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1. Introduction

Baryon configurations were first suggested in the context of the AdS/CFT [1] correspondence
in [2, 3]. The gravitational dual of a bound state of N static external quarks in N = 4 SYM, the
so-called baryon vertex, was found in terms of a D5-brane wrapping the S5 part of the spacetime
geometry [2]. If the D5-brane is point-like in the AdS5 space, its Chern–Simons (CS) action is
a tadpole term which can be canceled if we introduce Chan–Paton factors for N-strings, whose
endpoints at the boundary of AdS represent the N external quarks. The classical solution corre-
sponding to this configuration was found in [4, 5] using a generalization of the techniques in [6]
for the heavy quark-antiquark system. In this approach the influence of the F-strings has to be con-
sidered in order to analyze the stability of the baryon vertex in the holographic AdS direction. The
energy of the system is then inversely proportional to the distance between the quarks and since the
proportionality constant is negative the configuration is stable in the AdS direction.

The description in [4, 5] suffices to deduce the basic properties of the system. However strictly
speaking it is only valid when the endpoints of the N F-strings are uniformly distributed on the S5,
so that the latter is not deformed and the probe brane approximation holds. In this approximation
all supersymmetries are broken, and this results in a non-vanishing binding energy. In order to have
some supersymmetries preserved all strings should end on a point, and then the deformation caused
by their tensions and charges should be taken into account. Incorporating the gauge field on the
brane the binding energy becomes zero, reflecting the fact that the configuration is supersymmetric
[7].

The usual baryon refers to a bound state of N-quarks which form the completely antisymmet-
ric representation of SU(N). In the holographic description however it is possible to construct a
bound state of k-quarks with k < N. The bound state consists of a D5 or D3-brane wrapping the
internal space1 located in the bulk, k strings stretched between the brane and the boundary of AdS
representing the quarks, and N− k straight strings that go from the D5 or D3 brane deeper in the
bulk to a minimum distance. The bound on how low can the k number go depends on a no-force
condition along the AdS direction, and a priori seems to be affected by the geometry of both the
internal and the AdS spaces. In the AdS5×S5 background k should satisfy 5N/8 < k 6 N [4, 5]. A
stability analysis against fluctuations shows that the configurations are stable for a more restricted
number of quarks 0.813N 6 k 6 N [8]. An interesting question is what happens to the bound
when the supersymmetry is reduced or the conformal invariance is broken and more particularly
if confinement is present. A physical expectation would be that at least the lower bound should
increase. One of the motivations of [9] was precisely to investigate the bound dependence on the
supersymmetry and confinement properties of the gauge theory.

Baryon vertex configurations in AdS5×T 1,1 [10] and AdS5×Y p,q [11, 12, 13] geometries have
been considered in [14] and [15], respectively. Using the full DBI description it has been shown
that they are non-supersymmetric. General properties of baryons in the Klebanov-Strassler [16]
and Maldacena-Nuñez [17] models have also been discussed in [18] (see also [19, 20]). In these
confining backgrounds the baryon is also non-supersymmetric and is significantly different than in
the previous cases, with an energy linearly proportional to its size.

1A submanifold of it in the case of the D3-brane.
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In the paper [9] we analyzed the dynamics of non-singlet baryons in some of these back-
grounds in the probe brane approach. We showed that stable configurations exist with non-zero
binding energy as long as the number of quarks k satisfies kmin < k 6 N. The value of kmin = 5N/8
for all AdS5×Y5 backgrounds with Y5 an Einstein manifold bearing five-form flux. A stability
analysis confirms that the configurations are stable for a number of quarks 0.813N 6 k 6 N, again
the same interval found for the AdS5× S5 background [8]. These findings seem to contradict our
expectations that non-singlet states should be more constrained in theories with reduced super-
symmetry. Rather, their existence seems to be quite universal and independent on the amount of
supersymmetries preserved. The same analysis for the N = 1 Maldacena-Nuñez background [17]
confirms that non-singlet holographic baryons also exist in confining theories. However broken
conformal invariance and more particularly confinement increases the minimum number of quarks.

More general baryon vertex configurations with a non-vanishing magnetic flux have been sug-
gested as a first step towards accessing the finite ’t Hooft coupling region in the dual CFT [21, 22].
Indeed, showing that these configurations exist for finite λ is of special interest when they are not
BPS. Allowing for a non-trivial magnetic flux has the effect of adding lower dimensional brane
charges to the configuration. This in turn hints at the existence of a microscopical description
in terms of non-Abelian lower dimensional branes expanding into the baryon vertex by means of
Myers dielectric effect [23]. This description allows to explore the configuration in the region
R << n1/(r−p) ls, where p is the dimensionality and n the number of expanding branes and r the
dimensionality of the resulting expanded brane, and is therefore complementary to the supergrav-
ity description in terms of probe branes. Thus it is a first step towards exploring the finite ’t Hooft
coupling region of the dual CFT from the gravity side.

In these proceedings we summarize some of the main results in [9]. We start in section 2
with a brief review of the holographic description of baryon vertices and their stability under small
fluctuations for a general class of backgrounds. In section 3 we use these results to study the dy-
namics of the baryon vertex in AdS5×Y5, with Y5 an Einstein manifold bearing five-form flux. We
particularize to the AdS5×Y p,q and AdS5×T 1,1 geometries, where we switch on a non-vanishing
magnetic flux suitable for the microscopical description of the T 1,1 in section 5. In section 4 we
analyze the Maldacena-Nuñez background, where we confirm the existence of non-singlet baryons
for a more constrained interval for k due to confinement. We show that in this case the stability
requirement does not reduce the allowed interval. In section 5 we perform the microscopical anal-
ysis, in terms of D1 or D3-branes, depending on the background. We identify the CS couplings
responsible for the F-string tadpoles of the configurations. In section 6 we summarize our results
and discuss further directions.

2. The holographic baryon vertex construction

In this section we review the holographic description of baryons in the general class of back-
grounds presented in [8], as well as the study of their stability against small fluctuations. The
first part generalizes the construction in [4, 5] to non-conformal cases like the Maldacena-Nuñez
background that we will discuss in section 4.

