of the form V (z+ z̄, · · ·) we write the first order action,

S = −
∫

d2
σ d2

θ d2
θ̂

(
V
(
Y, · · ·

)
− iu D̄+D−Y − i ūD+D̄−Y

)
. (5.6)

Integrating over the complex unconstrained Lagrange multipliers u and ū brings us back to the
original model. Upon integrating by parts one gets,

S = −
∫

d2
σ d2

θ d2
θ
′
(

V
(
Y, · · ·

)
−Y
(
w+ w̄

))
, (5.7)

where we introduced the twisted chiral fields w = i D̄+D−u and w̄ = iD+D̄−ū. Integrating over the
unconstrained gauge field Y gives the dual model in terms of a twisted chiral field w.

The inverse transformation starts from potentials of the form V (w+ w̄, · · ·). One has

−
∫

d2
σ d2

θ d2
θ̂

(
V
(
Ỹ , · · ·

)
− iu D̄+D̄−Ỹ − i ūD+D−Ỹ

)
=−

∫
d2

σ d2
θ d2

θ̂

(
V
(
Ỹ , · · ·

)
− Ỹ
(
z+ z̄)

)
, (5.8)

where we have put z = i D̄+D̄−u and z̄ = iD+D−ū.
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6. The Hopf surface: a canonical example

Wess-Zumino-Witten models on even dimensional reductive Lie group manifolds all allow for
at least N = (2,2) supersymmetry [3]. A complex structure on the group is fully determined by its
action on the Lie algebra and it is almost equivalent to a choice for a Cartan decomposition of the
Lie algebra. Indeed on generators corresponding to positive (negative) roots it has eigenvalue +i
(−i) and the only freedom left is on its action on the Cartan subalgebra (CSA) which is mapped to
itself and restricted by the condition that the invariant metric on the CSA is hermitian.

The group SU(2)×U(1) is the canonical example. As this model actually has an N = (4,4)
supersymmetry it has two 2-spheres of complex structures, one for each chirality. A detailed anal-
ysis [13] shows that this gives rise to two superspace formulations of the model: one in terms of a
chiral and a twisted chiral superfield [17] and one in terms of a semi-chiral multiplet [7].

We parameterize a group element g ∈ SU(2)×U(1),

g = eiρ

(
cosψ eiϕ1 sinψ eiϕ2

−sinψ e−iϕ2 cosψ e−iϕ1

)
, (6.1)

where ϕ1, ϕ2, ρ ∈ Rmod2π and ψ ∈ [0,π/2]. The group manifold S3×S1 can also be viewed as
a rational Hopf surface defined by

(
C2\(0,0)

)
/Γ where elements of Γ act on (w,z) ∈ C2\(0,0) as

(w,z)→ e2πn(w,z), n ∈ Z, which is clear from the following identification,

w = cosψ e−ρ−iϕ1 ,

z = sinψ e−ρ+iϕ2 . (6.2)

It turns out that these coordinates can be identified with a twisted chiral superfield w and a chiral
superfield z. The resulting potential is given by,

Vw6=0(z,w, z̄, w̄) =
∫ zz̄

ww̄ dq
q

ln(1+q)− 1
2
(lnww̄)2 , (6.3)

which is well defined as long as w 6= 0 (or ψ 6= π/2). The “mirror” potential (see eq. (4.7)),

Vz6=0(w, w̄,z, z̄) =−
∫ ww̄

zz̄ dq
q

ln(1+q)+
1
2
(lnzz̄)2 , (6.4)

is well defined as long as z 6= 0 (or ψ 6= 0). On the overlap of the two patches the potentials are
related by a generalized Kähler transformation,

Vw6=0−Vz6=0 =− ln
(
zz̄
)

ln
(
ww̄
)
. (6.5)

The type is (k+,k−) = (1,1) and no type changing occurs. The closed pure spinors can be calcu-
lated [13] and their Mukai pairings are given by,(

