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Notes on the NMG / TMG-like models beyond 3D Yihao Yin

1. Introduction

The New Massive Gravity (NMG) [1] and the Topologically Massive Gravity (TMG) [2] are
three dimensional massive gravity models with higher derivatives. In [3] and [4], it has been shown
that the linearized NMG and TMG models can be extended to higher spin gauge theories in 3D.1

Starting from the spin-s Fierz-Pauli (FP) equations in 3D,(
�−m2)φµ1···µs = 0 , ∂ µ1φµ1···µs = 0 , ηµ1µ2φµ1···µs = 0 , (1.1)

where φ is a symmetric tensor, one can solve the divergenceless condition by

φµ1···µs = Gµ1µ2···µs (h) , (1.2)

where the G(h) is a “generalized Einstein tensor”, which is symmetric and contains s derivatives:2

Gµ1µ2···µs (h) = εµ1
ν1ρ1 · · ·εµs

νsρs∂ν1 · · ·∂νshρ1···ρs , (1.3)

and the gauge field h is a rank-s symmetric tensor free of subsidiary constraints. Then by substi-
tuting the solution into the rest part of the FP equations, one can “boost up the deivatives”, which
leads to a spin-s NMG-like model:3(

�−m2)Gµ1µ2···µs (h) = 0 , ηµ1µ2Gµ1µ2···µs (h) = 0 . (1.4)

Due to the higher-derivative construction of the generalized Einstein tensor, this model possesses a
gauge symmetry

δhρ1ρ2···ρs = ∂(ρ1ξρ2···ρs) , (1.5)

where the gauge parameter field ξ is a symmetric tensor of rank s−1 free of subsidiary constraints.
Furthermore, one can check that in (1.1), under the divergenceless condition, the Klein-Gordon
operator can be factorized into two first-order differential operators:(

εµ1
νρ∂ν ±mδ ρ

µ1

)(
ερ

στ∂σ ∓mδ τ
ρ

)
φτµ2···µs = 0 . (1.6)

By dropping the first operator, one obtains the so-called
√

FP equations(
εµ1

στ∂σ −µδ τ
µ1

)
φτµ2···µs = 0 , (1.7)

where µ =±m. One can check that (1.1) describes two propagating degrees of freedom, which are
now separated into two opposite helicities, corresponding to the two choices of µ . Then, again by
“boosting up the derivatives”, one obtains a spin-s TMG-like model4(

εµ1
στ∂σ −µδ τ

µ1

)
Gτµ2···µs (h) = 0 (1.8)

with the same gauge symmetry as (1.5).

1In this paper, we only discuss free bosonic massive models on the flat background with the signature (−,+,+, · · ·).
2One can check that for spin-2, G(h) is the linearized Einstein tensor of the graviton (up to an overall factor).
3The spin-2 case is the linearized NMG.
4The spin-2 case is the linearized TMG.
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In this paper, we discuss the possibility of extending the above 3D NMG/TMG-like models
to higher dimensions. The discussion will be started in the context of the lower derivative theory
in higher dimensions, then we will discuss the possibility of boosting up the derivatives, which
may lead to NMG-like models. Afterwards we will further discuss the possibility of factorizing
the Klein-Gordon operator in higher dimensions, which may lead to TMG-like models. After the
general discussion, a concrete example in 7D will be presented.

2. Tensors of Mixed Symmetry

Before discussing higher dimensional models, the concept “spin” must be clarified. In general
dimensions, the type of a particle is defined by its irreducible representation of the little group. In
3D or 4D, where the little group for massive particles is SO(2) or SO(3), all inequivalent irreps can
be represented by symmetric tensors of different ranks. Thus in 3D or 4D if we define “spin” to
be the rank of the symmetric tensor, it is sufficient to label all different types of massive particles.
However, for massive particles in D ≥ 5, whose little group is SO(4) or larger, only one spin
number is not sufficient to label all types of particles. In this situation, the irreps of the little group
are represented by not only symmetric tensors, but also antisymmetric tensors and various mixed
symmetry tensors. Consequently we need Young tableaux, instead of spin, to give each type of
them a unique label. Nevertheless, we will still use the terminology “spin” to refer to the number
of columns of a Young tableau.

When we talk about irreps of the little group, to be precise we are actually talking about
traceless tensors with only spatial indices. However, the theories we would like to discuss are
Lorentz covariant. Therefore, we need to Lorentz covariantize these tensors without changing the
number of degrees of freedom they carry.