We consider diagonal metrics of Lorentzian signature of the form

ds2 = Gttdt2 +Gxx(dx2 +dy2 +dz2)+Gρρdρ
2 +R2dM2

p , (2.1)
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Figure 1: A baryon configuration with k-external quarks placed on a spherical shell of radius L at the
boundary of AdS space, each connected to the wrapped Dp-brane located at ρ = ρ0 and N − k straight
strings ending at ρmin.

where x,y and z denote cyclic coordinates and ρ denotes the radial direction playing the role of an
energy scale in the dual gauge theory. It extends from the UV at ρ → ∞ down to the IR at some
minimum value ρmin determined by the geometry.
It is convenient to introduce the functions

f (ρ) =−GttGxx , g(ρ) =−GttGρρ , h(ρ) = GxxGρρ , (2.2)

which for AdS5×M5 with radii R read

f (ρ) = ρ
4 , g(ρ) = 1 , h(ρ) = 1 . (2.3)

As we have mentioned, a non-singlet baryon is described holographically in terms of a Dp-
brane wrapping the internal manifold Mp with k fundamental strings connecting it to the boundary
at ρ → ∞. The remaining N− k straight strings go from the Dp-brane straight up at ρmin. The
binding potential energy of the baryon is then given by e−iET = eiScl , where Scl is the classical
action of the holographic baryon. This action consists of three terms, the Nambu–Goto action for
the strings stretching from the baryon vertex to the boundary at ρ → ∞, the Nambu–Goto action
for the straight strings stretching between the brane and ρmin and the Dirac–Born–Infeld action for
the Dp-brane

SF1 =−
1

2π

∫
dτdσ

√
−detP(Gαβ ) ,

SDBI
Dp =−Tp

∫
R×Mp

dp+1
ξ
√
−detP(Gab +2πFab−Bab) ,

where F is the Born-Infeld field strength.
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We first fix reparametrization invariance for each string by choosing

t = τ , ρ = σ . (2.4)

For static solutions we consider the embedding of the S2–sphere on the D3–brane in spherical
coordinates (r,θ ,φ)

r = r(ρ) , (θ ,φ) = const. , (2.5)

plus Mp–angles = const., supplemented by the boundary condition

ρ (L) = ∞ . (2.6)

Then, the Nambu–Goto action for the strings stretching from the baryon vertex to the boundary of
AdS reads

S =− T
2π

∫
∞

ρ0

dρ

√
g(ρ)+ f (ρ)r′2 , (2.7)

where T denotes time and the prime denotes a derivative with respect to ρ . From the Euler–
Lagrange equations of motion we obtain

f r′cl√
g+ f r′2cl

= f 1/2
1 =⇒ r′cl =

√
f1F
f

, (2.8)

where ρ1 is the value of ρ at the turning point of each string, f1 ≡ f (ρ1), f0 ≡ f (ρ0) and

F =
g f

f − f1
. (2.9)

The N− k strings which extend from the baryon vertex to ρ = ρmin are straight, since r′ = 0 is a
solution of the equations of motion (with f1 = 0) and satisfies the boundary condition at the vertex.
Integrating (2.8) we can express the radius of the spherical shell as

L =
√

f1

∫
∞

ρ0

dρ

√
F
f

. (2.10)

Next we fix the reparametrization invariance for the wrapped Dp-brane by choosing

t = τ , θa = σα , α = 1,2, . . . , p . (2.11)

Finally, inserting the solution for r′cl into (2.7) and subtracting the divergent energy of its
constituents we can write the binding energy of the baryon as

E =
k

2π

{∫
∞

ρ0

dρ
√

F−
∫

∞

ρmin

dρ
√

g+
1−a

a

∫
ρ0

ρmin

dρ
√

g +
2π

aN
EDp

∣∣∣∣
ρ=ρ0

}
, (2.12)

where

a≡ k
N

, 0 < a 6 1 . (2.13)
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The expressions for the length and the energy, (2.10) and (2.12), depend on the arbitrary parameter
ρ1 which should be expressed in terms of the baryon vertex position ρ0. The most convenient way
to find this is to impose that the net force at the baryon vertex is zero [24, 8]

cosΘ =
1−a

a
+

2π

aN
1
√

g
∂ρEDp

∣∣∣∣
ρ=ρ0

, (2.14)

cosΘ =
√

1− f1/ f0 ,

where Θ is the angle between each of the k-strings and the ρ-axis at the baryon vertex, which de-
termines ρ1 in terms of ρ0. An alternative derivation of this expression can be found by demanding
that the physical length (2.10) does not depend on the arbitrary parameter ρ1, in other words

∂L
∂ρ1

= 0 =⇒ ∂ρ0

∂ρ1
=

f ′1
2tanΘ

√
f0

g0 f1

∫
∞

ρ0

dρ

√
g f

( f − f1)3/2 . (2.15)

Minimizing the energy (2.12) with respect to ρ1 and using (2.15) we find the no-force condition
(2.14). Using (2.10), (2.12) and (2.14) it is also possible to see that

dE
dρ0

=
k
√

f1

2π

dL
dρ0

(2.16)

which will be useful when we study the Maldacena-Nuñez background.
As we will see in the examples to follow, (2.14) has a solution for a parametric region of

(a,ρ0). However, in order to isolate parametric regions of physical interest a stability analysis of
the classical solution should be performed, which further restricts the allowed region. We know
from [8] that instabilities can only emerge from longitudinal fluctuations of the k strings, since only
these possess a non-divergent zero mode, which is a sign of instability. To study the fluctuations
about the classical solution the embedding should be perturbed according to

r = rcl +δ r(ρ) , (2.17)

and the Nambu-Goto action should be expanded to quadratic order in the fluctuations. δ r is then
solved from the equation

d
dρ

( g f
F3/2

d
dρ

)
δ r = 0 (2.18)

This has to be supplemented with the boundary condition for the δ r fluctuations, given by equation
(3.12) in [8]

2( f − f1)δ r′+δ r
(

2 f ′− f ′

f
f1−

g′

g
( f − f1)

)
= 0 at ρ = ρ0 (2.19)

