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1. Introduction: Scalar Potentials in N = 1 Superspace

Supersymmetry is an extension of the Poincare spacetime symmetry with the inclusion of
fermionic generators. It has various remarkable properties concerning phenomenological and the-
oretical aspects of particle physics. In particular, supersymmetry is one of the most appealing
candidates for new physics. It has not been observed so far and thus, it should be broken at some
high energy scale if it is realised at all. The central role on how supersymmetry is broken is played
by the scalar potential of the supersymmetry breaking sector. Scalar potentials in supersymme-
try and supergravity have been extensively studied for theories with up to two derivatives. Even
though it is known that introducing higher derivatives will spoil the form of the scalar potential,
the self-consistency of the theory protects it from unconventional non-supersymmetric vacua [1].
Our task here is to discuss how scalar potentials are modified when higher derivatives are intro-
duced. However, the higher derivatives we are interested in, are those which do not introduce
instabilities and/or ghost states. This is a known drawback of such kind of interactions, connected
with the so-called Ostrogradski [2] instability in classical physics. We will see that such “safe”
higher derivatives may consistently be introduced in supergravity and we will determine the form
of the potential for the scalars of the theory they produce. We will also see that such potentias are
sustained by background fluxes and have de Sitter vacua indicating that supersymmetry is broken.

In this work we are discussing the bosonic sector of supersymmetric interactions that belong
to a specific class of higher derivative theories with the following two properties

1. they do not introduce ghost states

2. they introduce a scalar potential without a superpotential or gauging.

These theories involve chiral and vector multiplets.
In N = 1 superspace there is a number of conventional methods to introduce a scalar potential

for a chiral superfield. The superpotential is the most widely used, in which case one employes a
holomorphic function of the chiral superfield and after integrating out the auxiliary sector, a scalar
potential appears. More specificaly, the free Wess-Zumino Lagrangian is given by [3]

L0 = A∂
2Ā+ i∂aψ̄α̇ σ̄

aα̇α
ψα +FF̄ . (1.1)

It is straightforward to integrate out the auxiliary field via its equations of motion

F = 0 (1.2)

which for the massless and free theory (1.1) vanishes, leading to

L0 = A∂
2Ā+ i∂aψ̄α̇ σ̄

aα̇α
ψα . (1.3)

A standard mass term contribution is given by employing the following Lagrangian

L0 +
m
2

(Lm +h.c.) = A∂
2Ā+ i∂aψ̄α̇ σ̄

aα̇α
ψα +FF̄

+ mFA− 1
2

mψ
α

ψα +mF̄Ā− 1
2

mψ̄α̇ ψ̄
α̇ . (1.4)
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A naive inspection of (1.4) would tell us that there is massive fermions, but no mass for the scalar
fields has appeared. The equations of motion for the auxiliary field F read

F̄ =−mA (1.5)

and eventually, the on-shell form of (1.4) becomes

L0 +
m
2

(Lm +h.c.) = A∂
2Ā+ i∂aψ̄α̇ σ̄

aα̇α
ψα −m2AĀ− 1

2
mψ

α
ψα −

1
2

mψ̄α̇ ψ̄
α̇ (1.6)

where now we can see that supersymmetric masses have been raised. The lesson from the above
discussion is that, until integrating out the auxiliary sector, it is not obvious if there exists a mass
term, and in a more general context, what is the form of the scalar potential.

Turning to supergravity, the above discussion is straightforwardly generalised and the same
prosedure is followed. The most general (two-derivative) superspace Lagrangian of chiral super-
fields coupled to supergravity is in superspace formalism 1

L0 =
1

κ2

∫
d2

Θ 2E

[
3
8

(
D̄D̄−8R

)
e−

κ2
3 K(Φi,Φ̄ j̄) +κ

2P(Φ)
]
+h.c. (1.7)

The hermitian function K(Φi,Φ̄ j̄) is the Kähler potential, P(Φi) is the superpotential (a holomor-
phic function of the chiral superfields Φi) and κ is proportional to the Planck length, which from
now on will be set equal to 1. From the supergravity multiplet sector, 2E is the usual chiral density
employed to create supersymmetric Lagrangians, which in the new Θ variables has the expansion