The FP theory has already told us how to Lorentz covariantize symmetric tensors. We conjec-
ture that the same method applies also to other types of tensors:
(1) We replace all spatial indices with spacetime indices while still keeping their symmetry prop-
erties;
(2) Because we would like to go from the little group to the Lorentz group, its natural to modify
the traceless condition by replacing the Kronecker delta δi j by the spacetime metric ηµν ;5

(3) Because the tensor now carries more components than the irrep originally had, some extra con-
straint is needed. We would like such a constraint to be Lorentz covariant, and we would like it to
have no more than first-order derivatives, otherwise it might look like a dynamical equation rather
than a constraint. Therefore, the only option seems to be the divergenceless condition, as already
suggested by the FP theory.

This method definitely works for symmetric tensors as in the FP theory, and it also works for
all types of tensors that are going to be discussed in this paper. To illustrate this, we count, as an
example, the degrees of freedom of the simplest mixed symmetry tensor in 4D. Denote the irrep

of SO(3) by a tensor Ti j,k which satisfies6

Ti j,k = Y[2,1]Ti j,k and δ jkTi j,k = 0 , (2.1)
5We denote spacetime indices by Greek letters and spatial indices by Latin ones.
6We use commas to separate different sets of antisymmetrized indices. Starting from Section 2, indices on a tensor

which are not separated by commas are always understood as antisymmetrized ones.
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where Y is a Young symmetrizer whose subscript denotes the height of each column of the corre-
sponding Young tableaux.7 One can check that Ti j,k carries 5 independent components.8 Now we
go to the group SO(1,3) by replacing all spatial indices with spacetime ones, and hence obtain the
tensor Tµν ,ρ , which satisfies

Tµν ,ρ = Y[2,1]Tµν ,ρ and ηνρTµν ,ρ = 0 , (2.2)

carrying 16 independent components. We would like to impose the divergenceless condition9

∂ µTµν ,ρ = 0 (2.3)

in order to lower the degrees of freedom. One can check that ∂ µTµν ,ρ is a non-symmetric trace-
less tensor, so it appears that (2.3) gives 4× 4− 1 = 15 independent constraints, but this is an
over-counting, because the double divergence on the antisymmetric pair of indices vanishes by
construction

∂ µ∂ νTµν ,ρ ≡ 0 . (2.4)

Therefore we must compensate 4 degrees of freedom. Thus the total number of degrees of freedom
of Tµν ,ρ is 16−15+4 = 5, which is exactly the same number as that of Ti j,k.

Suppose such kind of counting always works, then we can write down the generalized version
of FP equations 

(
�−m2

)
T··· = 0

∂ ·T··· = 0 (on all indices)
η ··T··· = 0 (on all pairs of indices)

, (2.5)

where T is a tensor of any allowed Young symmetry, and we use the Klein-Gordon equation to
describe the free propagation. The divergenceless condition is always imposed on all indices and
the traceless condition is always imposed on all pairs of indices. In the next section, we will
discuss whether we can construct NMG-like models that are equivalent to this set of generalized
FP equations, like what we did in 3D.

3. Boosting Up the Derivatives

In 3D we derived the NMG-like models by solving the divergenceless condition in the FP
equations using the generalized Einstein tensor, and we wonder whether a similar way of boosting
up derivatives exists in higher dimensions.

7We adopt this notation from [5]. In our definition, a Young symmetrizer is a projection operator acting on a
multi-form in such a way that, after filling each set of antisymmetrized indices into the corresponding column of the
Young tableau, it first symmetrizes indices on each row and then antisymmetrizes indices on each column. A Young
symmetrizer is by definition normalized, i.e. Y 2 = Y .

8For the little group SO(3), a (reducible) traceful tensor of the type has 8 independent components. The trace
of it, which is the fundamental representation , has 3 independent components. Then a traceless tensor of the type

has 8−3 = 5 independent components. One can do a similar counting that the same type of traceless tensor in the
Lorentz group SO(1,3) carries 16 independent components.

9Note that because of the Young symmetry, the tensor satisfies T[µν ,ρ ] = 0. Therefore, one can derive ∂ ρ Tµν ,ρ = 0
from (2.3), i.e. the divergence hitting on any one of the three indices gives zero.
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Let us recall how we define the 3D generalized Einstein tensor (1.3). As shown in the following
diagram, roughly speaking, it is defined in such a way that we first take the exterior derivative on
every column of the Young tableau of the gauge field, resulting into the generalized Riemann
tensor,10 and then take the Hodge duality on every column of the Riemann tensor, which leads to
what we call the generalized Einstein tensor.