As we will see in the examples to follow these conditions further restrict the parametric region
(a,ρ0) for which a classical non-singlet baryon solution exists.
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3. The baryon vertex in AdS5×Y5 manifolds

The holographic description of the baryon vertex in AdS5×Y5 backgrounds with Y5 an Einstein
manifold bearing five-form flux is identical, in the probe brane approximation, to that in AdS5×S5

[4, 5]. Therefore non-singlet states exist for the same number of fundamental strings 5N/8< k 6N.
Spike solutions associated to the baryon vertices in the AdS5×Y p,q and AdS5×T 1,1 geometries
have been discussed in [15] and [14], where it has been shown that they break all the supersymme-
tries. Therefore we are certain that the bound states found in the probe brane approximation will
not become marginal due to supersymmetry once the backreaction is taken into account. In these
two geometries we will switch on a magnetic flux that will dissolve D1 and D3-brane charges in the
configuration. The vertex will then be described at finite ’t Hooft coupling in terms of D1-branes
expanding into a fuzzy S2× S2 submanifold of the T 1,1 for the Klebanov-Witten background and
D3-branes expanding into a fuzzy S2 submanifold of the Y p,q for the Sasaki-Einstein. The detailed
microscopical analysis of the first configuration is performed in section 5. The details of the second
configuration can be found in [9].

3.1 The D5-brane baryon vertex

In our conventions the AdS5×Y5 metric reads

ds2 =
ρ2

R2 dx2
1,3 +

R2

ρ2 dρ
2 +R2ds2

Y5
, (3.1)

with R the radius of curvature in string units,

R4 =
4π4Ngs

Vol(Y5)
. (3.2)

The AdS5×Y5 flux is given by F5 = (1+?10)F5, where

F5 = 4R4 dVol(Y5) . (3.3)

A D5-brane wrapping the whole Y5 captures the F5 flux, and it requires the addition of N
fundamental strings to cancel the tadpole

SCS
D5 = 2π T5

∫
R×Y5

P[C4]∧F =−2π T5

∫
R×Y5

P[F5]∧A =−N
∫

dtAt , (3.4)

where A is the Born-Infeld vector field. The DBI action is in turn given by

SDBI
D5 =−T5

∫
R×Y5

d6
ξ e−φ

√
−detP(G) =−T N

8π
ρ0 . (3.5)

3.1.1 Classical solution

Given that the energy of the D5-brane is independent of the volume of the Einstein manifold
the classical solution in the probe brane approximation is the one found in [4, 5] for AdS5× S5.
Making contact with the analysis in the previous section we now have

−Gtt = Gxx = G−1
ρρ =

ρ2

R2 . (3.6)

7
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The radius and the energy are then given in terms of the position of the D5-brane ρ0 and the turning
point ρ1 of each string, as

L =
R2ρ2

1

3ρ3
0

I , E =
kρ0

2π

(
−J +

5−4a
4a

)
, (3.7)

with I , J the hypergeometric functions

I = 2F1

(
1
2
,
3
4
,
7
4

;
r4

1

r4
0

)
, J = 2F1

(
−1

4
,
1
2
,
3
4

;
r4

1

r4
0

)
, (3.8)

exactly as in AdS5×S5. From (2.14) we find that the no-force condition on the ρ-axis yields

ρ1 = ρ0(1−λ
2)1/4 , λ =

5−4a
4a

, a≡ k
N

. (3.9)

Given that λ < 1 a baryon configuration exists for a > a< with a< = 5
8 Finally, the binding energy

in terms of the physical length of the baryon reads

E =− R2

2πL
k
√

1−λ 2

3

(
J − 5−4a

4a

)
I . (3.10)

Thus it has both the expected behavior with 1/L dictated by conformal invariance and the non-
analyticity of square-root branch cut type in the ’t Hooft parameter [6, 4, 22]. We would also like
to point out that our string and brane configurations satisfy the Sasaki-Einstein constrains in the
way studied in [25] and therefore our solutions are in this sense valid.

3.1.2 Stability analysis

Again as in AdS5×S5 [8] the study of the stability against longitudinal fluctuations gives

δ r(ρ) = A
∫

∞

ρ

dρ
ρ2

(ρ4−ρ4
1 )

3/2 =
A

3ρ3 2F1

(
3
4
,
3
2
,
7
4

;
ρ4

1
ρ4

)
(3.11)

as the solution of equation (2.18). Substituting (3.9) and (3.11) in the boundary equation (2.19) the
following transcendental equation must be satisfied

2F1

(
3
4
,
3
2
,
7
4

;1−λ
2
)
=

3
2λ (1+λ 2)

. (3.12)

Using (3.9) and (3.12) a critical value for a is found numerically, a ' 0.813 , below which the
system becomes unstable.

The conclusion of this analysis is that in the probe brane approximation non-singlet baryons
with 0.813 < k 6 N may exist for all Einstein internal manifolds bearing five-form flux. In the next
subsection we take the internal manifold to be Sasaki-Einstein and we switch on an instantonic
magnetic flux proportional to the Kähler form. The T 1,1 and S5 cases will be treated as particular
examples, taking due care of the different periodicities. The energy of the D5-brane will depend
then on both the magnetic flux and the radius of AdS, and the same calculation above shows that
non-singlet states exist as long as the number of quarks is larger than a minimum value that depends
now on the volume of the Y p,q. In fact the largest minimum value is reached for the S5, contrary to
our expectations that non-singlet baryons would be more restricted in less supersymmetric back-
grounds. We review some basic facts about the geometry of Y p,q manifolds suitable for this study
in the Appendix.
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3.2 The baryon vertex in AdS5×Y p,q with magnetic flux

Let us take the AdS5×Y p,q geometry and add a magnetic flux

F = N J , (3.13)

with J the Kähler form of the 4 dimensional Kähler-Einstein submanifold of the Y p,q, which solves
the equations of motion. As compared to the analysis in the previous subsection the presence of
the magnetic flux will turn the parametric region for which a classical solution exists to depend on
(a,ρ0,N ).
For a non-vanishing F as above the energy of the D5-brane wrapped on the Y p,q is modified
according to

