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1. Introduction

Open string field theory (OSFT), [1] is a useful and in-principle-complete framework to ex-
plore important aspects of the non perturbative structure of string theory. It was originally con-
structed as a second quantized formulation for the open string in order to derive string amplitudes
from ‘space-time’ Feynmann diagrams. It is a classical result that the collection of Feynmann dia-
grams (in Siegel gauge) gives a single and unique covering of the moduli space of Riemann surfaces
with boundaries, open string punctures and closed string punctures, [2]. Therefore all open-closed
string amplitudes, at any order in perturbation theory, can be obtained from open string field theory.
Being a second quantized formulation for the open strings we can, in addiction, derive consistent
extensions of the amplitudes where open strings (but not closed strings) can be taken off-shell.
While the possibility to go off shell is not particularly useful at the perturbative level, it allows to
move out from the perturbative vacuum, where the theory is initially defined, to different back-
grounds with different excitations. Since open strings are excitations of D-branes, it is natural to
expect that classical solutions to the equation of motion of open string field theory should cor-
respond to different D-branes configurations which can be consistently placed in a given closed
string background. While all classical solutions we know of (as of today) are consistent with this
expectation, it is in general not easy to understand the way OSFT encodes the D-brane moduli in
terms of the parameters of the corresponding classical solutions. A related problem is that the huge
gauge invariance of OSFT can connect seemingly different solutions and it is in general hard to
distinguish between physical degrees of freedom and gauge redundant one. We thus seek for a tool
which allows to describe the physical property of the D-brane system the solution is describing, in
a gauge invariant way.
At the world sheet level, the most accurate description of a D-brane system, is its boundary state
|B∗⟩. A boundary state is a closed string state which, when overlapped with generic closed string
states, gives as a result the disk tadpoles of the latter, with the boundary conditions of a given
boundary conformal field theory BCFT∗, which |B∗⟩ is encoding. It should then be possible to
re-organize the gauge invariant data of a given OSFT solution and recast them in the form of the
boundary state the solution is describing. This is what I aim at describing in this contribution.

2. Construction

Let Ψ be a solution to the OSFT equation of motion

QΨ+Ψ∗Ψ = 0. (2.1)

Our aim is to compute the boundary state, |BΨ⟩, which corresponds to the boundary conditions
which the solution is describing. We assume that the boundary state is a ghost number 3 closed
string state which describes conformal boundary conditions in the total c = 0 matter/ghost CFT. At
the disk level this means

(b0 − b̄0)|BΨ⟩ = 0 (2.2)

Qgh|BΨ⟩ = 3|BΨ⟩ (2.3)

(Ln − L̄−n)|BΨ⟩ = 0. (2.4)
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As shown in [3] the above constraints are enough to guarantee that the boundary state |BΨ⟩ is matter
ghost factorized

|BΨ⟩= |BΨ⟩matter ⊗|Bgh⟩ (2.5)

and that (
bn − b̄−n

)
|BΨ⟩ = 0, (2.6)

(cn + c̄−n) |BΨ⟩ = 0, (2.7)(
Lmatter

n − L̄matter
−n

)
|BΨ⟩ = 0, (2.8)

QBRST |BΨ⟩ = 0. (2.9)

As it is well known, the Virasoro gluing condition in the matter sector implies that the generic form
of the matter part of the boundary state is a linear combination of Ishibashi states, [8]. Let {Vα} be
the collection of non-singular spinless bulk primaries of weight (hα ,hα) in the matter CFT1

(L0 − L̄0)|Vα⟩ = (hα −hα)|Vα⟩= 0 (2.10)

Ln|Vα⟩ = L̄n|Vα⟩= 0, n ≥ 1. (2.11)

Let’s define a BPZ-dual basis of primaries {V β} such that

⟨V α |Vβ ⟩= δ α
β . (2.12)

This is possible once singular (null) states have been projected out. To any spinless vertex operator
Vα we can associate the corresponding conformal Ishibashi state, which (up to normalization) is
the unique state |Vα⟩⟩ in the Virasoro Verma module of Vα satisfying the Virasoro gluing conditions

(Ln − L̄−n)|Vα⟩⟩= 0. (2.13)

A simple closed form of the solution to the gluing condition for the general case can be written as

|Vα⟩⟩= ∑
n
|n,α⟩⊗ |n,α⟩, (2.14)

where the sum runs over orthonormal basis of states in the irreducible representation of the chiral
Virasoro algebra built over the primary Vα . The normalization has been chosen so that

⟨V α |Vβ ⟩⟩= ⟨V α |Vβ ⟩= δ α
β . (2.15)

The matter part of our to-be-found boundary state |BΨ⟩ can thus be written as

|BΨ⟩matter = ∑
α

nα
Ψ|Vα⟩⟩. (2.16)

Therefore, the only needed informations to construct the boundary state are the coefficients nα
Ψ.