Gauge field h
· · ·

∂∂∂∂ · · ·−−−−−−→

Riemann
∂ ∂ ∂ ∂ · · ·

· · ·
∗ ∗∗∗ · · ·−−−−−−→

Einstein G(h)
· · ·

Note that there are two important facts in this way of construction.
First, in 3D, because the generalized Einstein tensor G(h) has been constructed as the dual

of the generalized Riemann tensor, setting G(h) to zero means h is a pure gauge, which does not
describe any propagating degrees of freedom. In this way G(h) = 0 gives only a trivial solution to
the NMG-like equations of motion. This is important because otherwise the model would include
massless propagating modes, and thus the model would not be equivalent to the FP theory.

Second, in 3D the generalized Einstein tensor G(h) always lives in the same representation as
the gauge field h (off-shell traceful and symmetric rank-s tensors), otherwise it would be difficult
to integrate the equations of motion into an action.11

In order to find direct extensions of the 3D NMG-like models in higher dimensions, we must
be able to construct the generalized Einstein tensor with both properties mentioned above in D > 3.
However, it is difficult in general. For instance, in 4D, if we use a totally symmetric gauge field
and define the generalized Einstein tensor as the dual of the generalized Riemann tensor, then as
shown in the diagram

Gauge field h
· · ·

∂∂∂∂ · · ·−−−−−−→

Riemann
∂ ∂ ∂ ∂ · · ·

· · ·
∗ ∗∗∗ · · ·−−−−−−→

Einstein G(h)
· · ·
· · ·

G(h) no longer lives in the same representation as h. On the other hand, if we define the generalized
Einstein tensor in another way that it lives in the same representation,12 then it carries less number
of independent components than the generalized Riemann tensor, which means G(h) = 0 contains
massless modes.

Only for gauge fields of specific representations (usually tensors of mixed symmetry) in spe-
cific dimensions can we define the generalized Einstein tensor to be the dual of the generalized
Riemann tensor as well as in the same representation as the gauge field. Only in these situations,
can we find a direct generalization of the 3D NMG-like models. In these situations, we can use the

10One can check that for spin-2, the linearized Riemann tensor can be written as (up to an overall factor) taking an
exterior derivative on each of the two indices of the graviton. If the generalized Riemann tensor vanishes, then the gauge
field must be a pure gauge.

11To get an intuitive idea, one can think that the simplest way to encode the equation
(
�−m2)G··· (h) = 0 into a

Lagrangian is to use the term h···
(
�−m2)G··· (h), which requires that h··· and G··· (h) have the same number of indices

with the same symmetry property.
12See, for instance, the definition of the generalized Einstein tensor in [5], where it is basically constructed out of the

traces of the Riemann tensor.
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generalized Einstein tensor to solve the divergenceless condition in (2.5):13

T··· = G··· (h) , (3.1)

where T , G and h have the same symmetry on their indices, and then substitute the solution into
the other two equations in (2.5), in order to obtain the higher derivative model(

�−m2)G··· (h) = 0 ,

η ··G··· (h) = 0 , (3.2)

which is the NMG-like model in higher dimensions.
Similar to 3D, in higher dimensions the NMG-like models also have gauge symmetries. Note

that if we replace the gauge field with the derivative of any other field, because by definition the
generalized Riemann tensor has already got a row of derivatives in its Young tableau, inevitably it
will then acquire a pair of antisymmetrized derivatives, which gives zero. In this way, one can see
that the gauge transformation rules are always parameterized by tensors with one index fewer than
the gauge field has, and the missing index is carried by a derivative.

Now we discuss in details exactly what representations are allowed to construct NMG-like
models in higher dimensions. The situations for spin-1, spin-2 and higher spins differ from each
other. In the following they will be discussed separately.
Spin-1

Considering the criterion that the dual of the Riemann tensor has to live in the same repre-
sentation as the gauge field, for spin-1 the only allowed type of gauge field is represented by a
single-column Young tableau of height 1

2(D−1) in an odd spacetime dimension D, as indicated in
the diagram:

Gauge field h

D−1
2

 ...

∂−→

Riemann

D+1
2



∂

...

∗−→

Einstein G(h)

D−1
2

 ...

.

