
P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
0
8

Magnetized Branes and the Six-Torus

Luca De Angelis
Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli, Italy
E-mail: luca.deangelis@na.infn.it

Raffaele Marotta∗
Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, Complesso Universitario di Monte S.
Angelo ed. 6, via Cintia, 80126 Napoli, Italy
E-mail: raffaele.marotta@na.infn.it

Franco Pezzella
Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, Complesso Universitario di Monte S.
Angelo ed. 6, via Cintia, 80126 Napoli, Italy
E-mail: franco.pezzella@na.infn.it

Raffaele Troise†

Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II” , Complesso
Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli, Italy
E-mail: troise.raffaele@gmail.com

In the framework of Type IIB String Theory compactified on a general six-torus T 6 with arbitrary
complex structure, Yukawa couplings are determined for the chiral matter described by open
strings ending on D9-branes having different oblique magnetization.

Proceedings of the Corfu Summer Institute 2012 “School and Workshops on Elementary Particle Physics
and Gravity”
September 8-27, 2012
Corfu, Greece

∗Speaker.
†XXIII Ciclo di Dottorato in Fisica Fondamentale e Applicata

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:luca.deangelis@na.infn.it
mailto:raffaele.marotta@na.infn.it
mailto:franco.pezzella@na.infn.it
mailto:troise.raffaele@gmail.com


P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
0
8
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1. Introduction

Many new ideas and tools have been introduced in the last years in order to connect the ten-
dimensional Superstring Theory to the four-dimensional Standard Model. This is the goal of the
so-called String Phenomenology which in fact studies how the (beyond) Standard Model physics
could be obtained as a low-energy limit of String Theory [1, 2, 3].

In orientifolds of Type II String Theory, the main ingredients that String Phenomenology uses
for achieving its aim are Dp-branes together with the compactification of the extra dimensions and
the derivation of chiral spinors. In particular, the gauge groups of the Standard Model are localized
in the world-volume of suitable configurations of Dp-branes and the chiral matter can be introduced
by “dressing” the compact directions with magnetic fields [4, 5, 6, 7, 8, 9]. The open strings ending
on different piles of branes with different magnetizations are named dy-charged or twisted strings
and they exactly describe the chiral matter of the low-energy theory.

In order to promote magnetized branes in a compact space as vacua interesting for the String
Phenomenology, one needs to have information about the low-energy effective actions living in the
world-volume of such configurations of branes [10, 11, 12]. These actions are model dependent
and a particular interest, especially after the Higgs discovery, is focused on the determination of the
Yukawa couplings and their dependence on the details of the compact manifold, i.e. moduli and
geometry of the extra dimensions. Yukawa couplings in Type II brane-world scenario arise from an
overlap integral of wave-functions of the three participant fields in the extra dimensions. The wave-
functions, depending on the Bose-Fermi statistics of the fields, are solutions of the internal Laplace-
Beltrami or Dirac equation with suitable boundary conditions dictated by the compact geometry
and by the presence of the magnetic fields. In the bottom-up approach one usually neglects the
global aspects of the compactification and solves these equations locally. However, for the simplest
compact manifold, the factorized torus, the boundary conditions imposed by the magnetized torus
geometry have exactly determined the holomorphic part of the Yukawa couplings that turns out to
be proportional to the Jacobi θ -function [13, 14, 15, 16, 17]. The global properties of the compact
manifold are then important to fix the complete structure of the effective actions and it results to
be interesting to compute such couplings in the case of non factorized geometries as the one of the
torus T 6 with arbitrary complex structure.

In this talk - which is based on the paper of ref. [18] - these couplings are studied in a con-
figuration of M D9-branes in the background R1,3×T 6. In the same spirit as the one of ref. [13]
(see also [16, 19]), constant magnetic fields are turned on, along the compact directions, in the
abelian sector of the U(M) gauge group defined on the world-volume of the M branes. Depend-
ing on the choice of such constant fields, the single stack of branes is now separated in different
piles of magnetized branes. The ten-dimensional N = 1 super Yang-Mills theory living in the
world-volume of a stack of D9-branes is dimensionally reduced to four dimensions by expanding
the ten-dimensional bosonic or fermionic fields in a basis of eigenfunctions of the internal Laplace
or Dirac operator. The eigenfunctions of these operators have to be invariant, up to gauge trans-
formations, when translated along the one-cycles of the torus. They are easily determined in the
complex frame where both the metric and the difference Fab = Fa−Fb of the magnetic fields
on the two piles a and b of branes between which the strings are stretched, are diagonal matrices
in their off-diagonal boxes. In this frame, supersymmetry has been also partially imposed by re-
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quiring the field Fab to be a (1,1)-form in the coordinate system defining the complex torus. The
wave-functions of twisted open strings turn out to be proportional to the Riemann Theta function
only when the background gauge field, in the original system of coordinates defining the torus, is
a matrix with null diagonal blocks. They depend on the first Chern class Iab associated with the
difference of the gauge fields on the a and b branes and on a generalized complex structure that is
a matrix whose entries are related to the original complex structure of the torus or to its complex
conjugate, depending on the signs of the eigenvalues of the non-vanishing blocks of the gauge field
Fab.

