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1. Introduction

It was known in the first half of the twentieth century that, at the atomic level and at larger
distance scales, all phenomena appear to be governed by the laws of classical general relativity and
of quantum electrodynamics.

Gravitational and electromagnetic forces are long range and hence can be perceived directly
without the mediation of highly sophisticated technical devices. The development of large scale
physics, initiated by the Galilean inertial principle, is surely tributary to this circumstance. It then
took about three centuries to achieve a successful description of long range effects.

The discovery of subatomic structures and of the concomitant weak and strong interaction
short range forces raised the question of how to cope with short range forces in quantum field
theory. The Fermi theory of weak interactions, formulated in terms of a four Fermi point-like
current-current interaction, was predictive in lowest order perturbation theory and successfully
confronted many experimental data. However, it was clearly inconsistent in higher order because
of uncontrollable quantum divergences at high energies. In order words, in contradistinction with
quantum electrodynamics, the Fermi theory is not renormalizable. This difficulty could not be
solved by smoothing the point-like interaction by a massive, and therefore short range, charged
vector particle exchange (the so-called W+ and W− mesons); theories with fundamental massive
charged vector mesons are not renormalizable either. In the early nineteen sixties, there seemed
to be insuperable obstacles for formulating a theory with short range forces mediated by massive
vectors.

The solution of the latter problem came from the theory proposed in 1964 by Brout and Englert
[1] and by Higgs [2, 3]. The Brout-Englert-Higgs (BEH) theory is based on a mechanism, inspired
from the spontaneous symmetry breaking of a continuous symmetry, discussed in the previous talk
by Robert Brout, adapted to gauge theories and in particular to non abelian gauge theories. The
mechanism unifies long range and short range forces mediated by vector mesons, by deriving the
vector mesons masses from a fundamental theory containing only massless vector fields. It led to a
solution of the weak interaction puzzle and opened the way to modern perspectives on unified laws
of nature.

Before turning to an exposé of the BEH mechanism, we shall in section II review, in the
context of quantum field theory, the analysis given by Robert Brout of the spontaneous breaking of
a continuous symmetry. Section III explains the BEH mechanism. We present the quantum field
theory approach of Brout and Englert wherein the breaking mechanism for both abelian and non
abelian gauge groups is induced by scalar bosons. We also present their approach in the case of
dynamical symmetry breaking from fermion condensate. We then turn to the equation of motion
approach of Higgs. Finally we explain the renormalization issue. In section IV, we briefly review
the well-known applications of the BEH mechanism with particular emphasis on concepts relevant
to the quest for unification. Some comments on this subject are made in section V.

2. Spontaneous Breaking of a Global Symmetry

Spontaneous breaking of a Lie group symmetry was discussed by Robert Brout in “The Pale-
olitic Age”. I review here its essential features in the quantum field theory context.
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Recall that spontaneous breakdown of a continuous symmetry in condensed matter physics
implies a degeneracy of the ground state, and as a consequence, in absence of long range forces,
collective modes appear whose energies go to zero when the wavelength goes to infinity. This was
exemplified in particular by spin waves in a Heisenberg ferromagnet. There, the broken symmetry
is the rotation invariance.

Spontaneous symmetry breaking was introduced in relativistic quantum field theory by Nambu
in analogy to the BCS theory of superconductivity. The problem studied by Nambu [4] and Nambu
and Jona-Lasinio [5] is the spontaneous breaking of chiral symmetry induced by a fermion con-
densate1. The chiral phase group exp(iγ5α) is broken by the fermion condensate ⟨ψ̄ψ⟩ ̸= 0 and the
massless mode is identified with the pion. The latter gets its tiny mass (on the hadron scale) from a
small explicit breaking of the symmetry, just as a small external magnetic field imparts a small gap
in the spin wave spectrum. This interpretation of the pion mass constituted a breakthrough in our
understanding of strong interaction physics. General features of spontaneous symmetry breakdown
in relativistic quantum field theory were further formalized by Goldstone [6]. Here, symmetry is
broken by non vanishing vacuum expectation values of scalar fields. The method is designed to
exhibit the appearance of a massless mode out of the degenerate vacuum and does not really de-
pend on the significance of the scalar fields. The latter could be elementary or represent collective
variables of more fundamental fields, as would be the case in the original Nambu model. Compos-
iteness affects details of the model considered, such as the behavior at high momentum transfer,
but not the existence of the massless excitations encoded in the degeneracy of the vacuum.