Starting from the generalized FP equations for spin-1 (or, the higher-rank generalization of the
Proca model) (

�−m2)Tµ1···µ(D−1)/2 = 0 , ∂ µ1Tµ1···µ(D−1)/2 = 0 , (3.3)

where T is a totally antisymmetric tensor, one can then solve the divergenceless condition

Tµ1···µ(D−1)/2 = Gµ1···µ(D−1)/2 (h) = εµ1···µ(D−1)/2
µ(D+1)/2···µD∂µ(D+1)/2hµ(D+3)/2···µD , (3.4)

and substitute the solution into the Klein-Gordon equation to derive the NMG-like model:(
�−m2)Gµ1···µ(D−1)/2 (h) = 0 . (3.5)

13The fact that the divergenceless condition can be solved in this way is a generalization of the Poincaré lemma [6].
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Obviously this model has the gauge symmetry

δhµ1···µ(D−1)/2 = ∂[µ1ξµ2···µ(D−1)/2] . (3.6)

Note that not all components of the gauge parameter field contribute to the transformation, i.e.
there is a “gauge transformation” of the gauge parameter field itself: δξµ2···µ(D−1)/2 = ∂[µ2ζµ3···µ(D−1)/2].
This must be taken care of when we count the degrees of freedom and when we do the gauge-fixing.
This also matters for spin-2 and higher spins. We will not further discuss it in this section, but in
Section 5, for a specific 7D spin-2 example we will show some details.

In D = 4k−1, where k = 1,2, · · · , (3.5) can be easily integrated into an action

SNMG Y[2k−1] =
∫

d4k−1x hµ1···µ2k−1
(
�−m2)Gµ1···µ2k−1 (h) , (3.7)

but unfortunately in D = 4k+1, we have not yet found an action, because in this situation one can
prove that the Klein-Gordon term hµ1···µ2k

(
�−m2

)
Gµ1···µ2k (h) is actually a total derivative.

Spin-2
For spin-2 in D dimensions, the allowed types of tensors always carry in total D− 1 indices.

As shown in the following diagram, denoting p and q (p ≥ q) as the heights of the first and second
columns of the Young tableau of the gauge field, if p+q = D−1, then after taking exterior deriva-
tives and Hodge dualities, the height-p column ends up in a height-q column and vice versa.

Gauge field h

p


...

...

q
∂∂−−→

Riemann

p+1



∂ ∂

...
...


q+1 ∗∗−→

Einstein G(h)

p


...

...

q

( p+q = D−1 )

To write explicitly, the generalized Einstein tensor is constructed as

Gµ1···µp,ν1···νq (h) = εν1···νq
αρ1···ρpεµ1···µp

βσ1···σq∂α∂β hρ1···ρp,σ1···σq . (3.8)

Then in the spin-2 generalized FP equations14

(
�−m2)Tµ1···µp,ν1···νq = 0 , ∂ µ1Tµ1···µp,ν1···νq = 0 , ηµ1ν1Tµ1···µp,ν1···νq = 0 , (3.9)

one can solve the divergenceless condition by

Tµ1···µp,ν1···νq = Gµ1···µp,ν1···νq (h) , (3.10)

14T satisfies the Young symmetry Y[p,q]. Consequently, T[µ1···µp,ν1]···νq
= 0, which means ∂ µ1 Tµ1···µp,ν1···νq = 0

implies that ∂ ν1 Tµ1···µp,ν1···νq = 0.

7
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which leads to the NMG-like model(
�−m2)Gµ1···µp,ν1···νq (h) = 0 , ηµ1ν1Gµ1···µp,ν1···νq (h) = 0 . (3.11)

This model has the gauge symmetry

δhµ1···µp,ν1···νq = Y[p,q]

(
∂[µpξ 1

µ1···µp−1],ν1···νq +∂[νq|ξ
2

µ1···µp,|ν1···νq−1]

)
(3.12)

for p > q, where ξ 1 and ξ 2 satisfy the Young symmetries Y[p−1,q] and Y[p,q−1], respectively. For
p = q, because the two columns of the Young tableau of h are symmetric, using one tensor ξ of the
type Y[p,p−1] is sufficient to parameterize the transformation:

δhµ1···µp,ν1···νp = Y[p,p]

(
∂[νp|ξ µ1···µp,|ν1···νp−1]

)
. (3.13)

We have not yet studied in general the possibility to integrate (3.11) into an action, but two
specific examples have been studied in details. One example is the gauge field of the type in
4D. A NMG-like ghost-free action carrying 5 massive propagating degrees of freedom has been
constructed using this type of gauge field in [7]. The other example is in 7D, which is going to
be discussed in Section 5.
Higher spins

For spin-3 or higher, besides the criterion that the dual of the Riemann tensor and the gauge
field should have the same symmetry, there is another criterion which further eliminates a lot of
representations: there should not be more than D−1 boxes in the first two columns of the Young
tableau of the gauge field.15 Then under these two criteria, one can conclude that the only allowed
types of gauge fields are represented by rectangular Young tableaux of height 1

2 (D−1):

Gauge field h

D−1
2


· · ·
· · ·

...
...