The Yukawa couplings are obtained by evaluating an overlap integral over three of such func-
tions. The integral is computed after using an identity between the product of two Riemann θ -
functions. The identity has been derived in refs. [18, 20] by extending the analysis given in ref.
[21] and here revised. The resulting expression is compatible with the known results obtained un-
der different assumptions [22, 20]; the non trivial and holomorphic part of these couplings, the
Riemann θ -function, is again determined by the boundary conditions due to the geometry of the
magnetized torus. Here holomorphicity means, as in the factorized case, that the θ -function can
never depend on a variable and its complex conjugate, although the argument of such a function can
be either holomorphic or antiholomorphic along different directions. These properties are related
to the signs of the first Chern classes evaluated along the corresponding compactified directions of
the torus.

The paper is organized as follows.
In section 2, generalities about dimensional reduction and magnetic fluxes are given. In section

3, the bosonic and fermionic wave-functions for the lowest states are derived together with the mass
spectrum of the Kaluza-Klein states. In section 4, the Yukawa couplings for a general magnetized
six-torus T 6 are computed. Finally, in the appendix details about the proof of an identity involving
the product of two wave-functions are given.

2. Open Fluxes and Torus Geometry

A configuration made of a stack of M D9-branes in the compact background R1,3×T 6 is going
to be studied in this paper. Branes backreaction on the space-time geometry is neglected and the
analysis is focused on the open string degrees of freedom. Their interaction with the closed string
degrees of freedom is described by the supersymmetric DBI and by the Chern-Simons actions. In
the following, attention will be drawn to the low-energy limit of the DBI action which, for this
particular brane configuration, is the ten-dimensional N = 1 super Yang-Mills with gauge group
U(M):

S =
1
g2

∫
d10X N̂ Tr

(
− 1

4
FM̂N̂F M̂N̂ +

i
2

λ̄Γ
M̂DM̂λ

)
(2.1)

where M̂, N̂ = 0, . . . ,9, g2 = 4πeφ10(2π
√

α ′)6 and

FM̂N̂ = ∇M̂AN̂−∇N̂AM̂− i[AM̂,AN̂ ] ; DM̂λ = ∇M̂λ − i[AM̂,λ ]

with λ being a ten-dimensional Weyl-Majorana spinor. Chiral matter is introduced by turning on
magnetic fields with constant field strength along the compact directions of the world-volume of
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Na branes, with ∑
n
a=1 Na = M. The integer n labels the branes having different magnetization. The

original gauge group is then broken into the product U(M) ' ∏
n
a=1U(Na) and this breaking can

be used to engineer the gauge groups of the Standard Model. The chiral matter is given by the
twisted open strings charged with respect two of these groups and transforms in the bifundamen-
tal representation of the gauge group U(Na)×U(Nb). In the following, the complete breaking
U(M) 'U(1)M is considered, but the extension to other gauge configurations is straightforward.
The breaking is realized by first separating the generators Ua of the Cartan subalgebra from the
ones out of it, eab, in the definitions of the gauge field and of the gaugino:

AM̂ = BM̂ +WM̂ = Ba
M̂Ua +W ab

M̂ eab ; λ = χ +Ψ = χ
aUa +Ψ

abeab

and then expanding the Lagrangian around the background fields which are present only along the
compact directions in T 6 of the branes:

Ba
M(xµ ,XN) = 〈Ba

M〉(XN)+δBa
M(xµ ,XN)

W ab
M (xµ ,XN) = 0+Φ

ab
M (xµ ,XN) . (2.2)

Here µ = 0, . . . ,3 and M,N = 1, . . . ,6. The fields Ba
M and Φab

M are, respectively, adjoint and chiral
scalars, from the point of view of the four-dimensional Lorentz group. The background fields 〈Ba

M〉
are taken with a constant field strength corresponding to the background constant magnetic fields
along the compact dimensions. In particular, the gauge

〈Ba
M〉(XN) =−1

2
Fa

MNXN

is chosen.
The four-dimensional effective action is obtained by compactifying the extra dimensions on

the torus T 6, defined by imposing the identification

xm ≡ xm +2πR(m)
1 mm

1 ; ym ≡ ym +2π R(m)
2 mm

2 mm
1 , mm

2 ∈ Z

on the space-time coordinates (xm, ym)≡ (X2m−1, X2m) (m = 1,2,3), being R(m)
1 and R(m)

2 the radii
of the torus along the direction m. In the following, in order to compare the string with the field
theory results, it is convenient to use the following rescaling:

(xm,ym)→

(
xm R(m)

1
R

, ym R(m)
2

R

)
,

with R being an arbitrary dimensionful parameter, and then to define the torus geometry through
the identification:

xm ≡ xm +2πRmm
1 ; ym ≡ ym +2π Rmm

2 .

The description of the torus as a complex manifold is based on the introduction of the coordinates:

wm =
xm +Um

n yn

2πR

4
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together with their complex conjugate variables. Here, U is a complex matrix parametrizing the
complex structure of the manifold. The lattice identification is given by

wm ≡ wm +mm
1 +Um

n mn
2 .