ED5 =
N
8π

ρ0

(
1+

4π2N 2

R4

)
(3.14)

where we have used (A.11), and the fact that J is self-dual and the determinant inside the square
root is a perfect square.
This magnetic flux dissolves irrational D1-brane charge in the Y p,q, as inferred from the coupling

SCS
D5 =

1
2
(2π)2T5

∫
R×Y p,q

C2∧F ∧F =
N 2

8
q2[2p+(4p2−3q2)1/2]

p2[3q2−2p2 + p(4p2−3q2)1/2]
T1

∫
R×S1

ψ

C2 (3.15)

This implies that the configuration will not allow a complementary description in terms of D1-
branes expanding into a fuzzy 4 dimensional submanifold of the Y p,q. We showed however that it
is possible to provide such a description in terms of D3-branes expanding into a fuzzy 2-sphere sub-
manifold of the Y p,q [9]. In this case the magnetic flux that needs to be switched on is proportional
to the Kähler form on the S2.

In the T 1,1 case (see Appendix A.2 for a brief discussion of the T 1,1 geometry) our ansatz
(3.13) dissolves N 2/9 D1-brane charge in the T 1,1, as implied by

SCS
D5 =

1
2
(2π)2T5

∫
R×T 1,1

C2∧F ∧F =
N 2

9
T1

∫
R×S1

ψ

C2 (3.16)

where we have used the second condition in (A.18). But in this case N 2/9 is an integer due
to Dirac quantization condition plus the first equation in (A.18). In this case a microscopical
description in terms of expanding D1-branes makes sense, as we show explicitly in section 5.

Note that in fact for the T 1,1 we can take a more general ansatz for the magnetic flux, namely
F = N1 J1 + N2 J2, with J1, J2 the Kähler forms on each of the S2’s contained in the T 1,1. In this
case the magnetic flux is dissolving N1/3 and N2/3 D3-brane charge in each S2, and N1N2/9
D1-brane charge in S2×S2, as inferred from the couplings

SCS
D5 = 2π T5

∫
R×T 1,1

C4∧F =
N1

3
T2

∫
R×S1

ψ×S2
2

C4 +
N2

3
T2

∫
R×S1

ψ×S1
2

C4 (3.17)

and
SCS

D5 =
1
2
(2π)2T5

∫
R×T 1,1

C2∧F ∧F =
N1N2

9
T1

∫
R×S1

ψ

C2 . (3.18)

9
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Therefore N1,N2 ∈ 3Z, in agreement with Dirac quantization condition, as implied from (A.18).
In this case the energy of the D5 is modified according to

ED5 =
N
8π

ρ0

√
1+

4π2N 2
1

R4

√
1+

4π2N 2
2

R4 . (3.19)

Coming back to the general case for Y p,q manifolds, F = N J, with J the Kähler form of
the 4 dimensional Kähler-Einstein submanifold of the Y p,q, from (2.14) we find that the no-force
condition on the ρ-axis yields

ρ1 = ρ0(1−λ
2
eff)

1/4 , λeff =
5−4aeff

4aeff
, (3.20)

where aeff includes now the magnetic flux

aeff ≡
a

1+ 4π2N 2

5R4

. (3.21)

Given that λeff < 1 a baryon configuration exists for

aeff > a< with a< =
5
8
+

π2N 2

2R4 . (3.22)

In terms of the volume of the Y p,q this reads

a< =
5
8
+

N 2

8π2 N
Vol(Y p,q) , (3.23)

so the bound depends now on the volume of the internal manifold. The largest volume given
by the Y p,q metrics occurs for the Y 2,1, for which Vol(Y 2,1) ≈ 0.29π3. Therefore we have that
π3 = Vol(S5) > 16/27π3 = Vol(T 1,1) > Vol(Y 2,1) and a< is maximum for the S5, the maximally
supersymmetric case. Note that since aeff 6 1 there is also a bound on the instanton number, namely

a< 6 1 ⇒ N 2

R4 6
3

4π2 ' 0.0761 . (3.24)

Finally, the binding energy in terms of the physical length of the baryon reads

E =− R2

2πL

k
√

1−λ 2
eff

3

(
J − 5−4aeff

4aeff

)
I . (3.25)

3.2.1 Stability analysis

The study of the stability against longitudinal fluctuations gives again δ r(ρ) as in (3.11) where
now 2F1(a,b,c;x) must satisfy [8]

2F1

(
3
4
,
3
2
,
7
4

;1−λ
2
eff

)
=

3
2λeff(1+λ 2

eff)
. (3.26)

The critical value for aeff that is found numerically is again aeff ' 0.813 , below which the system
becomes unstable. This improves the above bound for the instanton number, in comparison to the
’t Hooft coupling, to

N 2

R4 . 0.00291 , (3.27)

that should be respected for the classical configuration not only to exist, but also to be perturbatively
stable. Thus, the stability analysis sets a low bound for a which is still less than unity.

10
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4. The baryon vertex in the Maldacena–Nuñez background

The Maldacena-Nuñez background [17] is a solution to Type IIB supergravity dual to a N = 1
supersymmetric confining gauge theory. It can be obtained as a solution of seven dimensional
gauged supergravity [26], uplifted to ten dimensions. Given that this background is confining we
expect that the universality of the baryon vertex configurations found in the previous conformal
examples (in the absence of a magnetic flux) is lost. This is indeed confirmed by the analysis in
this section.

4.1 The Maldacena–Nuñez background

The ten-dimensional metric reads in the string frame

ds2
10 = eφ

[
dx2

1,3 +gsN
(

e2h (dθ
2
1 + sin2

θ1dφ
2
1
)
+ dρ

2 +
1
4
(wi−Ai)2

)]
, (4.1)

where φ is the dilaton, h is a function of the radial coordinate ρ , the one-forms Ai (i= 1,2,3) are the
components of the non-abelian gauge vector field of the seven-dimensional gauged supergravity,

A1 = −a(ρ)dθ1 , A2 = a(ρ)sinθ1dφ1 , A3 = −cosθ1dφ1 , (4.2)

and the wi’s are the right-invariant Maurer-Cartan dreibeins of SU(2), satisfying dwi =−1
2 εi jk w j∧

wk. They define a three-sphere that can be parameterized as

w1 = cosψ dθ2 + sinψ sinθ2 dφ2 , (4.3)

w2 = −sinψ dθ2 + cosψ sinθ2 dφ2 ,

w3 = dψ + cosθ2 dφ2 .