. . .
...

· · ·

∂∂ · · ·∂−−−−−→

Riemann

D+1
2



∂ ∂ · · · ∂
· · ·
· · ·

...
...

. . .
...

· · ·

∗ ∗ · · ·∗−−−−−→

Einstein G(h)

D−1
2


· · ·
· · ·

...
...

. . .
...

· · ·

As one can see, the first two columns of h’s Young tableau contain already D− 1 boxes, which
is the maximal number allowed by the second criterion mentioned above. Furthermore, the first
criterion implies that if we took away one box from a column, we had to put this box back into
another column (just like the spin-2 case, this pair of columns should add up to D−1 boxes), and
thus the total number of boxes in the two longest columns had to exceed the limit D− 1. This is
the reason why there are no allowed types of Young tableaux other than rectangular ones.

Again, one may solve the divergenceless condition in the generalized FP equations using the
generalized Einstein tensor, and by substituting the solution into the Klein-Gordon equation and

15Otherwise the corresponding irrep of the little group (traceless tensor with spatial indices) vanishes, according to
a mathematical theorem (see e.g. Chapter 10 in [8]).
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the traceless condition, one obtains the NMG-like equations of motion. The gauge transformation
rule for the spin-s gauge field is the derivative of a tensor of the type

D−1
2



s︷ ︸︸ ︷
· · ·
· · ·

...
...

. . .
...

...
· · ·
· · ·

. (3.14)

4. Factorizing the Klein-Gordon Operator

Just like the 3D cases, in D = 4k − 1, where k = 1,2, · · · , for any tensor Tρ1···ρ2k−1,··· whose
symmetry is described by a Young tableau with 2k−1 boxes in the first column, its Klein-Gordon
equation

(
�−m2

)
Tρ1···ρ2k−1,··· = 0 under the divergenceless condition can be written as[

1
(2k−1)!

εµ1···µ2k−1
αν1···ν2k−1∂α ±mδ ν1···ν2k−1

µ1···µ2k−1

]
·
[

1
(2k−1)!

εν1···ν2k−1
βρ1···ρ2k−1∂β ∓mδ ρ1···ρ2k−1

ν1···ν2k−1

]
Tρ1···ρ2k−1,··· = 0 , (4.1)

where the Klein-Gordon operator has been factorized into two first-order differential operators.
Then by dropping the first operator, one obtains a pair of “generalized

√
FP equations” of T 16[

1
(2k−1)!

εν1···ν2k−1
βρ1···ρ2k−1∂β −µδ ρ1···ρ2k−1

ν1···ν2k−1

]
Tρ1···ρ2k−1,··· = 0 , (4.2)

where µ = ±m. The two equations are interchanged by parity transformation and each carry half
of the propagating degrees of freedom of the generalized FP equations of T , which is analogous to
the 3D situation where the two propagating degrees of freedom split into two helicities.

As for D = 4k + 1, one can also write down a similar pair of equations, but unfortunately
by taking a product of the two first-order differential operators one obtains −

(
�+m2

)
, which is

tachyonic, instead of the right Klein-Gordon operator. Therefore, in this situation we don’t have
a direct generalization of the

√
FP equations.17 For massive particles in even D, there is not any

concept in analogy to the helicity in 3D.

We now only focus on the D = 4k−1 situation, and we would like to solve the divergenceless
condition to boost up the derivatives, in the hope that (4.2) can be converted into a TMG-like model.
As already discussed in the previous section, in order to achieve this, we can only use a gauge field
whose generalized Einstein tensor, defined as the dual of its generalized Riemann tensor, lives in
the same representation as the gauge field itself. Then it is obvious that for spin-s (s ≥ 1) the only
allowed type of gauge field is represented by a rectangular Young tableau of width s and height

16Note that the divergenceless and traceless conditions can be derived from either of the two equations.
17The spin-1 models for both D = 4k−1 and D = 4k+1 were studied in details in [9].
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2k − 1. After substituting the solution to the divergenceless condition T = G(h) into (4.2) one
obtains a TMG-like model with a gauge symmetry parameterized by a tensor of the type (3.14).
More technical details will be illustrated by the 7D spin-2 example in the next section.