2E = e
{

1+ iΘσ
a
ψ̄a−ΘΘ

(
M∗+ ψ̄aσ̄

ab
ψ̄b

)}
(1.8)

in terms of the vielbein (ea
m), the gravitino (ψm) and the complex scalar auxiliary field M. In

addition, R, the superspace curvature, is a chiral superfield which contains the Ricci scalar in its
highest component. In the matter sector, Φi and Φ̄ j̄ denote a set on chiral and anti-chiral superfields
(D̄α̇Φi = 0, DαΦ̄ j̄ = 0) whose components are defined via projection

Ai = Φ
i|θ=θ̄=0,

χ
i
α =

1√
2
DαΦ

i|θ=θ̄=0, (1.9)

F i = −1
4
DDΦ

i|θ=θ̄=0.

After calculating the component form of (1.7), integrating out the auxiliary fields and performing
a Weyl rescaling of the gravitational field (accompanied by a redefinition of the fermionic fields),
the pure bosonic Lagrangian reads

e−1L0 =−1
2

R−gi j̄∂aAi
∂

aĀ j̄− eK
[
gi j̄(DiP)(D j̄P̄)−3PP̄

]
. (1.10)

Further details maybe found for example in [3]. Here

gi j̄ =
∂ 2K(A, Ā)

∂Ai∂ Ār̄ (1.11)

1Our framework and conventions are those of Wess and Bagger [3].
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is the positive definite Kähler metric, on the manifold parametrized by Ai and Ā j̄. Moreover, the
Kähler space covariant derivatives are defined as follows

DiP = Pi +KiP (1.12)

where in general we denote fi = ∂ f
∂Ai . The Lagrangian (1.10) is Kähler invariant as long as the

superpotential scales as

P(Ai)→ e−S(Ai)P(Ai) (1.13)

under a Kähler transformation

K(Ai, Ā j̄)→ K(Ai, Ā j̄)+S(Ai)+ S̄(Ā j̄). (1.14)

S(Ai) and S̄(Ā j̄) are holomorphic functions of the complex coordinates.
Equaly important conventional methods for introducing scalar potentials is by gauging the

chiral models or by D-terms, the interested reader should consult [4].

2. F-Emergent Potential

The idea of the emergent potentials is essentialy a generalization of the standard methods
discused above. The theory we are interested in, has a superspace Lagrangian of the form

L = L0 +LHD (2.1)

where L0 is the standard superspace supergravity Lagrangian given in eq.(1.7) and [5, 6, 7]

LHD =
∫

d2
Θ 2E

{
1
8

(
D̄D̄−8R

)
Λ

r̄in̄ j
[
D̄α̇KiDαKr̄D̄

α̇K jD
αKn̄

]}
+h.c. (2.2)

This Lagrangian was initially studied in global supersymmetry in [8]. It is important that L is
manifestly both Kähler and (independently) super-Weyl invariant as has been shown in [6]. These
two symmetry properties, although obviously they do not specify the form of the action, they are
essential in the consistency of the model as well as for the supergravity theory that it describes. As
we will see, (2.2) does not involve derivatives of the auxiliary fields, which are not propagating and
can be integrated out. Equivalently, (2.2) can be expressed in terms of the chiral superfields Φi as

LHD =
∫

d2
Θ 2E

{
1
8

(
D̄D̄−8R

)
Λir̄ jn̄

[
D̄α̇Φ̄

r̄DαΦ
iD̄ α̇

Φ̄
n̄Dα

Φ
j
]}

+h.c. (2.3)

where

Kir̄ =
∂ 2K(Φ,Φ̄)

∂Φi∂ Φ̄r̄ (2.4)

is the Kähler metric on the complex space spanned by the chiral and anti-chiral superfields and
Λir̄ jn̄ represents a Kähler tensor. For example, one may choose