These coefficients are nothing but the disk one point functions of the spinless primaries in the
matter BCFTΨ with the new boundary conditions implicitly described by the solution Ψ

nα
Ψ = ⟨V α |BΨ⟩matter ≡ ⟨V α(0)⟩BCFTmatter

Ψ
disk . (2.17)

1In CFTs on noncompact target spaces α will in general be a continuous variable, like the momentum.
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Our aim is to compute these coefficients from gauge invariant observables of OSFT.
Suppose, for a moment, that we want to compute nα

Ψ for a bulk primary of weight 1. To do so, we
have at our disposal a very well known OSFT invariant, [4, 5, 6, 7]

WV (Ψ)≡ ⟨ I|V (i)|Ψ⟩ , (2.18)

where ⟨I| is the identity string field and V (i) is a ghost number two closed string vertex operator,
placed at the midpoint. This object is well defined and gauge invariant when the midpoint insertion
V (i) is a BRST closed weight-zero primary. Let us take

V = cc̄V matter
h=1 , (2.19)

where V matter
h=1 is a spinless weight 1 primary in the matter CFT. Then, based on the available ex-

amples, Ellwood coinjectured [7] that this invariant is precisely computing the shift in the closed
string tadpole from the starting BCFT0 to the target BCFTΨ, described by the solution Ψ.

⟨ I|V (i)|Ψ⟩= 1
2πi

⟨V (0)c(1)⟩BCFT0
disk − 1

2πi
⟨V (0)c(1)⟩BCFTΨ

disk . (2.20)

We can rewrite this relation using the fact that the invariant of the tachyon vacuum ΨTV should
precisely account for the BCFT0 contribution

⟨ I|V (i)|Ψ−ΨTV ⟩=− 1
2πi

⟨V (0)c(1)⟩BCFTΨ
disk . (2.21)

If we now explicitly split the disk tadpole in matter and ghost, we get from the ghost part

⟨cc̄(0)c(1)⟩disk =−1, (2.22)

and we thus find

nh=1
ψ =

⟨
V matter

h=1 (0)
⟩BCFTmatter

Ψ
disk = 2πi⟨ I|V (i)|Ψ−ΨTV ⟩ . (2.23)

Therefore the Ellwood invariants compute the coefficients of the Ishibashi states of the weight one
bulk primaries.
Our aim is to generalize these invariants in such a way that they can compute the tadpoles for
generic matter primaries. To do this we describe the system ‘from outside’, so that we can com-
pensate the excess of weight in the closed string primary in an auxiliary direction. We tensor our
initial BCFT0 with a properly chosen c = 0 auxiliary BCFTaux and search for a lifted solution Ψ̃,
to the equation of motion

Q̃Ψ̃+ Ψ̃∗ Ψ̃ = 0, (2.24)

where the lifted BRST charge is given by the natural expression

Q̃ ≡ ∑
n

: c−n

(
Lmatter

n +Laux
n +

1
2

Lghost
n

)
: (2.25)
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The important physical property of Ψ̃ is that, while it should change the boundary conditions from
BCFT0 to BCFTΨ, as the original solution Ψ, it should however leave untouched the boundary con-
ditions in the auxiliary BCFTaux. We expect that this can be systematically achieved by searching
the lifted solution inside the Verma module of the identity operator of BCFTaux

Ψ̃ = ∑
{M}

Ψ{M}⊗Laux
−{M}|0⟩

aux. (2.26)

Because of the c= 0 nature of BCFTaux, the original solution Ψ is just the coefficient of the SL(2,R)
vacuum

Ψ̃ = Ψ⊗|0⟩aux + ∑
{M}̸= /0

Ψ{M}⊗Laux
−{M}|0⟩

aux. (2.27)

Given any CFT bulk primary of the form

V α(z, z̄) = cc̄V α(z, z̄), (2.28)

where V α is a purely matter primary of weight (hα ,hα), we can consider a formal bulk primary in
CFTaux, wα(z, z̄) of weight (1−hα ,1−hα) with the property that

⟨ wα(0) ⟩BCFTaux

disk = 1, ∀α. (2.29)