The angles θα ,φα ,α = 1,2 and ψ take values in the intervals θi ∈ [0,π], φi ∈ [0,2π] and ψ ∈ [0,4π].
The functions a(ρ), h(ρ) and the dilaton φ(ρ) are given by

a(ρ) =
2ρ

sinh2ρ
, e2h = ρ coth2ρ − ρ2

sinh2 2ρ
− 1

4
, (4.4)

e2φ = e−2φ0
sinh2ρ

2eh ≡ e−2φ0Λ(ρ) , e2φ0 = gsN . (4.5)

In particular, Λ(ρ) satisfies

Λ(ρ)' e2ρ

4
√

ρ
, when ρ � 1 (4.6)

and

Λ(ρ)' 1+
8ρ2

9
+O(ρ4) , when ρ � 1 . (4.7)

The solution also includes a Ramond-Ramond three-form given by

F3 =
gsN

4

{
−
(

w1−A1 )∧ (w2−A2 )∧ (w3−A3 ) + ∑
i

F i∧
(

wi−Ai )} , (4.8)

where F i is the field strength of the SU(2) gauge field Ai, defined as F i ≡ dAi + 1
2 εi jk A j ∧Ak.

11
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4.2 The D3-brane baryon vertex

A D3-brane wrapping the 3-sphere parameterized by (θ2,φ2,ψ) introduces a tadpole that needs
to be canceled through the addition of N fundamental strings

SCS
D3 = 2π T3

∫
R×S3

C2∧F =−2π T3

∫
R×S3

F3∧A =−N
∫

dt At . (4.9)

The DBI action of this D3-brane is given by:

SDBI
D3 = −T3

∫
R×S3

d4
ξ e−φ

√
−detP(G) =−T N

4π

√
Λ(ρ0) . (4.10)

Particularizing to this background the size of the vertex given by (2.10) we find

L =
√

gsN
∫

∞

ρ0

dρ√
Λ(ρ)/Λ(ρ1)−1

, (4.11)

which is a decreasing function of ρ0. The binding energy of the baryon is in turn given by

E =
k

2π

{∫ ∞

ρ0

dρ
Λ(ρ)√

Λ(ρ)−Λ(ρ1)
−
∫

∞

ρmin

dρ
√

Λ(ρ)+
1−a

a

∫
ρ0

ρmin

dρ
√

Λ(ρ)+
1

2a

√
Λ(ρ0)

}
.

(4.12)
Both integrals receive most of their contributions from the region ρ ≈ ρ1 so it can be seen that E is
linearly proportional to L [18]. Also, from (2.16) we see that E and L share the same dependence
on the position of the vertex:

dE
dρ0

=
k
√

Λ1

2π
√

gsN
dL
dρ0

. (4.13)

The net-force condition is now

cosΘ =
1−a

a
+

1
4a

∂ρ lnΛ(ρ)

∣∣∣∣
ρ=ρ0

, cosΘ =

√
1− Λ1

Λ0
. (4.14)

Taking into account that ∂ρ lnΛ(ρ) satisfies ∂ρ lnΛ(ρ). 2−1/(2ρ)+O(1/ρ2) in the UV we find
that a> a< with a< = 3/4. Therefore the minimum value of the number of quarks is restricted with
respect to the one found in the previous conformal examples, in agreement with our expectations.

4.2.1 Stability analysis

The study of the stability against longitudinal fluctuations gives

δ r(ρ) = AgsN
∫

∞

ρ

dρ
Λ

(Λ−Λ1)3/2 , (4.15)

as the solution to equation (2.18). Substituting in the boundary equation (2.19) we find

2(Λ−Λ1)δ r′+Λ
′(ρ)δ r = 0 at ρ = ρ0 , (4.16)

and using (4.14) we can write

a(cosΘ+
a−1

a
)cosΘ Z =

1
2

(4.17)
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where

Z ≡
√

Λ0

∫
∞

ρ0

dρ
Λ

(Λ−Λ1)3/2 , and Λ1 = Λ0 sin2
Θ . (4.18)

From (4.17) we can now solve for a. Note that using (2.15) we find that

∂ρ0

∂ρ1
=

1
2
Z cosΘ ∂ρ lnΛ(ρ)|ρ=ρ1 (4.19)

from where

Z cosΘ =
2

∂ρ0 lnΛ(ρ0)
∈ [1,∞) . (4.20)

From (4.17) and (4.19) we then find a>
1
2
+

1
4Z cosθ

=⇒ a>
1
2
+

∂ρ0 lnΛ(ρ0)

8
. Thus, the stability

analysis does not improve the bound imposed by the existence of a classical solution, in contrast to
what happened in the conformal examples previously discussed.

4.2.2 Adding a magnetic flux

Finally, in order to compare with the microscopical analysis in section 5.2 we add a magnetic
flux to the baryon proportional to the Kähler form on the 2-sphere parameterized by (θ2,φ2), F =

N J, with N ∈ 2Z. This flux dissolves N /2 units of D1-brane charge in the S3. The energy of
the baryon is modified according to

ED3 =
N
4π

√
Λ(ρ0)+

4π2N 2

gsN
. (4.21)

As in the previous cases the magnetic flux changes the minimum bound for the number of quarks
in the baryon. Moreover the flux has an upper bound.

5. The microscopical description

In the previous sections we have discussed generalizations of the baryon vertex constructions
to allow a magnetic flux dissolving lower dimensional brane charge in the configuration. By anal-
ogy with Myers dielectric effect [27, 23] we expect that a complementary description in terms of
lower dimensional branes expanding into fuzzy baryons should then be possible. This would be the
“microscopical” realization of the “macroscopical” baryons with magnetic flux that we have just
described. The interesting thing about the microscopical description is that it allows to explore the
finite ’t Hooft coupling region, and this is especially relevant in those cases in which the baryons
are non-supersymmetric, like those considered in this paper, and are therefore not preserved by a
BPS condition.