Λir̄ jn̄ = G (Φ,Φ̄)Kir̄K jn̄ +H (Φ,Φ̄)Rir̄ jn̄ (2.5)
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with G (Φ,Φ̄) and H (Φ,Φ̄) being some Kähler invariant hermitian functions and Rir̄ jn̄ the Kähler
space Riemann tensor defined as

Ri j̄kl̄ =
∂

∂Φi
∂

∂ Φ̄ j̄
Kkl̄−Kmn̄

(
∂

∂ Φ̄ j̄
Kml̄

)(
∂

∂Φi Kkn̄

)
. (2.6)

The form (2.5) implies some symmetries for the Kähler indices which, without loss of further
generality, we will assume to be possessed by all the Λir̄ jn̄ to be considered in this work. Our next
task is to extract the component field expression for the Lagrangian (2.3), which after superspace
integration turns out to be

e−1LHD =−16 Uir̄ jn̄

(
F iF jF̄ r̄F̄ n̄ +∂aAi

∂
aA j

∂bĀr̄
∂

bĀn̄

−F iF̄ r̄
∂aA j

∂
aĀn̄−F iF̄ n̄

∂aA j
∂

aĀr̄
)
. (2.7)

for the pure bosonic sector. In (2.7) we have used the notation

Uir̄ jn̄(A, Ā) = Λir̄ jn̄(Φ,Φ̄)
∣∣∣
θ=θ̄=0

(2.8)

Again it is easy to see that (2.7) is manifestly Kähler invariant.
In order to make the effect of the new coupling (2.2) more transparent we will consider now a

theory with only one chiral multiplet and no superpotential. In this case, the Lagrangian (2.1) is
explicitly written as

L =
∫

d2
Θ 2E

{(
D̄D̄−8R

)[3
8

e−
1
3 K +

1
8

Λ D̄α̇Φ̄DαΦD̄ α̇
Φ̄Dα

Φ

]}
+h.c. (2.9)

with Λ being an abbreviation for ΛΦΦ̄ΦΦ̄, a hermitian and Kähler invariant function of Φ and Φ̄. In
component form, the bosonic sector of the Lagrangian (2.9) turns out to be (after integrating out
the auxiliary fields of the supergravity sector and subsequently appropriately rescaling)

e−1Lbos = −1
2

R−gAĀ∂aA∂
aĀ+gAĀ e

K
3 FF̄

−16 U

{
e

2K
3 (FF̄)2 +∂aA∂

aA∂bĀ∂
bĀ−2e

K
3 FF̄∂aA∂

aĀ
}

(2.10)

where U is a hermitian Kähler invariant function of the scalar field (it is the lowest component of
Λ, eq.(2.8)). The equation of motion for F is

F̄
(

gAĀ−32 U e
K
3 FF̄ +32 U ∂aA∂

aĀ
)

= 0 (2.11)

which can be easily solved for

1. Standard solution:

F = 0, (2.12)

2. New solution:

FF̄ = e
−K
3

( gAĀ

32 U
+∂aA∂

aĀ
)

. (2.13)
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Here we should discuss the difference between the two solutions. To make the point clear we first
stress that the stability of the theory demands

gAĀ > 0 (2.14)

U < 0. (2.15)

Thus the standard solution (2.12) can always be realized, while the new solution (2.13) can only be
realized in the presence of fluxes so that

FF̄ = e
−K
3

( gAĀ

32 U
+∂aA∂

aĀ
)

> 0. (2.16)

The on-shell Lagrangian for the conventional branch is

e−1Lbos =−1
2

R−gAĀ∂aA∂
aĀ−16 U ∂aA∂

aA∂bĀ∂
bĀ (2.17)

where there is no scalar potential, as expected, since no superpotential was introduced. The on-shell
Lagrangian for the new branch is

e−1Lbos =−1
2

R+
(gAĀ)2

64 U
−16 U ∂aA∂

aA∂bĀ∂
bĀ+16 U ∂aA∂

aĀ∂bA∂
bĀ. (2.18)