Explicitly we can define BCFTaux to be the tensor product of a free boson Y with Dirichlet boundary
conditions (c = 1) and a linear dilaton φ with background charge Q = 1√

3
with Neumann boundary

conditions and c = 1−6Q2 =−1. In this case we can systematically take

wα = e2i
√

1−hα Y e
2i√

3
φ
, (2.30)

which has weight (1−hα ,1−hα) and satisfies (2.29), thanks to the Dirichlet conditions for Y and
the saturation of the background charge on the disk. Notice that, for hα > 1, wα is not normalizable
in the auxiliary closed string Hilbert space, but still it has a well defined one-point function on the
disk. Other choices of BCFTaux are clearly possible. Now we tensor the compensator wα with our
original bulk field V α to form the weight zero primary

Ṽ α(z, z̄)≡ V α ⊗wα(z, z̄), (2.31)

which is closed wrt to the lifted BRST charge (2.25)

Q̃Ṽ α = 0, (2.32)

and satisfy

⟨ Ṽ α(0)c(1) ⟩BCFT0⊗BCFTaux

disk = ⟨ V α(0)c(1) ⟩BCFT0
disk . (2.33)

Given the lifted solution, making use of the Ellwood conjecture in the tensor theory, together
with the assumption that the boundary conditions are non changed in BCFTaux, we can simply
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derive

−4πi⟨ I|Ṽ α(i)|Ψ̃− Ψ̃TV ⟩BCFT′
0

= ⟨Ṽ α |c−0 |B̃Ψ̃⟩

=
(
⟨cc̄V α |⊗ ⟨wα |

)
c−0
(
|BΨ⟩⊗ |Baux⟩

)
=
⟨

cc̄V α |c−0 |BΨ
⟩
× ⟨ wα(0) ⟩BCFTaux

disk

=
⟨

cc̄V α |c−0 |BΨ
⟩
=−2nα

Ψ. (2.34)

Therefore we can get the coefficients of the Ishibashi states from the gauge invariant quantities

nα
Ψ ≡ 2πi

⟨
I|Ṽ α(i)

∣∣Ψ̃− Ψ̃TV
⟩
. (2.35)

In the following we will test this proposal with analytic and numerical solutions.

3. Analytic Solutions

Here I illustrate the just outlined construction in an explicit case where Ellwood conjecture
has been verified, and all OSFT computations have been done already. For definitness I focus on
the simplest well-defined OSFT solutions corresponding to marginal deformations of the initial
BCFT0, where the marginal current has regular OPE with itself, but the whole construction can be
readily extended [7] to the Kiermaier-Okawa solutions [9, 10], as well as to any other example in
which the Ellwood invariant has been shown to analytically compute the tadpole shift, for example
[11, 12]. An interesting example is given by the rolling tachyon marginal deformation generated
by the marginal current V = eX0

.
These solutions have been constructed in the B0-gauge in [13, 14] and extended to more

general gauges in [15, 16]

Ψλ = Fc
B

1+λeX0 1−F2

K

λceX0
F, (3.1)

where F = F(K)2 and K,B,c are the familiar string fields [17, 18, 19, 20, 21], and eX0
is the

insertion of the exactly marginal boundary operator : eX0
: (s) in the sliver frame.

Given an on-shell weight-zero primary closed string state V = cc̄V (1,1), the Ellwood invariant
for this class of solutions has been computed in three different ways [22, 23, 24], and the result
(with the BCFT0 contribution—given by the tachyon vacuum invariant—conveniently subtracted)
is

⟨I|V (i)|Ψ−ΨTV ⟩ = −
⟨

e−λ
∫ 1

0 ds eX0
(s)V (i∞)c(0)

⟩BCFT0

C1

= − 1
2πi

⟨
e−λ

∫ 2π
0 dθ eX0

(eiθ)V (0)c(1)
⟩BCFT0

disk
. (3.2)

The nontrivial rearrangement of the eX0
insertions in the solution into a simple boundary interac-

tion is a general consequence of the particular form of the solution and the string field F(K), as
discussed in [24, 25].