The twisted sectors of the theory, as previously discussed, are present because a background mag-
netic field Fab = Fa−Fb acts on the world-volume of two piles of branes a and b. In the system
of complex coordinates it takes the following form [18]:

Fab =−(2πR)2

8
F(W W )ab

MN dW M ∧dW N (2.3)

with (W 1, . . . ,W 6)≡ (w1, . . . ,w3, w̄1, . . . w̄3) and

F(ww)ab = (ImU−1)t
[
Ū t F(xx)abŪ−Ū tF(xy)ab +F(xy)abtŪ +F(yy)ab

]
ImU−1

F(ww̄)ab = (ImU−1)t
[
−Ū tF(xx)abU +Ū tF(xy)ab−F(xy)abtU−F(yy)ab

]
ImU−1

while F(w̄w)ab = [F(ww̄)ab]∗ and F(ww)ab = [F(w̄w̄)ab]∗; furthermore the index t denotes the trans-
posed of the matrices it refers to. Supersymmetric configurations require the gauge field to be a
(1,1)-form. Imposing such constraint necessarily makes iF(ww̄) an Hermitian matrix [20] which is
diagonalized by an unitary matrix C̄−1

ab :

(C−1
ab )

m
r F(w,w̄)ab

mn̄ (C̄−1
ab )

n̄
s̄ =

2
i

λ ab
r

(2πR)2 δrs̄ .

Here, r,s = 1, . . .3 and, since C̄−1
ab is an unitary matrix, one has (C−1

ab )
m
rhmn̄(C̄−1

ab )
n̄
s̄ = δrs where hmn̄

refers to the metric of the complex torus which can also be written in terms of the holomorphic and
anti-holomorphic vielbeins: hmn̄ = er

m̄δrs̄ēs̄
n̄. Complex coordinates having a trivial metric can now

be introduced by defining: wr = er
mwm together with their complex conjugate.

The diagonalization naturally introduces a new system of complex coordinates (Z 1
ab, . . . ,Z

6
ab)=

(z1
ab, . . . ,z

3
ab, z̄1

ab, . . . , z̄
3
ab), defined by

wm =
(
C−1

ab

)m
r zr

ab ; w̄m =
(
C̄−1

ab

)s̄
r̄ z̄r

ab .

In this frame both the metric and the field strengths of the gauge field are diagonal matrices in the
non-vanishing blocks, being the metric equal to:

ds2

(2πR)2 =
1
2

dZ I
ab GIJ dZ J

ab ; G =

(
0 I
I 0

)
while the magnetic field strength is

Fab =
1
2

F(Z Z )ab
IJ dZ I

ab∧dZ J
ab ; F(Z Z )ab

IJ =
i
2

(
0 I ab

λ

−I ab
λ

0

)
(2.4)

with

I ab
λ

= diag
(

λ
ab
1 . . .λ ab

d

)
and I,J = 1, . . . ,6 denote the flat indices.
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3. The Wave-Functions.

The quadratic terms in the scalar fields of the four-dimensional action, derived in detail in ref.
[13], see also [15, 16], are obtained by starting from eq. (2.1) and expanding the fields, defined in
the second line of eq. (2.2), in a basis of eigenfunctions of the internal Laplace-Beltrami operator:

−D̃ND̃N
φ

ab
M (XN) = m2

M φ
ab
M (XN) ; Φ

ab
M = ∑

M

ϕ
ab
M,M (xµ)⊗φ

ab
M (XN)

with suitable boundary conditions determined by the torus geometry. Here, the covariant derivative
depends only on the constant background gauge fields

D̃Nφ
ab
M = ∂Nφ

ab
M − i(〈Ba

N〉−〈Bb
N〉)φ ab

M .

The mass spectrum of the Kaluza-Klein states is easily determined in the system of the Z -coordinates.
In such a frame the mass operator is [18]:[

M2
M

]ab ≡ diag (m̃2ab
M I − 2 I ab

λ
, m̃2ab

M I+ 2 I ab
λ
)

with m̃ab
M = 2πR mab

M while, due to the block diagonal expression of the background gauge field,
the commutation relations [D̃(Z )

I , D̃(Z )
J ] =−iFIJ of the covariant derivatives reduce to the algebra

of decoupled creation and annihilation bosonic operators. This identification depends on the signs
of the eigenvalues λr, being for positive λr

1:

a†
r =

√
2
|λr|

i D̃(Z )
r ; ar =

√
2
|λr|

iD̃(Z )
r+d (3.1)

with the role of the creation and annihilation operators exchanged for negative λr. In both cases
one has [ar, a†

r ] = 1 and the Laplace equation becomes

3

∑
r=1
|λr|(2Nr +1)φM = m̃2

M φM ; Nr = a†
r ar .

The eigenvalues of the mass operator result to be:

M2
±;s =

3

∑
r=1
|λr|(2Nr +1)∓2λs . (3.2)

The lightest state is massless if the N = 1 susy condition |λr|+ |λs|= |λt | (r 6= s 6= t) is imposed.
Then, by applying creation operators on the massless state, two towers of Kaluza-Klein states
are generated. Their spectrum, when the N = 1 susy condition is imposed, is contained in the
expression:

M2
k = 2

3

∑
r=1
|λr|(Nr + k) ; k = 0, 1 . (3.3)

1In this analyis the a,b labels are omitted when possible.