What has happened here has completely changed the dynamics of the theory. The minimal kine-
matic term for the scalar is lost and a scalar potential has emerged

V =− 1
64

(gAĀ)2

U
. (2.19)

From (2.15) we see that the potential (2.19) is positive defined

V > 0 (2.20)

and therefore the theory may only have de Sitter vacua. Another important property of the emerging
potential is that it is not built from a holomorphic function. Moreover, the function U governs
now the kinetic terms and in fact it was shown in [5] that it has to be negative to avoid tachionic
states. In the framework of new-minimal supergravity, consistent higher derivative terms which
satsify the above restrictions have been considered [9], but no scalar potential emerged in that case.

3. Gauge Invariant F-Emergent Potential

The Lagrangian (2.9) can be straightforwardly be generalized to include gauge invariant inter-
actions [10]. In this case, the gauge invariant superspace Lagrangian is

Ltot =
∫

d2
Θ 2E

{
3
8

(
D̄D̄−8R

)
e−K̃/3 +

1
16g2 H(ab)(Φ)W (a)W (b) +P(Φ)

+
1
8

(
D̄D̄−8R

)[
Λ̃

r̄in̄ j D̄α̇ K̃iDα K̃r̄D̄
α̇ K̃ jD

α K̃n̄
]}

+h.c. (3.1)

where

K̃ = K(Φ,Φ̄)+Γ(Φ,Φ̄,V ), (3.2)

6
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and

Γ(Φ,Φ̄,V ) = V (a)D (a) +
1
2

gir̄X i(a)X̄ r̄(b)V (a)V (b). (3.3)

In addition, as usual, V (a) is the supersymmetric Yang-Mills vector multiplet and

Wα = W (a)
α T (a) =−1

4

(
D̄D̄−8R

)
e−V DαeV (3.4)

is the gauge invariant chiral superfield containing the gauge field strength. The holomorphic func-
tion H(ab) is included for generality, but in what follows we will consider H(ab) = δ(ab). Expression
(3.3) is calculated in the Wess-Zumino gauge, D (a) are the so-called Killing potentials whereas
X i(a) and X̄ r̄(b) are the components of the holomorphic Killing vectors that generate the isometries
of the Kähler manifold. The Killing vectors and the Killing potential are connected via

gir̄X̄ r̄(a) = i
∂

∂ai D
(a), (3.5)

gir̄X i(a) =−i
∂

∂ ār̄ D
(a) (3.6)

where ai and ār̄ are the Kähler space complex co-ordinates. We note that the D (a) that correspond
to some U(1) gauged symmetry are only determined up to a constant ξ , which is the analog for the
Fayet-Iliopoulos D-term in supergravity. Now Λ̃r̄in̄ j has to respect all the isometries of the Kähler
manifold. Again, following the standard procedure, the bosonic part of the Lagrangian (3.1) turns
out to be

e−1Ltot = −1
2

R−gir̄D̃mAiD̃mĀr̄ + e
K
3 gir̄F iF̄ r̄

− 1
16g2 F(a)

mn Fmn(a)− 1
2

g2(D (a))2

− e
2K
3

(
F iDiP+ F̄ r̄Dr̄P̄

)
+3eKPP̄ (3.7)

−16 Ũir̄ jn̄

(
e

2K
3 F iF jF̄ r̄F̄ n̄ + D̃aAiD̃aA jD̃bĀr̄D̃bĀn̄

−e
K
3 F iF̄ r̄D̃aA jD̃aĀn̄− e

K
3 F iF̄ n̄D̃aA jD̃aĀr̄

)
.

We note that

D̃cA j = ∂cA j− 1
2

B(a)
c X j

(a) (3.8)

is the covariant derivative and B(a)
c is a vector field (belonging to the V (a) vector multiplet) that

corresponds to the gauged isometries, with field strength F(a)
mn .