φ+, φ̄+

)
=
(
φ−, φ̄−

)
=− 2

zz̄+ww̄
, (6.6)

which vanish nowhere and which satisfy the generalized Calabi-Yau condition eq. (4.29). However
a more careful investigation shows that they are not globally well defined defined implying that the
current model does not provide an appropriate supergravity solution.
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The second formulation of the model in terms of a semi-chiral multiplet is given by,

Vψ 6=0 = ln
l
r̄

ln
l̄
r
−
∫ rr̄ dq

q
ln
(
1+q

)
, (6.7)

where the semi-chiral coordinates are related to the previous one by,

l = w , l̄ = w̄ , r =
w̄
z
, r̄ =

w
z̄
. (6.8)

In order to obtain a potential which is well defined in ψ = 0 we perform a Legendre transformation,

Vψ 6=0(l, l̄,r, r̄)− ln l ln l′− ln l̄ ln l̄′ , (6.9)

where l is now unconstrained and l′ satisfies D+l′ = 0. Varying w.r.t. l and l̄ one finds that l′ = l̄/r
and l̄′ = l/r̄. Making a final coordinate transformation r′ = 1/r and r̄′ = 1/r̄ we get,

Vψ 6=0(l, l̄,r, r̄)− ln l ln l′− ln l̄ ln l̄′ =Vψ 6= π

2
(l′, l̄′,r′, r̄′)− 1

2
(

lnr′
)2− 1

2
(

ln r̄′
)2
, (6.10)

where the last two terms can be removed by a generalized Kähler transformation. The resulting
potential which is now well defined in ψ = 0 is explicitly given by,

Vψ 6= π

2
=− ln

l′

r′
ln

l̄′

r̄′
+
∫ r′ r̄′ dq

q
ln
(
1+q

)
, (6.11)

and it is once more the mirror transform of the original potential. This is an explicit example of
a situation where the generalized potentials on the overlap of two coordinate patches are not only
related by a generalized Kähler transformation but by a Legendre transformation as well.

Using the potentials to calculate the complex structures one verifies that type-changing occurs
at ψ = π/2 where the type jumps as (0,0)→ (0,2) and at ψ = 0 where we have that the type goes
as (0,0)→ (2,0). The generalized Calabi-Yau condition eq. (4.29) does not hold anymore however
one verifies that the weaker UV-finiteness condition eq. (4.25) is still satisfied.

The formulation of the model in terms of a pair of twisted and chiral superfields and the one in
terms of a semi-chiral multiplet are related by a T-duality transformation (as originally suggested in
[18] and worked out explicitly in [13]). Indeed, performing a T-duality transformation along the S1

of S1×S3 brings one back to S1×S3. The isometry which will be gauged acts as ρ→ ρ +constant
which is easily verified to be of the type discussed in section 5.1. This T-duality transformation
provides an explanation for the simple relation between the chiral/twisted chiral and the semi-chiral
parameterization eq. (6.8).

7. Discussion and outlook

In the current review we limited ourselves to non-linear σ -models without boundaries. How-
ever boundaries can be added to N = (2,2) superspace which gives rise to an intricate and powerful
worldsheet description of supersymmetric D-branes including configurations interpolating between
A-branes and B-branes [19], [15].
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The previous shows that supersymmetric non-linear σ -models exhibit a rich geometric struc-
ture, both at the classical and at the quantum level. Mathematically the resulting bi-hermitian geom-
etry is perfectly captured by Hitchin’s generalized Kähler geometry. The analysis of the one loop
quantum corrections leads to expressions closely related to Hitchin’s generalized Calabi-Yau ge-
ometry. Knowing that higher loop corrections result in a deformation of the one-loop β -functions,
a natural and interesting question arises which is whether those can be put in a generalized geomet-
rical setting as well, leading to a better and more systematic control of the perturbation series.

Another interesting question deals with the doubled formalism [20]. The doubled formalism
provides a concrete proposal to tackle non-geometric or T-fold compactifications. Although the
underlying geometry is still being developed, hints at a very rich framework beyond conventional
Riemannian geometry are emerging (see for instance [21]). Many expressions are reminiscent of,
and indeed motivated by, Hitchin’s generalized complex geometry. As supersymmetric non-linear
σ -models in N = (2,2) superspace provide a very explicit local realization of generalized Kähler
geometry, one could expect that the development of a doubled formalism in N = (2,2) superspace
will shed light on these novel geometric structures. Such a doubled formalism certainly exists but
has a slightly different structure from what is customary.