6



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
0
8

Magnetized Branes and the Six-Torus Raffaele Marotta

The eigenfunctions relative to the ground state are obtained by solving the first order differential
equation

arφ0 = 0 ∀r ⇔
(

∂

∂ z̄r +
1
4
|λr|zr

)
φ0 = 0

where the complex coordinates (z1, . . . ,z3, z̄1 . . . , z̄3), with

zr = zr(
1+ sign(λr)

2
)+ z̄r(

1− sign(λr)

2
) = (C(λ ))r

m

(
xm +Ωm

nyn

2πR

)
, (3.4)

have been introduced in order to take into account that the identification between the covariant
derivatives and the creations or annihilations operators depends on the signs of the eigenvalues λr.
In eq. (3.4)

C(λ )r
=

(
1+ sign(λr)

2

)
Cr +

(
1− sign(λr)

2

)
C̄r = C̄(−λ )r

C̃(λ )r =

(
1+ sign(λr)

2

)
CrU +

(
1− sign(λr)

2

)
C̄rŪ = ¯̃C

(−λ )r
(3.5)

and Ω = (C(λ ))−1C̃(λ ) is named the generalized complex structure because, when all the λrs have
the same sign, it coincides with the complex structure of the torus or its complex conjugate.

The wave-function of the ground state is:

φ0 = e−
1
4
~̄zt
|Iλ |~z+ 1

4
~zt

C(λ )−t
C̄(λ ) t |Iλ |~zθ(~z) (3.6)

where (Z1, . . . ,Z6) ≡ (z1, . . . ,z3, z̄1 . . . , z̄3) and with θ(~z) being an holomorphic function of the
coordinates which is determined by the boundary conditions. It is interesting to notice that the
wave-function (3.6), when rewritten in the original system of coordinates Z I = (zr, z̄r), may de-
pend on both the holomorphic and anti-holomorphic variables. However, it never simultaneously
depends on a variable and its complex conjugate, i.e. on zr and z̄r (same r) and, therefore θ is an
holomorphic function of the complex coordinates.

Boundary conditions are dictated by the transformation properties of the scalar fields under the
torus translations [23, 24]. The behavior of the vector potential A(z)

r under the lattice translations

A(z)
r (z̄+C̄(λ )

η(s))≡ A(z)
r (z̄)+∂rχ

(1)
(s) ; A(z)

r (z̄+C̄(λ )
Ωη(s))≡ A(z)

r (z̄)+∂rχ
(2)
(s)

defines the corresponding gauge transformations

χ
(1)
(s) = − i

4
zr|λr|(C̄(λ ))r

nη
n
(s)+

i
4

z̄r|λr|(C(λ ))r
nη

n
(s)

χ
(2)
(s) = − i

4
zr|λr|(C̄(λ ))r

m Ω̄
n
m η

n
(s)+

i
4

z̄r|λr|(C(λ ))r
m Ω

m
nη

n
(s)

with η t
(s) = (

s times︷ ︸︸ ︷
0, . . . ,0,1,0, . . .). The holomorphic function appearing in the definition of the ground

state is determined by imposing the identifications

φ0(~z+C(λ )
η(s),~̄z+C̄(λ )

η(s)) = eiχ(1)
(s) φ0(~z,~̄z)

φ0(~z+C(λ )
Ωη(s),~̄z+C̄(λ )

Ω̄η(s)) = eiχ(2)
(s) φ0(~z,~̄z). (3.7)

7
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The full wave-function of the ground state, in the real coordinates system and in the case F(xx) =

F(yy) = 0, is

φ0 ≡ φ
ab
Ωab;~j(x

m, ym) = Nab e
i~yt Iab

(2πR)2
~x+i~yt Ωt

ab
Itab

(2πR)2
~y

∑
~n∈Zd

eiπ(~n+~j)t IabΩab(~n+~j)+2iπ(~n+~j)t Iab(
~x+Ωab~y

2πR ) (3.8)

where the overall constant Nab =
√

2gV−1/2
T 2d [det(IabImΩab)]

1/4 is fixed by requiring canonical
normalization for the kinetic terms of the scalars. Here, VT 2d is the torus volume and I = 2π R2F(xy)t .

The wave-function (3.8) can be easily compared with the corresponding expression given in
ref. [20] for the torus T 4. The two expressions coincide if the generalized complex structure
here introduced is identified with the modular matrix iΩ̂ defined in that reference. It can also be
compared with the one given for the chiral scalars in the case of the factorized torus (T 2)d[14] and
the two coincide when eq. (3.8) is specified for this peculiar factorized geometry.