In order to illustrate the properties of the emergent potential in the case of gauged models, our
example will be a single chiral multiplet with no superpotential. In this case the Lagrangian (3.7)
is

e−1Ltot = −1
2

R−gAĀD̃mAD̃mĀ+ e
K
3 gAĀFF̄

− 1
16g2 F(a)

mn Fmn(a)− 1
2

g2(D (a))2 (3.9)

−16 Ũ
(

e
2K
3 (FF̄)2 + D̃aAD̃aAD̃bĀD̃bĀ−2 e

K
3 FF̄D̃aAD̃aĀ

)
.

7
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The single auxiliary field F can now be eliminated from (3.9) by its equations of motion, leading
to

FF̄ = e
−K
3

(
gAĀ

32 Ũ
+ D̃aAD̃aĀ

)
. (3.10)

Plugging (3.10) back in (3.9), we can easily read-off the potential for the gauged model which turns
out to be

V =
1
2

g2
(
D (a)

)2
− (gAĀ)2

64 Ũ
(3.11)

with Ũ = ŨAĀAĀ, a Kähler-space tensor that respects all the isometries of the gauged group. For a
first example we will take a flat model with Kähler potential

K = aā+d (3.12)

which leads to

gaā = 1 , Raāaā = 0 (3.13)

The U(1) Killing potential is

D(1) = aā+ξ (3.14)

where the parameter ξ corresponds to the aforementioned freedom to shift the U(1) Killing poten-
tial. When we promote a and ā to the superfields Φ and Φ̄, our Kähler potential K together with
the counter term Γ become

K̃U(1) = ΦΦ̄+V ΦΦ̄+
1
2

V 2
ΦΦ̄+d +V ξ . (3.15)

The bosonic part of our Lagrangian in component form then turns out to be

e−1LU(1) = −1
2

R− 1
16g2 FcdFcd

−16 Ũ D̃aAD̃aAD̃bĀD̃bĀ+16 Ũ D̃aAD̃aĀD̃bAD̃bĀ (3.16)

−1
2

g2 (AĀ+ξ
)2 +

1
64 Ũ

,

with D̃mA = ∂mA+ i
2 BmA. Then the scalar potential is

V =
1
2

g2(D(a))2− 1
64Ũ

. (3.17)

A simple choice for Ũ could be

Ũ = mgAĀgAĀ = m < 0 , (3.18)

where m is a negative constant. It is again important to emphasise that m now governs the kinemat-
ics of the scalar fields, and that the condition

FF̄ = e
−K
3

(
gAĀ

32 Ũ
+ D̃aAD̃aĀ

)
> 0 (3.19)

has to hold for the theory to be consistent.

8



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
2
7

Emergent Potentials in Consistent Higher Derivative N = 1 Supergravity Fotis Farakos

4. D-Emergent Potential

Higher derivative interactions are not restricted only to scalar fields. In fact we will show that
an equivalent method as before can be followed which again leads to a scalar potential. Now the
auxiliary fields that are integrated out are the ones of the vector multiplet, the “D” fields.

The higher derivative term we want to discuss is (in superspace)

LgHD =
∫

d2
Θ 2E

(
D̄D̄−8R

)
(−1

4
Jab(Φ,Φ̄)W (a)W (b)Ycd(Φ,Φ̄)W̄ (c)W̄ (d))+h.c. (4.1)

The superfields Jab(Φ,Φ̄) and Ycd(Φ,Φ̄) are functions of the various chiral superfields that are
present in our theory, the only restriction is that they should transform correctly under the gauge
group. The bosonic sector of Lagrangian (4.1) after performing the superspace integration is

e−1LgHD = [JabȲcd + J̄abYcd ]×

{ 1
4

Fdc(a)F(b)
dc Fab(c)F(d)

ab −
1
2

Fdc(a)F(b)
dc D(c)D(d)− 1

2
D(a)D(b)Fab(c)F(d)

ab

+D(a)D(b)D(c)D(d) +
1
16

ε
abcdF(a)

ab F(b)
cd ε

e f ghF(c)
e f F(d)

gh }. (4.2)

Here Jab = Jab| and Yab = Yab|. Moreover for the gauge sector we will consider a more general
coupling allowing for a kinetic gauge function as well. The standard kinetic term for the gauge
fields is