It is well known that the macroscopical and microscopical descriptions have complementary
ranges of validity [23]. While the first is valid in the supergravity limit the second is a good
description when the mutual separation of the expanding branes is much smaller than the string
length, such that they can be taken to be coincident and therefore described by the U(n) effective

13
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action constructed by Myers [23]. For n Dq-branes expanded into an r-dimensional manifold of
radius R, the volume per brane can be estimated as Rr−q/n, which must then be much smaller than
lr−q
s . Thus the condition

R << n
1

r−q ls , (5.1)

sets the regime of validity of the microscopical description. The macroscopical description is in
turn valid when R >> 1. Therefore both descriptions are complementary for finite n, but should
agree in the large n limit, where they have a common range of validity. The limit (5.1) is especially
appealing in backgrounds with a CFT dual, like the AdS spacetimes that we have considered in this
paper. Indeed, in terms of the ’t Hooft parameter of the dual CFT the condition (5.1) reads

λ << n
4

r−q . (5.2)

The fact that λ can be finite opens up the possibility of accessing the finite ’t Hooft coupling region
of the dual CFT through the microscopical study of the corresponding dual brane system.

Dielectric branes expanding into fuzzy manifolds have been extensively studied in the liter-
ature. From (5.2) the lower the dimensionality of the expanding branes the smaller the ’t Hooft
parameter can get. However for the manifolds that we have discussed in this paper it will not al-
ways be possible to provide a description in terms of expanding D1-branes. This is the case for
the Y p,q Sasaki-Einstein geometries, in which the natural microscopical description would be in
terms of D1-branes wrapped on the Reeb vector direction and expanding into the remaining four
dimensional Kähler-Einstein manifold. We are however not aware of a fuzzy realization of these
manifolds besides the CP2 case. Moreover, as we have seen, the number of D1-branes in the macro-
scopical description is irrational, while this should be an integer in the microscopical description.
Still, it is possible to provide a (less) microscopical description in terms of D3-branes expanding
into a fuzzy 2-sphere. See [9].

We start in section 5.1 with the analysis of the AdS5×T 1,1 background, for which a description
in terms of D1-branes expanding into a fuzzy S2× S2 manifold can be done. As we will see this
description exactly matches the macroscopical description in section 3.2. The extension to arbitrary
Y p,q manifolds can be found in [9]. We discuss the Maldacena-Nuñez analysis in section 5.2, in
terms of D1-branes expanding into a fuzzy S2 baryon.

5.1 The AdS5×T 1,1 background: D1-branes into fuzzy S2×S2

The DBI action describing the dynamics of n coincident D1-branes is given by [23]

SDBI
nD1 =−T1

∫
d2

ξ STr
{

e−φ

√
|det
(

P[Eµν +Eµi(Q−1−δ )i
jE jkEkν ]

)
detQ|

}
(5.3)

where E = G−B2 and

Qi
j = δ

i
j +

i
2π

[X i,Xk]Ek j . (5.4)

Let us take the D1-branes wrapped on the U(1) fibre direction ψ in (A.16) and expanding into the
fuzzy S2×S2 submanifold parameterized by (θ ,φ) and (ω,ν).

Using Cartesian coordinates for each S2 we can impose the condition

3

∑
i=1

(xi)2 = 1 (5.5)
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at the level of matrices if the X i are taken in the irreducible totally symmetric representation of
order m, with dimension n = m+1,

X i =
1√

m(m+2)
Ji (5.6)

with Ji the generators of SU(2), satisfying [Ji,J j] = 2iεi jkJk. Labeling with m1, m2 the irreps for
each S2 we have that the total number of expanding branes n = (m1 +1)(m2 +1), and substituting
in the DBI action

SDBI
nD1 =−T1

∫
d2

ξ
√
−GttGψψ Str

√
detQ (5.7)

we find

EnD1 =
Nρ0

8π

(m1 +1)(m2 +1)√
m1(m1 +2)m2(m2 +2)

√
1+

36π2m1(m1 +2)
R4

√
1+

36π2m2(m2 +2)
R4 (5.8)

where

detQ =
(

1+
R4

36π2m1(m1 +2)

)(
1+

R4

36π2m2(m2 +2)

)
I (5.9)

and the (m1 +1)(m2 +1) factor comes from computing the symmetrized trace. This expression is
exact in the limit

R >> 1 , m >> 1 , with
R2

m
= finite (5.10)

(see section 5.1 of [28] for the detailed discussion). Taking the large m1, m2 limit we find perfect
match with the macroscopical result given by (3.19) if m1 ∼N1/3, m2 ∼N2/3, in agreement with
(A.18).

5.1.1 The F-strings in the microscopical description

An essential part of the baryon vertex are the fundamental strings that stretch from the Dp-
brane to the boundary of AdS5. As we show in this section they arise from the non-Abelian CS
action.

The CS action for n coincident D1-branes is given by

SCS =
∫

d2
ξ STr

{
P
(

e
i

2π
(iX iX ) ∑

q
Cq e−B2

)
e2πF

}
. (5.11)

In this expression the dependence of the background potentials on the non-Abelian scalars occurs
through the Taylor expansion [29]

Cq(ξ ,X) =Cq(ξ )+Xk
∂kCq(ξ )+

1
2

X lXk
∂l∂kCq(ξ )+ . . . (5.12)

and it is implicit that the pull-backs into the worldline are taken with gauge covariant derivatives
Dξ X µ = ∂ξ X µ + i[Aξ ,X µ ].