The wave function for the four-dimensional fermions is the solution of the internal Dirac equa-
tion:

γ
M
(6)D̃Mη

ab
n = mnη

ab
n , (3.9)

being mn the mass of nth-level of the Kaluza-Klein tower and γM
(6) are the six-dimensional Dirac

matrices. In analogy with the dimensional reduction of the bosonic kinetic terms, the eigenfunc-
tion problem of the Dirac equation is solved in the complex frame Z where both the metric and
the magnetic background are diagonal matrices in the non-vanishing off-diagonal blocks. In this
complex frame, the Clifford algebra becomes:{

γ
Z r

, γ
Z̄ s
}
= 4δ

rs

with all the other anti-commutators vanishing. This algebra is the usual one of fermion creation and
annihilation operators and the gamma-matrices can be identified with such operators. According
to the identifications (3.1), the massless state living in the kernel of the Dirac equation is obtained
by defining a factorized vacuum η0( ~Z , ~Z̄ ) = u0 ⊗ φ0( ~Z , ~Z̄ ). Here, u0 is a constant six-
dimensional spinor and φ0 is a function of the internal coordinates, both vanishing under the action
respectively of all the fermionic and bosonic annihilation operators

D(Z̄ )
r φ0( ~Z , ~Z̄ ) = 0 ; γ

Z r

(6) u0 = 0 for λr > 0

D(Z )
r φ0( ~Z , ~Z̄ ) = 0 ; γ

Z̄ r

(6) u0 = 0 for λr < 0 (3.10)

together with the boundary conditions given in eq. (3.7). The solution of eq. (3.10) is then obtained
by assuming φ0 to be the wave-function in eq. (3.8) and by defining u0 = γZ r

χ0 for positive
eigenvalues λr and u0 = γZ̄ r

χ0 for negative eigenvalues, being χ0 an arbitrary eight-component
constant spinor.

The whole spectrum of the Kaluza-Klein fermions is obtained, according to the standard pro-
cedure, by squaring eq. (3.9):

−
(

γ
Z I

(6) DZ
I γ

Z J

(6) DZ
J

)
ηn =

3

∑
r=1

(
|λr|(2Nr +1)− 1

4

[
γ

Zr

(6), γ
Z̄r

(6)

]
|λr|
)

ηn

= (2πR)2m2
nηn , (3.11)

8



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
0
8

Magnetized Branes and the Six-Torus Raffaele Marotta

where the bosonic number operator, defined in the previous sections, has been introduced and the
expression of the background gauge field given in eq. (2.4) is used.

The vacuum state shown in eq. (3.10) satisfies the previous equation with m = 0 and, applying
on it an arbitrary number of bosonic oscillators

(a†
1)

N1 (a†
2)

N2 (a†
3)

N3
3

∏
r=1

γ
Zr

χ0⊗φ~j(
~Z, ~̄Z) ,

a set of Kaluza-Klein states are generated with masses

m2 =
2

(2πR)2

3

∑
r=1
|λr|Nr.

The next levels in the fermion Fock space, satisfying eq. (3.11), are obtained by applying one
fermion creation operator and an arbitrary number of bosonic creation operators:

(a†
1)

N1 (a†
2)

N2 (a†
3)

N3γ
Z̄k

3

∏
r=1

γ
Zr

χ0⊗φ~j(
~Z, ~̄Z) k = 1,2,3.

A tower of KK states is generated with masses given by:

m2
k =

1
(2πR)2

3

∑
r=1
|λr|(2Nr)+2

|λk|
(2πR)2 k = 1,2,3 .

Other KK towers are obtained by acting on the vacuum with two or three fermion creation oscilla-
tors and an arbitrary number of bosonic oscillators

(a†
1)

N1 (a†
2)

N2 (a†
3)

N3γ
Z̄k

γ
Z̄l

η0 ; (a†
1)

N1 (a†
2)

N2 (a†
3)

N3
3

∏
k=1

γ
Z̄k

η0

with k, l = 1,2,3. These are three and one tower of massive states having respectively the same and
opposite chirality of the vacuum [18]. Their mass spectrum is given by:

m2
k,l =

2
(2πR)2

3

∑
r=1
|λr|Nr +2

|λk|+ |λl|
(2πR)2 ; m2 =

2
(2πR)2

3

∑
r=1
|λr|(Nr +1) .

All the mass formulas can be collected in a more concise relation by introducing the fermion
number operator N f

r = 0,1 and by writing

m2
n =

2
(2πR)2

3

∑
r=1
|λr|(Nr +N f

r ) .

The mass of the Kaluza-Klein fermions coincides with the one given in eq. (3.3) valid when the
susy condition |λr|+ |λs|= |λt | (r 6= s 6= t) is imposed showing the consistency and accuracy of the
dimensional reduction procedure.

The wave-functions of the chiral matter are derived in the background dependent system of
complex coordinates Zab where the off-diagonal blocks of the background magnetic fields are di-
agonal. By definition, in each of these frames a wave-function is associated with the corresponding

9
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dy-charged sector of the theory. The calculation of the effective actions demands the evaluation
of overlap integrals among three or more of these functions. It is therefore necessary to re-express
such states in terms of quantities defined in a unique system of coordinates as the wms. In this
frame one has:

η0(~w, ~̄w) =
3

∏
r=1

(
Cr

s
(1+ signλr)

2
γ

ws
+C̄r

s
(1− signλr)

2
γ

w̄s
)

χ0⊗φ
Ω;~j(~w, ~̄w)

where Cs
r ,C̄

r
s are the inverse matrices of the ones defined in eq. (3.5) and φ

Ω;~j is a scalar function
of the coordinates. It is defined in eq. (3.8) in terms of the real variables (xm, ym) and the relation
among these coordinates and the complex ones is given in sect. 2. By using these relations it is
straightforward to re-write the expression of the wave-function in the complex frame, however the
calculus of the Yukawa couplings will be performed in the real system of coordinates and therefore
it is not necessary to give a such expression here.