Lg0 =
∫

d2
Θ 2E H(ab)(Φ)W (a)W (b) +h.c. (4.3)

and the bosonic sector in components reads

e−1Lg0 = [H(ab) + H̄(ab)]{−
1
2

Fdc(a)F(b)
dc −

i
4

ε
abcdF(a)

ab F(b)
cd +D(a)D(b)} (4.4)

with Hab = Hab|. Up to now the most general Lagrangian in superspace reads

Ltot =
∫

d2
Θ 2E

{
3
8

(
D̄D̄−8R

)
e−K̃/3 +H(ab)(Φ)W (a)W (b) +P(Φ)

+
1
8

(
D̄D̄−8R

)[
Λ̃

r̄in̄ j D̄α̇ K̃iDα K̃r̄D̄
α̇ K̃ jD

α K̃n̄
]

(4.5)

−1
4

(
D̄D̄−8R

)
[Jab(Φ,Φ̄)W (a)W (b)Ycd(Φ,Φ̄)W̄ (c)W̄ (d)]

}
+h.c.

Finally, in order to study the properties of this new term, let us consider a very simple example
of a single U(1) group and a single uncharged (under this U(1)) chiral multiplet. The higher
derivative terms will be only for the gauge sector. Our Lagrangian, in component form reads

e−1Lex = −1
2

R−gAĀ∂mA∂
mĀ+[H(A)+ H̄(Ā)]{−1

2
FdcFdc−

i
4

ε
abcdFabFcd +D2}

+[JȲ +Y J̄]{1
4
(FdcFdc)2−FdcFdcD2 +

1
16

(εabcdFabFcd)2 +D4}. (4.6)

Here J and Y are positive definite gauge invariant functions of A and Ā. Now we can easily solve
the auxiliary D equations of motion to find two solutions
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1. Standard solution:

D = 0, (4.7)

2. New solution:

D2 =
1
2

FdcFdc−
1
2

H + H̄
JȲ +Y J̄

. (4.8)

The first one is the standard supersymmetric solution and has been also studied in [1] in the pres-
ence of higher derivatives. The new solution can only be consistently realized in the presence of
magnetic fluxes so that

D2 =
1
2

FdcFdc−
1
2

H + H̄
JȲ +Y J̄

> 0. (4.9)

Eventually the on-shell theory will be

e−1Lex = −1
2

R−gAĀ∂mA∂
mĀ− 1

4
(H + H̄)2

JȲ +Y J̄
− i

4
[H(A)+ H̄(Ā)]εabcdFabFcd

+
1
16

[JȲ +Y J̄](εabcdFabFcd)2

= −1
2

R−gAĀ∂mA∂
mĀ− 1

4
(H + H̄)2

JȲ +Y J̄
− i

4
[H(A)+ H̄(Ā)]εabcdFabFcd

+[JȲ +Y J̄]{−1
2
(FdcFdc)2 +FabFbcFcdFda}. (4.10)

It is easy to see that there is a positive definite emergent potential due to integrating out of the D
auxiliary field

V (A, Ā) =
1
4

(H + H̄)2

JȲ +Y J̄
. (4.11)

A simple example can be given by a gauge kinetic function

H = A2 (4.12)

with a, b two real positive constants

J = a > 0, Y = b > 0.

The potential will be

V (A, Ā) =
(A2 + Ā2)2

8ab
. (4.13)

This novel feature of gauge fields higher derivatives has not been studied before and deserves
further investigation.

Summarizing, the well-known standard form of the N = 1 scalar potential is restricted to the
two-derivative level. Higher derivative interaction modify its form. In fact, when higher-derivatives
are introduced, an emerging scalar potential appears even if there is no superpotential to start with.
There are two types of emerging potential, F- and D-type. F-emerging potentials result by integrat-
ing out auxiliaries of chiral multiplets whereas, D-emerging potentials come from the integration
of auxiliaries in vector multiplets. As a general rule, emerging potentials are positive defined with
de Sitter ground state, indicating supersymmetry breaking.
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