5. An Example in 7D

As already explained, for any massive spin s ≥ 1, the only type of gauge field that is suitable
for both NMG and TMG-like models is represented by a rectangular Young tableau of height 2k−1
in 4k− 1 dimensions. In this section, we would like to discuss in details the specific example of
s = 2 and k = 2, i.e. the type in 7D. For both the NMG-like and the TMG-like models, we will
construct their equations of motion and integrate them into actions. We will also do an analysis to
show that these actions are ghost-free.

To simplify the notation, we use the index with a bar to denote a set of three antisymmetrized
indices, e.g. µ̄ stands for the set of indices µ1µ2µ3 that are antisymmetrized.

5.1 The Models

We start from the tensor field Tµ̄,ν̄ of the type . The irrep of the little group SO(6)
carries 70 degrees of freedom, so let us first check that after the Lorentz covariantizaton, with
the divergenceless and traceless conditions imposed, Tµ̄,ν̄ carries the same number of degrees of
freedom. In the following counting, Young tableaux should be thought as representations of GL(7).

Without any constraints, the number of degrees of freedom carried by Tµ̄,ν̄ is

= 490 . (5.1)

Now we impose the divergenceless condition ∂ µ1Tµ̄ ,ν̄ = 0.18 At first sight, this constraint appears

to cut the number of degrees of freedom of , but in fact this corresponds to an excessive cutting,

because the double-divergence ∂ µ1∂ µ2Tµ̄,ν̄ vanishes by construction, which means the degrees of

freedom represented by has to be compensated. However, this compensation is again an exces-

sive compensation, because the triple-divergence ∂ µ1∂ µ2∂ µ3Tµ̄,ν̄ vanishes by construction, and we

must re-cut the degrees of freedom of . Therefore, in total

− + = 490−210+35 = 315 (5.2)

degrees of freedom are suppressed by the divergenceless condition.
Then we impose the traceless condition. This means the number of independent components

carried by every Young tableau should be reduced by removing its trace. Therefore, the number of
degrees of freedom taken away by the traceless condition should be equal to

− + = 196−112+21 = 105 , (5.3)

where the first Young tableau stands for the trace of Tµ̄,ν̄ , and the second (third) stands for the trace
of the divergence (double-divergence) of Tµ̄,ν̄ .

18Because T satisfies Tµ̄,ν̄ = Tν̄ ,µ̄ , the divergenceless condition ∂ µ1 Tµ̄,ν̄ = 0 is equivalent to ∂ ν1 Tµ̄ ,ν̄ = 0.
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In the end, we find that Tµ̄,ν̄ under both constraints indeed carries 70 degrees of freedom:

490−315−105 = 70 . (5.4)

Then we can write down the generalized FP equations:(
�−m2)Tµ̄,ν̄ = 0 , ∂ µ1Tµ̄,ν̄ = 0 , ηµ1ν1Tµ̄,ν̄ = 0 , (5.5)

and the generalized
√

FP equation:(
1
6

εµ̄
αρ̄∂α −µδ ρ̄

µ̄

)
Tρ̄ ,ν̄ = 0 , (5.6)

where µ = ±m, and each sign corresponds to an equation describing 35 propagating degrees of
freedom. Note that the divergenceless and traceless condtions can be derived from (5.6).

In the next step, one can solve the divergenceless condition by

Tµ̄,ν̄ = Gµ̄,ν̄ (h)≡ εµ̄
αρ̄εν̄

β σ̄ ∂α∂β hρ̄ ,σ̄ , (5.7)

where the gauge field h and the generalized Einstein tensor G(h) also belong to the type . Thus
one may boost up the derivatives to derive the NMG-like equations of motion(

�−m2)Gµ̄,ν̄ (h) = 0 , ηµ1ν1Gµ̄,ν̄ (h) = 0 , (5.8)

and the TMG-like equation of motion(
1
6

εµ̄
αρ̄∂α −µδ ρ̄

µ̄

)
Gρ̄,ν̄ (h) = 0 , (5.9)

from which one can also derive ηµ1ν1Gµ̄,ν̄ (h) = 0.
Analogous to 3D, we can define the generalized Cotton tensor19

Cµ̄,ν̄ (h) = Y[3,3]
[
εµ̄

αρ̄∂αGρ̄ ,ν̄ (h)
]

, (5.10)

which is both divergenceless and traceless, and we can use it to simplify the construction of both
the NMG-like and the TMG-like actions.