4. Yukawa Couplings

The Yukawa couplings are obtained by considering the trilinear couplings, involving one bo-
son and two fermions, of the ten-dimensional N = 1 SYM action reduced to four dimensions
according to the Kaluza-Klein compactification procedure outlined in the previous section. In refs.
[13, 15, 16] this dimensional reduction is studied in great detail; here we just quote the result:

SΦ
3 =

1
2g2

∫
d4x
√

G4

∫
d6XN

√
G6ψ̄

ca
0 (xµ)γ

5
(4)

[
ϕ

ab
i,0(x

µ)ψ
bc
0 (xµ)⊗ (ηac

0 )†(xn,yn)

× γ
i
(6)φ

ab
Ωab;~j1

(xn,yn)ηbc
0 (xn,yn)−ϕ

bc
i,m(x

µ)ψ
ab
0 (xµ)⊗ (ηac

0 )†(xn,yn)γ i
(6)φ

bc
Ωbc;~j2

(xn,yn)ηab
0 (xn,yn)

]
(4.1)

where ψ0 is the massless fermion ground state. ϕ0, instead, is the lightest bosonic excitation which
is massless if the supersymmetry condition, given in the text soon after eq. (3.2), is imposed. In
the following, in order to fix notations, we choose λ ab

1 to be positive. So doing, the massless scalar
turns out to be φZ 1 , while with the opposite choice φZ̄ 1 would have been the massless state [18].
In the chosen notations, only the first term in eq. (4.1) contributes to the Yukawa coupling for
massless particles and one is left with the expression

(SΦ
3 )

(1) =
∫

d4x
√

G4ψ̄
ca
0 γ

5
(4)ϕ

ab
Z 1,0 ψ

bc
0 Y~j1~j2~j3

with the Yukawa coupling constants, in the string frame, given by

Y~j1~j2~j3 =
1

2g2

[
(uac

0 )†
γ

Z 1
ab

(6) ubc
0

]
Y

~j1~j2~j3

where

Y
~j1~j2~j3 =

∫
T 6

d3xd3y
√

G6(φ
ac
Ωac;~j3

(xn, yn))†
φ

ab
Ωab;~j1

(xn, yn)φ bc
Ωbc;~j2

(xn, yn) . (4.2)

The integral in eq. (4.2) has been computed in ref. [18]. The calculation is here summarized in the
case in which all the first Chern-classes associated with the three twisted sectors are independent.
When this latter condition is not satisfied there are subtleties that are discussed in ref. [18].

10
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The integral can be performed after using the following identity involving the product of two
wave-functions2:

φ
ab
Ωab;~j1

(xm, ym) φ
bc
Ωbc;~j2

(xm, ym) = Nab Nbc e
iπ~xt

(
Iab+Ibc
(2πR)2

)
~y+iπ~yt

(
Iab Ωab+Ibc Ωbc

(2πR)2

)
~y

× ∑
(~l3,~l4) ∈ Z3

~m ∈ Z̃ac

∑
~p ∈ Zbc

~q ∈ Zab

e
iπ~l

′t Q′~l
′
+2πi~l

′t Q′

~y
0

+2πi~l
′t I ′

~x
0


(4.3)

with

Q′ =

(
IabΩab + IbcΩbc (Ωt

ab−Ωt
bc)α

t

α(Ωab−Ωbc) α(ΩabI−t
ab +ΩbcI−t

bc )α
t

)
; I ′ =

(
Iab + Ibc (Iab I−t

ab − Ibc I−t
bc )α

t

0 α(I−t
ab + I−t

bc )α
t

)
,

and

~l
′t = (~l

′t
1 ,~l

′t
2 ) =

(
(~jt1Iab +~jt2Ibc +~mtIab)(Iab + Ibc)

−1 +~l t
3;

(~jt1−~jt2 +~mt)
(
I−1
ab + I−1

bc

)−1
α
−1 +~p t Ibc

det[Ibc]
+~q t Iab

det[Iab]
+~l t

4

)
. (4.4)

The parameter α is chosen in such a way to make the matrix α(I−1
ab + I−1

bc ) integer. This request is
fundamental in order to obtain the identity written in eq. (4.3). The choice α = det[IabIbc]I satisfies
this requirement [20]. The indices of the two summations need some explanation. Let us denote
by Z3

(I−1
ab +I−1

bc )α
the set of equivalence classes obtained by identifying the elements of Z3 under the

shift ~n→~n+~t (I−1
ab + I−1

bc )α , with~t,~n ∈ Z3. A subset of Z3
(I−1

ab +I−1
bc )α

is obtained by considering

the integer vectors lying within a cell generated by~eidet[Iab]I−1
ab ,(i = 1,2,3) being~ei defined in the

appendix [20]. This subset is denoted by Zab. Zbc is defined by exchanging Iab with Ibc. Finally:

Z̃ac = Z3
(I−1

ab +I−1
bc )α
\ (Zbc∪Zab).