2We assume the conditions F(0) = 1, F ′(0)< 0 and F(∞) = 0.
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This closed string tadpole is in fact closely related to the proper overlap of a closed string of
the form cc̄Vm with the boundary state of Ψ⟨

e−λ
∫ 2π

0 dθ eX0
(eiθ) cc̄V (h,h)

m (0)c(1)
⟩BCFT0

disk
=

1
2

⟨
e−λ

∫ 2π
0 dθ eX0

(eiθ) (c0 − c̄0)cc̄V (h,h)
m (0)

⟩BCFT0

disk

≡ 1
2
⟨BΨ|c−0 |cc̄V (h,h)

m ⟩, (3.3)

where in the last line we have used the defining expression for the boundary state. Notice, that
although this relation is trivially true for any matter operator, there is no gauge invariant observable
in the OSFT defined on BCFT0 (with generic boundary conditions) that could give the LHS of (3.3)
for h ̸= 1.
To overcome this difficulty we lift the solution to

BCFT′
0 = BCFT0 ⊗BCFTaux, (3.4)

as outlined in the previous section. The simplest lift we can do is to simply replace the BCFT0

worldsheet with the BCFT0’ one. This is operatorially achieved by the simple replacement

Ψ̃ = Ψ(K → K +Kaux). (3.5)

Consider now V (h) = cc̄V (h,h), where V (h,h) is a weight h level-matched primary of BCFT0. The
state can be turned into a weight zero primary with a nonvanishing tadpole in BCFT′

0

Ṽ (h) = V (h)e2
√

h−1Y e
2iϕ√

3 . (3.6)

Now we compute an Ellwood invariant in this slightly modified OSFT

⟨I|Ṽ (h)(i)|Ψ̃− Ψ̃TV ⟩ = −
⟨

e−λ
∫ 1

0 ds eX0
(s) Ṽ (h)(i∞)c(0)

⟩BCFT′
0

C1

= − 1
2πi

⟨
e−λ

∫ 2π
0 dθ eX0

(eiθ) Ṽ (h)(0)c(1)
⟩BCFT′

0

disk

= − 1
2πi

⟨cc̄(0)c(1)⟩
⟨

e−λ
∫ 2π

0 dθ eX0
(eiθ)V h,h(0)

⟩BCFT0
⟨

e2
√

h−1Y e
2iϕ√

3 (0)
⟩BCFTaux

= − 1
4πi

⟨
e−λ

∫ 2π
0 dθ eX0

(eiθ)(c0 − c̄0)cc̄V h,h(0)
⟩BCFT0

disk
, (3.7)

We thus found

⟨cc̄V (h,h)|c−0 |BΨ⟩ = −4πi⟨I|Ṽ (h)(i)|Ψ̃− Ψ̃TV ⟩

=

⟨
cc̄V h,h(0)(c0 − c̄0)e−λ

∫ 2π
0 dθ eX0

(eiθ)
⟩BCFT0

disk
. (3.8)

Once this is true for any level-matched primary of CFTmatter, it follows from the Virasoro
gluing conditions that

|BΨ⟩= e−λ
∫ 2π

0 dθ eX0

|B0⟩, (3.9)

7



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
0
0

Boundary state form OSFT Carlo Maccaferri

where |B0⟩ is the boundary state of BCFT0. Having a closed form expression for the boundary state
we can now, for example, extract from it the energy momentum tensor of the solution, which turns
out to be, see [3] for details,

T i j(x0)

Vol25
= − 1

1+2πλ ex0 δ i j , (3.10)

T 00(x0)

Vol25
= 1. (3.11)

This is the usual energy-momentum tensor for a half S-brane exhibiting energy conservation and
exponential decay for the pressure.

4. Numerical Solutions

Let’s now test our method with a famous numerical solution, the Siegel-gauge lump, found by
Moeller, Sen and Zwiebach [26]. They construct lump solutions along a compact direction X with
radius R and such solutions are given up to level L = 3 in terms of the towers

|Tn⟩ = c1 cos
( n

R
X(0)

)
|0⟩,

|Un⟩ = c−1 cos
( n

R
X(0)

)
|0⟩,

|Vn⟩ = c1L(X)
−2 cos

( n
R

X(0)
)
|0⟩, (4.1)

|Wn⟩ = c1L′
−2 cos

( n
R

X(0)
)
|0⟩,

|Zn⟩ = c1L(X)
−1 L(X)

−1 cos
( n

R
X(0)

)
|0⟩,

in the form
|Ψ⟩= ∑

n|L≤3
(tn|Tn⟩+un|Un⟩+ vn|Vn⟩+wn|Wn⟩+ zn|Zn⟩). (4.2)

The Virasoro generators appearing in the expansion of the solution are purely matter, and are split
according to the decomposition of the energy momentum tensor

T matter
c=26 (z) = T (X)

c=1(z)+T ′
c=25(z),

in the two BCFT sectors
BCFTmatter

c=26 = BCFTX
c=1 ⊗BCFT′

c=25.