The NMG-like action reads

S7D NMG spin-2 =
∫

d7x
{

1
72

hµ̄,ν̄εµ̄
αρ̄∂αCρ̄ ,ν̄ (h)−

1
2

m2hµ̄,ν̄Gµ̄,ν̄ (h)
}

, (5.11)

from which one can derive20

1
36

εµ̄
αρ̄∂αCρ̄,ν̄ (h)−m2Gµ̄ ,ν̄ (h) = 0 . (5.12)

19Note that off-shell we need the Young symmetrizer, otherwise Cµ̄,ν̄ (h) does not satisfy the symmetry . How-

ever, on-shell by using the traceless condition of Gµ̄,ν̄ (h) one can prove that dropping the Young symmetrizer gives an
equivalent formula.

20Because the generalized Cotton tensor is both divergenceless and traceless, one can prove that the first term in this

equation of motion, without being projected by a Young symmetrizer, already satisfies the symmetry .
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By taking the trace of this equation one obtains

ηµ1ν1Gµ̄,ν̄ (h) = 0 , (5.13)

and substituting it back into (5.12) gives(
�−m2)Gµ̄,ν̄ (h) = 0 . (5.14)

Thus (5.8) is derived.
The TMG-like action reads

S7D TMG spin-2 =
∫

d7x
{

1
12

hµ̄,ν̄Cµ̄,ν̄ (h)−
1
2

µhµ̄,ν̄Gµ̄,ν̄ (h)
}

, (5.15)

from which one can derive
1
6

Cµ̄,ν̄ (h)−µGµ̄ ,ν̄ (h) = 0 , (5.16)

and the trace of this equation gives the traceless condition

ηµ1ν1Gµ̄,ν̄ (h) = 0 . (5.17)

Using this condition one can prove that (5.16) and (5.9) are equivalent.

5.2 Canonical Analysis

We will perform an analysis in a similar manner to the 3D analysis done in [3, 4], in order to
show that the actions (5.11) and (5.15) indeed describe 70 and 35 (for each choice of µ) propagating
degrees of freedom, respectively, which are ghost-free.

Before the analysis, we first count the number of degrees of freedom carried by the gauge
field h. The gauge field h of the type , which is counted as the 490 representation of GL(7),
transforms under the gauge transformations

δhµ1µ2µ3,ν1ν2ν3 = Y[3,3]
(
∂[ν3|ξµ1µ2µ3,|ν1ν2]

)
, (5.18)

where ξ is of the type , which has 490 degrees of freedom. We should be careful with the

counting because ξ has its own gauge symmetry

δξµ1µ2µ3,ν1ν2 = Y[3,2]
(
∂[ν2|ζµ1µ2µ3,|ν1]

)
, (5.19)

where ζ is of the type with 210 degrees of freedom. Moreover ζ has also by itself a gauge
symmetry

δζµ1µ2µ3,ν1 = Y[3,1]
(
∂ν1λµ1µ2µ3

)
, (5.20)

where λ is an antisymmetric tensor and has 35 degrees of freedom. Therefore, to summarize the
above counting, we expect that after a gauge-fixing h should carry

490−490+210−35 = 175 (5.21)

degrees of freedom.
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Now we split the indices into temporal and spatial components like µ = (0, i), i = 1, · · · ,6, and
impose the gauge-fixing condition21

∂ ihiµ2µ3,ν1ν2ν3 = 0 . (5.22)

Under this condition, we parameterize h in terms of the independent components (a,b,c,d,e) as
follows: 22

h0i2i3,0 j2 j3 = ai2i3, j2 j3 ,

h0i2i3, j1 j2 j3 = ε j1 j2 j3
k1k2k3∂k1bk2k3,i2i3 +

{(
δi3 j3 −

∂i3∂ j3

∇2

)
c j1 j2,i2

+

(
δi2 j2δi3 j3 −

∂i2∂ j2

∇2 δi3 j3 −δi2 j2
∂i3∂ j3

∇2

)
d j1

}
a.s.

,

hi1i2i3, j1 j2 j3 = εi1i2i3
k1k2k3ε j1 j2 j3

l1l2l3∂k1∂l1ek2k3,l2l3 , (5.23)

where the properties of these components are listed below.

Components Symmetry divergence trace degrees

a..,.. -less -ful 50
b..,.. -less -less 35
c..,. -less -less 35
d. -less 5

e..,.. -less -ful 50

As shown in the last column of this table, the total number of degrees of freedom sums up to 175,
which is consistent with (5.21).