The proof of the identity written in eq. (4.3) is outlined in the appendix. More details are given in
refs [18, 20].

The integral over the~x variable can be easily performed giving:

Y
~j1~j2~j3 =

√
G6 DNab Nbc Nca ∑

~l3,~l4∈Z3
∑

~p∈Zbc

∑
~q∈Zab

FΩ,I(~l3,~l4)eiπ~l
′t
2 Π ~l

′
2

where

Π = α
(
(ΩabI−t

ab +ΩbcI−t
bc )− (Ωab−Ωbc)(IcaΩca + IabΩab + IbcΩbc)

−1(Ωab−Ωbc)
t)

α
−t (4.5)

and

D ≡ ∑
~m∈Z̃

(I−1
ab +I−1

bc )α

δ(~jt1 Iab+~jt2 Ibc+~mt Iab)(Iab+Ibc)−1;~jt3
.

2In this paper by respect the ref.[18] a different notation for the indices of the summation is used. The correspon-
dence among the two sets of symbols is: Zab ≡ Z3

det[Iab]I−1
ab

, Zbc ≡ Z3
det[Ibc]I−1

bc
and Z̃ac = Z̃(I−1

ab +I−1
bc )α

11
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The last integral to be computed is contained in the definition of the following function:

FΩ,I(~l3,~l4)≡
∫ 1

0
d3ye−π[~̃y

t
+~l
′t

1 +~l
′t

2 Q′21t A−1](−iA)[~̃y+~l
′

1 +A−1Q′21t~l
′

2 ]

with Q′21 = α(Ωab−Ωbc). The integral is convergent and, after having evaluated it, one has the
expression [18]

Y
~j1~j2~j3 =

∫
d3xd3y

√
G6φ

ca
Ωca;~j1

∗
φ

ab
Ωab;~j1

φ
bc
Ωbc;~j2

= NabNbcNca
√

G6 D

× [det(−i(IcaΩca + IabΩab + IbcΩbc))]
−1/2

∑
~p∈Zbc

∑
~q∈Zab

Θ

[
α−tIt

bc(
~j3−~j2)+

It
bc

detIt
bc
~p+ It

ab
detIbc

~̃p

0

]
(0|Π).

that simplifies when all the differences of magnetic fields living on the various stacks of magnetized
branes are independent but commuting. In this approximation, an analogous string calculus of the
Yukawa couplings has been performed in ref. [22]. In this case the quantity α(I−1

ab + I−1
bc ) can be

made an integer matrix by choosing α = IabIbc and the product of two wave-functions is still equal
to eq. (4.3) specialized with this value of α and without the sums over the vectors ~p and ~q. The
overlap integral over the three wave-functions is now:

Y
~j1~j2~j3 =

∫
d3xd3y

√
G6φ

ca
Ωca;~j1

∗
φ

ab
Ωab;~j1

φ
bc
Ωbc;~j2

= NabNbcNca
√

G6 D

× [det(−i(IcaΩca + IabΩab + IbcΩbc))]
−1/2

Θ

[
I−t
ab (

~j3−~j2)
0

]
(0|Π)

with Π given by the eq. (4.5) specialized to the value α = IabIbc.
In conclusion, the field theory approach is a very efficient tool in determining the low-energy

effective actions supported in the world-volume of magnetized branes. These coefficients and, in
particular, the holomorphic part of the Yukawa couplings strongly depend on the global aspects of
the internal manifold as one has explicitly shown in the case of compactifications on the torus T 6.
It would be interesting to extend this approach to models where few global quantities are explicitly
computed. In this respect, models coming from compactification of F-theory are a good arena for
this kind of analysis.

A. Appendix

It is useful to give here the proof of eq. (4.3) involving the product of two wave-functions.
According to ref. [21] such a product can be written concisely as follows:

φ
ab
Ωab;~j1

(xm, ym)φ
bc
Ωbc,~j2

(xm, ym) = Nab Nbc e
iπ~yt

(
Itab+Itbc
(2π R)2

)
~x+iπ~yt

(
Iab Ωab+Ibc Ωbc

(2π R)2

)
~y

× ∑
~l∈Z2d

eiπ~lt Q~l+2πi~lt Q ~Y
2π R+2πi~ltI

~X
2π R

being Q = diag(IabΩab, IbcΩbc), I = diag(Iab, Ibc) and

~l =

(
~n1 +~j1
~n2 +~j2

)
; X =

(
~x
~x

)
; Y =

(
~y
~y

)
.

12
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An equivalent representation of the product of two Riemann Theta functions is obtained by intro-
ducing the following transformation matrix [20]:

T =

(
I I

αI−1
ab −αI−1

bc

)
; T−1 =

(
(I−1

ab + I−1
bc )−1I−1

bc (I−1
ab + I−1

bc )−1α−1

(I−1
ab + I−1

bc )−1I−1
ab −(I

−1
ab + I−1

bc )−1α−1

)
acting as (see also the relation before eq.s (4.4)):

Q′ = T QT t ; I ′ = T I T t .

We introduce also the vector:

~l′ t ≡~l tT−1 =
(
(~n1 +~j1)t(I−1

ab + I−1
bc )−1I−1

bc +(~n2 +~j2)t(I−1
ab + I−1

bc )−1I−1
ab ;

(~n1 +~j1)t(I−1
ab + I−1

bc )−1
α
−1− (~n2 +~j2)t(I−1

ab + I−1
bc )−1

α
−1
)
.