Ghost degrees of freedom are spanned by ghost oscillators. For definiteness we consider the lump
solution of the form (4.2) at radius R =

√
3. For this particular value, the reader can find the

numerical results for the lump coefficients (tn,un,vn,wn,zn) in table 3 of [26].
We will be interested especially in computing the energy density profile along the direction X

on which the lump is forming. These quantities can be easily obtained from generalized Ellwood
invariants. What is needed is a lift for the numerical approximated solution. Since the solution is
not turning on any primary along BCFT′

c=25, a simple lift is given by (4.2), with the replacement

L′ → L′+Laux. (4.3)
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Figure 4.1: (a) Gauge-invariant energy density profile of the Siegel-gauge-lump at R =
√

3, as compared to
the corresponding truncations of the delta function, (b).

Equivalently, instead of tensoring with an auxiliary BCFT of c= 0, we can just impose the Dirichlet
boundary condition on an arbitrary space direction in BCFT′

c=25, say Y ≡ X25, along which the
solution does not change. Because of the universal structure in the Y -direction, the solution remains
a solution and the coefficients of the Ishibashi states we compute are not affected by the new
Dirichlet boundary conditions.

If we are interested in the energy profile, we have to compute the following generalized Ell-
wood invariants

En ≡−4πi
⟨

E[cc̄∂X0∂̄X0 ei nX
R + nY

R ]
∣∣∣Ψ−ΨTV

⟩
. (4.4)

The n = 0 contribution is the mass of the brane configuration, normalized to 1 for a single lower
dimensional D-brane; it is the coefficient of the Ishibashi state of the zero momentum graviton in
the time-time direction. In terms of the momenta En, the energy density profile can be defined as a
simple Fourier series

E(x)≡ T 00(x) =
1

πR

(
1
2

E0 +
∞

∑
n=1

En cos
nx
R

)
. (4.5)

If a solution describes a lower dimensional brane sitting at x = 0, its energy density profile should
be given by

E(x) = δ (x) =
1

πR

(
1
2
+

∞

∑
n=1

cos
nx
R

)
. (4.6)

Thus an exact lump solution sitting at x = 0 will be characterized by

En = 1, ∀n = 0, ...,∞ (Exact Lump). (4.7)

To compute these quantities we have used the conservation laws for the Ellwood Invariants, first
derived in [27, 22], and we got the profile 4.1a. To compare we plot the approximants of the delta
function 1

πR

(1
2 +∑N

n=1 cos n
R x
)

for N = 1,2,3, see figure 4.1b. It is also interesting to qualitatively
compare with the known open-string-tachyon profile (given by ∑n tn cos n

R x, see figure 4.2). It
is apparent that in the ‘closed-string’ profile of figure 4.1 the higher harmonics play an essential
role in localizing it to zero width, while this does not happen in the open string profile. This is a

9
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Figure 4.2: Traditional open string tachyon profile of the Siegel-gauge-lump: higher harmonics are sup-
pressed in the Fock space and the open string profile is essentially unchanged as we increase the level.

consequence of the geometry of the identity string field, which effectively dresses the tachyon coef-

ficients tn with 4
n2

R2 thus amplifying the effect of higher harmonics. As it often happens, subleading
contributions in the Fock space can have important sizable effects in observables.

Since our method worked well with a known solution, let us consider a more interesting so-
lution, a multiple brane configuration, recently studied in [28]. The interest here is to show how
our gauge invariant expression for the energy density can be used to measure the distance between
the lower dimensional branes described by the solution. Suppose we have a solution Ψa describing
two D-branes on a circle of radius R, symmetric around the origin and at a distance a(2πR) from
each other. The energy of the solution will be given by

E0 = 2, (4.8)

meaning that we have two lower dimensional branes. But how does the number a show up in the
En’s? The exact profile of a double lump configuration with separation a(2πR), centered around
πR, is given by

E(a)(x) = δ
(

x−πR(1−a)
)
+δ
(

x−πR(1+a)
)
=

1
πR

(
1
2

E0 +
∞

∑
n=1

En cos
nx
R

)
. (4.9)

Integrating both sides against cos x
R gives∫ 2πR

0
dx cos

( x
R

)
E(a)(x) =−2cos(πa) = E1. (4.10)

Thus, in the case of a two-lump solution, the invariant E1 measures the distance between the two
D-branes

a1 =
1
π

arccos
(
−E1

2

)
. (4.11)

The arc-cosine is defined here in the standard branch arccos(0) = π
2 . The other branches would give

the lengths of all the possible open strings stretching between the branes and wrapping the circle
at the same time. Higher harmonics can also be used to compute the distance, and integrating (4.9)
against cos nx

R we find

En = 2(−1)n cos(nπa). (4.12)

10
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Figure 4.3: Open string tachyon profile of a two-lump solution obtained at R = 2
√

3 and level L = (12,36).