The relevant CS couplings in the AdS5×T 1,1 background are

SCS
nD1 =

T1

2π

∫
d2

ξ Str
(

iP[(iX iX)C4]−
1
2

P[(iX iX)2C4]∧F
)

. (5.13)
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Taking into account (5.12) and working in the gauge Aψ = 0 these couplings reduce to

SCS
nD1 =−

1
π

∫
dt Str

[
(iX iX)2ikF5

]
At , (5.14)

where ik denotes the interior product with kµ = δ
µ

ψ and we have integrated out ψ , the spatial
direction of the D1-branes. Taking into account that in Cartesian coordinates F5, as given by
(A.20), reduces to

ikF5 =−
R4

27
fi jm fklnXmXndX i∧dX j ∧dXk∧dX l , (5.15)

where the indices run from 1 to 3 for the first 2-sphere and from 4 to 6 for the second, such that
fi jm = εi jm for i, j,m = 1, . . .3 and i, j,m = 4, . . . ,6 and zero otherwise, we finally find

SCS
nD1 =−N

(m1 +1)(m2 +1)√
m1(m1 +2)m2(m2 +2)

∫
dt At , (5.16)

again in perfect agreement with (3.4) in the large m1,m2 limit.
To finish this section we would like to point out that more general fuzzy realizations of the T 1,1

could in principle be considered. For instance one could think of substituting the direct product of
the two fuzzy 2-spheres by a Moyal-type of product, [X i,X j] = ıθ i j where i = 1, . . .3 refers to the
first 2-sphere and j = 4, . . .6 refers to the second. It is not clear in any case how this would affect
the description of the vertex beyond the supergravity limit.

5.2 The Maldacena–Nuñez background: D1-branes into fuzzy S2

Let us now use the action (5.3) to describe n D1-branes wrapped on the ψ direction and
expanding into the 2-sphere in (4.1) parameterized by (θ2,φ2). The expansion is again on a fuzzy
2-sphere, so we take the same non-commutative ansatz (5.6) as in the previous section. Substituting
in the DBI action we have

SDBI
nD1 =−T1

∫
d2

ξ
√
−GttGψψ Str

√
detQ (5.17)

as in (5.7), with

detQ =
(

1+
gsNΛ(ρ0)

16π2m(m+2)

)
I . (5.18)

The regime of validity of the determinant is again fixed by (5.10). Computing the symmetrized
trace we finally arrive at

EnD1 =
N
4π

m+1√
m(m+2)

√
Λ(ρ0)+

16π2m(m+2)
gsN

, (5.19)

which in the large m limit is in perfect agreement with the macroscopical result (4.21) for m ∼
N /2.

16



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
2
6

Non-singlet baryons Yolanda Lozano

5.2.1 The F-strings

The relevant CS couplings are in this case

SCS
nD1 = T1

∫
Str
(

P[C2]+ iP[(iX iX)C2]∧F
)

(5.20)

which can be rewritten as

SCS
nD1 = 2i

∫
dt STr

[
(iX iX)ikF3

]
At (5.21)

where ik denotes the interior product with kµ = δ
µ

ψ and we have integrated over the ψ direction.
Using that

F3 =−
N
4

εi jkXmdX i∧dX j ∧dψ (5.22)

we get

SCS
nD1 =−N

m+1√
m(m+2)

∫
dtAt (5.23)

in perfect agreement with (4.9) in the large m limit.

The analysis performed in this section shows that the right description for the baryon vertex
(with magnetic flux) at finite ’t Hooft coupling is in terms of D1- or D3-branes expanding into
a S1× (S2× S2)fuzzy D5-brane or S1× S2

fuzzy D3-brane. As we have shown these branes introduce
tadpoles that need to be cancelled with the addition of fundamental strings. A full description of the
D5, or D3, plus F1 system valid at finite ’t Hooft coupling would require however the construction
of fuzzy spikes, so that the α ′ corrections coming from the F-strings would also be taken into
account. See the conclusions for a further discussion on this point.

6. Conclusions

In this paper we have discussed non-singlet baryon vertices in various Type IIB backgrounds in
order to investigate the dependence of the bound imposed on the number of quarks by the existence
and stability of the classical solution, on the supersymmetry and confinement properties of the dual
gauge theory.

Using the probe brane approximation [4, 5, 18] we have shown that this bound is the same for
all AdS5×Y5 backgrounds with Y5 an Einstein manifold bearing five form flux, independently on the
number of supersymmetries preserved. The same result holds true for β -deformed and even non-
supersymmetric multi-β deformed backgrounds (see [9]), pointing at a universal behavior based on
conformality. The same analysis in a confining background, the Maldacena-Nuñez model, shows
that universality is lost when confinement is present. In this case although non-singlet baryons still
exist, the bound imposed on them is more restrictive, in agreement with our expectations that non-
singlet baryons should be more constrained in more realistic gauge theories. It would be interesting
to confirm this result in other confining backgrounds, such as the Klebanov-Strassler [16] or the
Sakai-Sugimoto models [30].

Although the probe brane analysis has proved to be enough in order to deduce the basic prop-
erties of this type of systems (see for instance [6, 4, 5, 18]), the fact that all supersymmetries are
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broken in this approach could imply that it may not be sensitive enough to account for the su-
persymmetries preserved by the different backgrounds. However previous results in the literature
on baryon vertices in AdS5×T 1,1, AdS5×Y p,q and the Klebanov-Strassler and Maldacena-Nuñez
backgrounds reveal that even when all fundamental strings are taken to end on the same point of
the wrapped D-brane supersymmetry is broken. Therefore significant changes to the probe brane
results should not be expected. At any event, the different behaviors based on conformality should
represent valid predictions.

We also note that we would expect the baryon analysis in β -deformed Sasaki–Einstein man-
ifolds to provide similar results to the undeformed case. Our string and brane configurations do
not seem to depend strongly on the deformation in the way encountered in [31], where important
modifications due to the deformation appeared only in the T 3 fibration description.

Using the fact that we can consistently add lower dimensional brane charges we have provided
an alternative description of the baryons in terms of lower dimensional branes expanding into fuzzy
baryon vertices. This description represents a first step towards the analysis of holographic baryons
at finite ’t Hooft coupling. In this description the expansion is caused by a purely gravitational
dielectric effect, while the Chern-Simons terms only indicate the need to introduce the number of
fundamental strings required to cancel the tadpole.