A simple example of a σ -model on T 2 illustrates this point. The potentials V = (z+ z̄)2/2 and
W = −(w+ w̄)2/2 are T-dual. In a manifest N = (2,2) supersymmetric doubled formalism one
has to "overdouble" the coordinates, i.e. all superfields involved in the T-duality transformation are
doubled. In this case the doubled formalism is parameterized by z, z̄, w and w̄. The overdoubled
coordinate is eliminated by the condition,

w+ w̄ = z+ z̄ , (7.1)

which singles out a kind of co-isotropic brane in the overdoubled space. Hull’s constraints follow
immediately from eq. (7.1), indeed,

D̂±(w+ w̄) = D̂±(z+ z̄)⇒ D±(w− w̄) =±D±(z− z̄) . (7.2)

The expression above implies that we are dealing with superfields which are truly chiral: from
eq. (7.1) we get that D+(z−w) = D−(z− w̄) = 0. From the normal superfield constraints we get
D̄+(z−w) = D̄−(z− w̄) = 0 implying that ∂=|(z−w) = ∂=(z− w̄) = 0 as well. Chiral bosons in the
sense just mentioned are currently being developed together with a full treatment of the doubled
formalism in N = (2,2) superspace [22].

Finally, it would be most useful to have some more non-trivial examples of generalized Kähler
geometries where the local structure – read the generalized Kähler potential – is explicitly known.
WZW-models on even dimensional reductive Lie group manifolds might provide them however at
this point explicit results have only been obtained for the SU(2)×U(1) and the SU(2)× SU(2)
models.
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A. Notation and conventions

We denote the worldsheet coordinates by τ,σ ∈ R, and the worldsheet light-cone coordinates
are defined by,

σ
=| = τ +σ , σ

= = τ−σ . (A.1)

The N = (1,1) (real) fermionic coordinates are denoted by θ+ and θ− and the corresponding
derivatives satisfy,

D2
+ =− i

2
∂=| , D2

− =− i
2

∂= , {D+,D−}= 0. (A.2)

The N = (1,1) integration measure is explicitely given by,∫
d2

σ d2
θ =

∫
dτ dσ D+D−. (A.3)

Passing from N =(1,1) to N =(2,2) superspace requires the introduction of two more real fermionic
coordinates θ̂+ and θ̂− where the corresponding fermionic derivatives satisfy,

D̂2
+ =− i

2
∂=| , D̂2

− =− i
2

∂= , (A.4)

and again all other – except for (A.2) – (anti-)commutators do vanish. The N = (2,2) integration
measure is, ∫

d2
σ d2

θ d2
θ̂ =

∫
dτ dσ D+D− D̂+D̂−. (A.5)

Regularly a complex basis is used,

D± ≡ D̂±+ iD±, D̄± ≡ D̂±− iD±, (A.6)

which satisfy,

{D+, D̄+}=−2i∂=| , {D−, D̄−}=−2i∂=, (A.7)

and all other anti-commutators do vanish.
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[18] Martin Roček: private communication.

[19] A. Sevrin, W. Staessens and A. Wijns, An N=2 worldsheet approach to D-branes in bihermitian
geometries: I. Chiral and twisted chiral fields, J. High Energy Phys. 0810 (2008) 108,
[arXiv:0809.3659 [hep-th]].

[20] C. M. Hull, A Geometry for non-geometric string backgrounds, JHEP 0510 (2005) 065
[hep-th/0406102]; C .M .Hull, Doubled Geometry and T-Folds, JHEP 0707 (2007) 080
[hep-th/0605149].

[21] O. Hohm and B. Zwiebach, Towards an invariant geometry of double field theory,
arXiv:1212.1736 [hep-th] and references therein.

[22] A. Sevrin and D. C. Thompson, work in progress.

19