Solving this equation for a requires some care in choosing the correct branch of the arc-cosine.
This must be done in such a way that the distance computed from any En gives the same value a1

as computed from E1. The result can be written as

an = (−1)pn
1

πn
arccos

(
(−1)n En

2

)
+

2
[

pn+1
2

]
n

, n > 1 (4.13)

where [x] stands for integer part and the integer pn is uniquely chosen such that

pn

n
< a1 <

pn +1
n

,

Clearly for the exact solution Ψa we should have

an = a ≡ Distance, ∀n ≥ 1, (4.14)

which is a quite nontrivial constraint between the various En, which will be only approximatively
satisfied at finite level. For generic multiple lump solutions, the relative distances between the
various D-branes can be computed from the En invariants along similar lines. Let us look at a
particular example. At level (12, 36) we selected a double lump solution obtained at R = 2

√
3

which displays the open string tachyon profile shown in figure 4.3. Starting form the coefficients of
the numerical solution we can compute the En invariants and hence the distance at which the lower
dimensional branes sit. Statistical treatment of the data (every harmonic gives an approximated
distance, and all of them are statistically consistent, so that we can appropriately average between
them, see [3] for details) gives

a∗ = 0.299±0.001, (4.15)

Since we are ‘measuring’ a modulus of a BCFT in an unknown point of its moduli space via an
approximate OSFT solution, we do not have a given value to compare with, but to appreciate
to what extent a∗ ∼ 0.3 is consistent with the distance between the two D-branes described by
the solution, we plot the energy profile of the solution including up to 6th harmonic against the
corresponding truncation of a sum of two delta functions, at distance a = 0.3, see figure 4.4.
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Figure 4.4: Plot of 1
πR

( 1
2 E0 +∑m

n=1 En cos nx
R

)
, in blue line, against the corresponding truncation of a sum

of two delta functions, in magenta line, at a separation ā∗ = 0.3, for m = 4 (left) and m = 6 (right). Here
R = 2

√
3 and the coefficients are obtained at level L = (12,36). Notice how the profile of the truncated

solution displays a slightly bigger effective distance than the ‘exact’ , extrapolated one, as if the lumps were
getting closer by increasing the level.

5. Conclusions

Making precise the relation between OSFT solutions and conformal boundary conditions is an
important issue which gives a new perspective on the interplay between open and closed strings.
In this talk, I have proposed a simple prescription which, under some natural assumptions, allows
to compute the boundary state associated to a given OSFT solution, in a fairly simple way. The
construction is gauge invariant and in all known cases it reproduces the expected boundary state.
Quite importantly, the method is so simple that it allows to simply handle a large class of numerical
solutions. In the future, it would be important to clarify some points

• Our construction starts with an appropriate definition of a lifted solution. Although in all
known analytic and numerical examples we have today at our disposal, it is fairly obvious
how to find such a lifted solution, it would be desirable to have a universal constructive
procedure to systematically get a lifted solution (the simplest?) from a completely general
given one. This would be needed, for example, for numerical D–instantons solutions.

• It would be interesting to make contact with the existing construction of the OSFT boundary
state by Kiermaier, Okawa and Zwiebach, (KOZ) [29]. In particular it would be instructive
to explore possible inter-relations in the construction of a generic lifted solution and the KOZ
approach to the boundary state.

• The coefficients of the Ishibashi states should obey very constraining relations known as
Cardy and sewing conditions, see e.g. [30]. It is amazing that all known OSFT solutions give
rise to boundary states which are consistent with this ‘quantum’ constraints. This suggests
that the topological structure of the space of OSFT solutions somehow knows about modular
invariance and open-closed factorization, although the theory is formulated on world sheets
with the disk topology.

Understanding these issues will be useful to get quantitative and precise informations on the
way string field theory describe the landscape and it will shed light on its hidden background
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independence. Perhaps not too optimistically, we are not so far to understand how closed string
dynamics can be described with open string degrees of freedom, and thus to get a new powerful
microscopic window in the gauge-gravity duality.
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