In the next step, we substitute (5.23) into (5.11) and (5.15). Then we separate the trace of
ai2i3, j2 j3 from its traceless part:

ai2i3, j2 j3 = âi2i3, j2 j3 +

{(
ηi2 j2 −

∂i2∂ j2

∇2

)
āi3, j3 +

(
ηi2 j2ηi3 j3 −

∂i2∂ j2

∇2 ηi3 j3 −ηi2 j2
∂i3∂ j3

∇2

)
a
}

a.s.
,

(5.24)

where âi2i3, j2 j3 and āi3, j3 are traceless and carry 35 and 14 degrees of freedom, which represent
the traceless and the trace parts of ai2i3, j2 j3 , respectively, and a carrying one degree of freedom
represents the double trace part. We also split ei2i3, j2 j3 in the same way.

In the resulting NMG-like action, we further do a field redefinition:23

âi2i3, j2 j3 = ãi2i3, j2 j3 −4�êi2i3, j2 j3 +8m2êi2i3, j2 j3 . (5.25)

21One also has to gauge-fix ∂ i2 ξi2µ3,ν1ν2ν3 = 0 and ∂ i3 ζi3,ν1ν2ν3 = 0 to show that the gauge parameters indeed cannot
carry any propagating degrees of freedom.

22The notation { }a.s. stands for antisymmetrizing all indices within the curly bracket that have the same Latin letter.
For instance,

{
Ti2i3 j1 j2 j3

}
a.s. = T[i2i3][ j1 j2 j3]. εi jklmn ≡ ε0i jklmn. ∇2 ≡ ∂ i∂i. Note that we permit space non-locality, since

this does not affect the canonical structure.
23In the context of this analysis, the � operator is simply understood as a notation for −(∂0)

2 +∇2 , rather than
being interpreted as a Lorentz-invariant object.
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In the end we obtain

S7D NMG spin-2 =
∫

d7x
{
(3!)4 bi2i3, j2 j3

(
∇2)2 (�−m2)bi2i3, j2 j3

+4(3!)4 m2êi2i3, j2 j3
(
∇2)2 (�−m2) êi2i3, j2 j3

+
1

16
(3!)4 ãi2i3, j2 j3

(
∇2)2

ãi2i3, j2 j3 −
3
4
(3!)4 m2āi3, j3

(
∇2)2

ēi3, j3

−10(3!)4 m2a
(
∇2)2

e− 3
10

(5!)m2c j1 j2,i2∇2c j1 j2,i2

+
9
2
(2!4!)m2d j1∇2d j1

}
. (5.26)

We see that the first and second terms each represent 35 propagating degrees of freedom, both with
the right sign, and the rest part decouples and does not propagate. Thus, this action describes 70
massive physical degrees of freedom.

In the resulting TMG-like action, we do the following field redefinitions:

âi2i3, j2 j3 = ãi2i3, j2 j3 −
2
µ
�bi2i3, j2 j3 , êi2i3, j2 j3 = ẽi2i3, j2 j3 −

1
2µ

bi2i3, j2 j3 , (5.27)

which gives

S7D TMG spin-2 =
∫

d7x
{

1
µ
(3!)4 bi2i3, j2 j3

(
∇2)2 (�−µ2)bi2i3, j2 j3

−(3!)4 µ ãi2i3, j2 j3
(
∇2)2

ẽi2i3, j2 j3 −
3
4
(3!)4 µ āi3, j3

(
∇2)2

B̄i3, j3

−10(3!)4 µa
(
∇2)2

e− 3
10

(5!)µc j1 j2,i2∇2c j1 j2,i2

+
9
2
(2!4!)µd j1∇2d j1

}
. (5.28)

The first term contains 35 propagating degrees of freedom and the rest terms are all auxiliary, and
by properly choosing an overall sign, this action is ghost-free.

6. Conclusions

We have discussed the possibility to extend 3D NMG/TMG-like models to higher dimensions.
The conclusion is that only when the dual of the Riemann tensor lives in the same representation
as the gauge field, and the corresponding Young tableau has no more than D− 1 boxes in its first
two columns, can we have a chance to extend the NMG-like models. Furthermore, to extend the
TMG-like models, additionally the number of spacetime dimensions has to be 4k−1, k = 1,2, · · · ,
and the corresponding Young tableau has to be a rectangle of height 2k−1.

We have explicitly shown the example in 7D. The actions (5.11) and (5.15) look almost the
same as the 3D linearized NMG and TMG actions in [3], except for the bars on the indices and some
coefficients. The canonical analysis is also similar. Furthermore, in [10] we also discussed that the
mass term, i.e. the second order derivative term shared by (5.11) and (5.15), can be reformulated
at the linearized level in a similar way to the 3D Chern-Simons formalism in [11, 12]. We hope
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these similarities may give us further inspiration on how to introduce interactions into the higher
dimensional models.
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