By using the following identity:(
I−1
ab + I−1

bc

)−1
= Ibc (Iab + Ibc)

−1 Iab = Iab (Iab + Ibc)
−1 Ibc ,

one can write [18] (
~nt

1 Iab +~nt
2 Ibc
)
(Iab + Ibc)

−1 = ~mt
1 (Iab + Ibc)

−1 +~lt
3(

~nt
1−~nt

2
)

Iab (Iab + Ibc)
−1 Ibcα

−1 = ~mt
2
(
I−1
ab + I−1

bc

)−1
α
−1 +~lt

4 (A.1)

where~l3,~l4 ∈ Z3, ~m1 and ~m2 are suitable integer vectors, while α has to be fixed in such a way that
the matrix α

(
I−1
ab + I−1

bc

)
has integer entries. In the following, we will choose α = det [IabIbc]I [20]

which indeed satisfies the above mentioned constraint. By writing ~m1 = mi
1~ei, with

~et
i = (

i times︷ ︸︸ ︷
0, . . . ,0,1,0, . . .) ,

the lattice with basis vectors ~ei (Iab + Ibc) is introduced and, in it, the equivalent points are those
which change~l3 by integer values, because this quantity is summed over all the possible elements
of Z3.

Z3
(Iab+Ibc)

is the set of equivalent classes obtained by identifying the elements of Z3 under the

shift ~m1+~kt (Iab + Ibc) (∀~k ∈Z3). Inequivalent values of ~m1 lie in the cell determined by the vectors
~ei (Iab + Ibc) and their number is |det[Iab + Ibc]|. Analogously, the number of inequivalent values of
~m2 ∈ Z3

(I−1
ab +I−1

bc )α
is |det[I−1

ab + I−1
bc ]α|.

From eqs. (A.1), it is straightforward to obtain the identities:

~nt
1 = (~mt

1 +~mt
2Ibc)(Iab + Ibc)

−1 +~l t
3 +~l t

4αI−1
ab

~nt
2 = (~mt

1−~mt
2Iab)(Iab + Ibc)

−1 +~l3−~l4αI−1
bc

which are consistent if both αI−1
ab and αI−1

bc are integer matrices. This latter request is indeed
satisfied by the choice α = det[Iab Ibc]I. Moreover, one has also to impose

~mt
1 +~mt

2Ibc =~kt(Iab + Ibc) ; ~mt
1−~mt

2Iab =~kt
1(Iab + Ibc)

13
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with~k and~k1 elements of Z3. The solution of the last two equations is

~mt
1 = ~mt

2Iab +~kt
1(Iab + Ibc) . (A.2)

The correspondence between ~m1 and ~m2 is not one-to-one since the number of the inequivalent
values of ~m2 is bigger than the one of inequivalent ~m1. Following ref. [20], one can replace:

~mt
2 = ~̃m

t
2 +~ptdet[Iab](Iab + Ibc)I−1

ab +~qt det[Ibc](Iab + Ibc)I−1
bc

and the second line of eq. (A.1) becomes:(
~nt

1−~nt
2
)

Iab (Iab + Ibc)
−1 Ibcα

−1 = ~̃m
t
2
(
I−1
ab + I−1

bc

)−1
α
−1 +~p t Ibc

detIbc

+ ~q t Iab

detIab
+~l t

4. (A.3)

From eq. (A.3) one can easily see that shifting ~p→ ~p+~k(det[Ibc])[Ibc]
−1 for all~k ∈ Z3 corre-

sponds to add~k to~l4, providing equivalent values of ~p since~l4 is summed over all possible integer
vectors . The set of inequivalent ~p is denoted by Zbc and its number is |det(det[Ibc]I−1

bc )|. A similar
definiton holds for ~q ∈ Zab and the dimension of this set results to be |det(det[Iab]Iab)

−1|. Con-
sequently, the number of inequivalent ~̃m2s is |det[Iab + Ibc]| which now matches with the one of
inequivalent ~m1.

By starting from eq. (A.3) and repeating the same manipulations which have led to eq. (A.2),
one has that this latter equation remains unchanged but with ~m2 replaced by ~̃m2. The solution of
eq. (A.2) is now unique and one gets the expression of~l′ given in eq. (4.4) with ~m ≡ ~̃m2. After
collecting all the results, one derives the identity written in eq. (4.3).

When Iab and Ibc commute, the quantities α(I−1
ab + I−1

bc ) can be made an integer matrix with the
choice α = IabIbc. Eqs. (A.1) become:(

~nt
1 Iab +~nt

2 Ibc
)
(Iab + Ibc)

−1 = ~mt
1 (Iab + Ibc)

−1 +~lt
3(

~nt
1−~nt

2
)
(Iab + Ibc)

−1 = ~mt
2 (Iab + Ibc)

−1 +~lt
4.

with ~m1,~m2 ∈ Z3
(Iab+Ibc)

. In this case there is no need to introduce the vectors ~p and ~q and one can
trivially impose eq. (A.2).
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