In order to be able to conclude that non-singlet baryons exist at finite ’t Hooft coupling we
should take into account not only the α ′ corrections coming from the microscopical analysis of
the brane but also the α ′ corrections to the F-string Nambu-Goto action and the background. This
is therefore a difficult program, which we have only begun to explore. An interesting next step
in this direction would be to use the microscopical analysis to build up spike solutions in these
backgrounds. We expect to report progress in this direction in the near future.
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A. The AdS5×Y p,q background

In this Appendix we collect some properties of Y p,q manifolds useful for the description of
the baryon vertex in the AdS5×Y p,q background. The Klebanov-Witten background is described
thereof as a particular case2.

2With the well-known subtleties regarding the periodicities.
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A.1 Some properties of the AdS5×Y p,q geometry

In our conventions the AdS5×Y p,q metric reads

ds2 = R2
(

ds2
AdS5

+ds2
Y p,q

)
=

ρ2

R2 dx2
1,3 +

R2

ρ2 dρ
2 +R2ds2

Y p,q , (A.1)

with R the radius of curvature in string units,

R4 =
4π4Ngs

Vol(Y p,q)
. (A.2)

For the Y p,q we use the canonical form of the metric [11], given by:

ds2
Y p,q =

1− cy
6

(dθ
2 + sin2

θdφ
2)+

dy2

w(y)q(y)
+

1
36

w(y)q(y)(dβ + ccosθdφ)2

+
1
9
[dψ + cosθdφ + y(dβ + ccosθdφ)]2 =

= (eθ )2 +(eφ )2 +(ey)2 +(eβ )2 +(eψ)2 , (A.3)

where the fünfbeins read

eθ =

√
1− cy

6
dθ , eφ =

√
1− cy

6
sinθdφ ,

ey =
1√

w(y)q(y)
dy, eβ =

√
w(y)q(y)

6
(dβ + ccosθdφ),

eψ =
1
3
(dψ + cosθdφ + y(dβ + ccosθdφ)) , (A.4)

with

w(y) =
2(a− y2)

1− cy
, q(y) =

a−3y2 +2cy3

a− y2 , (A.5)

and the metric is normalized such that Rαβ = 4Gαβ . The ranges of the coordinates (θ ,φ ,ψ) are
06 θ 6 π , 06 φ 6 2π and 06ψ 6 2π . The parameter a is restricted to 0< a< 1. By choosing this
range the following conditions for y are satisfied: y2 < a, w(y)> 0 and q(y)> 0. The coordinate y
then ranges between the two smaller roots of the cubic equation q(y) = 0, y1 6 y 6 y2. For c 6= 0, y
can always be rescaled such that c = 1 and the parameter a can be written in terms of two coprime
integers p and q as:

a =
1
2
− p2−3q2

4p3

√
4p2−3q2 . (A.6)

In this case

y1 =
1

4p

(
2p−3q−

√
4p2−3q2

)
< 0 , y2 =

1
4p

(
2p+3q−

√
4p2−3q2

)
> 0 . (A.7)

Finally, β ranges between −2π(6l + c)6 β 6 0, where

l =
q

3q2−2p2 + p
√

4p2−3q2
. (A.8)
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Note that β needs not be periodic in general. The volume of the Y p,q can be written in terms of p,q
as

Vol(Y p,q) =
q(2p+

√
4p2−3q2)lπ3

3p2 . (A.9)

The canonical metric (A.3) takes the standard form

ds2
Y p,q = ds2

M4
+(

1
3

dψ +σ)2 , (A.10)

where the Killing vector kµ = δ
µ

ψ is the Reeb vector and ds2
M4

is a local Kähler-Einstein metric with
Kähler form

J =
1
2

dσ =
1− cy

6
sinθ dθ ∧dφ +

1
6

dy∧ (dβ + ccosθdφ) , (A.11)

satisfying ∫
M4

J∧ J =
3Vol(Y p,q)

π
. (A.12)

This local property of the metric will be useful in order to induce an instantonic magnetic flux
proportional to the Kähler form.

Finally, the AdS5×Y p,q flux reads F5 = (1+?10)F5, where

F5 = 4R4 dVol(Y p,q) (A.13)

and

dVol(Y p,q) = eθ ∧ eφ ∧ ey∧ eβ ∧ eψ =
1

108
(1− cy)sinθdθ ∧dφ ∧dy∧dβ ∧dψ (A.14)

F5 is then such that
1

(2π)4gs

∫
Y p,q

F5 = N . (A.15)

A.2 The AdS5×T 1,1 case

As shown in [11] when c = 0 the metric (A.3) reduces to the local form of the standard homo-
geneous metric on T 1,1. Indeed, setting c = 0 in (A.3), rescaling to set a = 3 and introducing the
coordinates cosω = y, ν =−β one gets

ds2
T 1,1 =

1
9
[dψ− cosθdφ − cosωdν ]2 +

1
6
(
dθ

2 + sin2
θdφ

2)+ 1
6
(
dω

2 + sin2
ωdν

2) , (A.16)

which is the metric of the T 1,1 in adapted coordinates to its realization as a U(1) bundle over
S2×S2 [32], normalized such that Rαβ = 4Gαβ . Note however that although it is possible to take
the period of ν equal to 2π the period of ψ is fixed to 2π , so the manifold that is being described in
the c = 0 case is the T 1,1/Z2 orbifold. Still, we can study the baryon vertex in T 1,1 as a particular
case of Y p,q geometry if we account for the right periodicity of ψ when relevant.

The Kähler form in the T 1,1 reads

J =
1
6

(
sinθdθ ∧dφ + sinω dω ∧dν

)
(A.17)
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and some properties used in the main text are∫
S2

J =
2π

3
,

∫
T 1,1

J∧ J =
3Vol(T 1,1)

2π
, (A.18)

where the volume of the T 1,1 is given by

Vol(T 1,1) =
16π3

27
. (A.19)

Finally, the 5-form field strength is F5 = (1+?10)F5, where

F5 ≡ 4R4 dVol
(
T 1,1)= R4

27
sinθ sinω dθ ∧dω ∧dψ ∧dφ ∧dν (A.20)

and satisfies:
1

(2π)4gs

∫
T 1,1

F5 = N . (A.21)
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