Let us first illustrate the occurrence of this massless Nambu-Goldstone (NG) boson in a simple
model of a complex scalar field with U(1) symmetry [6].

The Lagrangian density,

L = ∂ µϕ ∗∂µϕ −V (ϕ ∗ϕ) with V (ϕ ∗ϕ) =−µ2ϕ ∗ϕ +λ (ϕ ∗ϕ)2 , λ > 0 , (2.1)

is invariant under the U(1) group ϕ → eiαϕ . The U(1) symmetry is called global because the group
parameter α is constant in space-time. It is broken by a vacuum expectation value of the ϕ -field
given, at the classical level, by the minimum of V (ϕ ∗ϕ). Writing ϕ = (ϕ1 + iϕ2)/

√
2, one may

choose ⟨ϕ2⟩ = 0. Hence ⟨ϕ1⟩2 = µ2/λ and we select, say, the vacuum with ⟨ϕ1⟩ positive. The
potential V (ϕ ∗ϕ) is depicted in Fig.1 .

Around the unbroken vacuum the field ϕ1 has negative mass and acquires a positive mass
around the broken vacuum where the field ϕ2 is massless. The latter is the NG boson of broken
U(1) symmetry. The massive scalar describes the fluctuations of the order parameter ⟨ϕ1⟩. Its mass
is the analog of the inverse longitudinal susceptibility of the Heisenberg ferromagnet discussed
by Robert Brout while the vanishing of the NG boson mass corresponds to the vanishing of its
inverse transverse susceptibility. The scalar boson ϕ1 is always present in spontaneous breakdown
of a symmetry. In the context of the BEH mechanism analyzed in the following section, it was
introduced by Brout and myself, and by Higgs. We shall label it the BEH boson2 (Fig.1).

In the classical limit, the origin of the massless NG boson ϕ2 is clearly illustrated in the Fig.1.
The vacuum characterized by the order parameter ⟨ϕ1⟩ is rotated into an equivalent vacuum by the

1See the detailed discussion in Brout’s lecture, section VII.
2It is often called the Higgs boson in the literature.

3



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
3
1

A Brief Course in SSB II François Englert

φ

φ 2

1

NG massless boson

BEH massive boson

(inverse) transverse susceptibility

(inverse) longitudinal susceptibility

V

Fig. 1

field ϕ2 at zero space momentum. Such rotation costs no energy and thus the field ϕ2 at space
momenta

→
q= 0 has q0 = 0 on the equations of motion, and hence zero mass.

This can be formalized and generalized by noting that the conserved Noether current Jµ =

ϕ1∂µϕ2 − ϕ2∂µϕ1 gives a charge Q =
∫

J0d3x. The operator exp(iαQ) rotates the vacuum by an
angle α . In the classical limit, this charge is, around the chosen vacuum, Q =

∫
⟨ϕ1⟩∂0ϕ2d3x and

involves only ϕ2 at zero momentum. In general, ⟨[Q,ϕ2]⟩ = i⟨ϕ1⟩ is non zero in the chosen vac-
uum. This implies that the propagator ∂ µ⟨T Jµ(x) ϕ2(x′)⟩ cannot vanish at zero four-momentum q
because its integral over space-time is precisely ⟨[Q,ϕ2]⟩. Expressing the propagator in terms of
Feynman diagrams we see that the ϕ2-propagator must have a pole at q2 = 0. The field ϕ2 is the
massless NG boson.

The proof is immediately extended to the spontaneous breaking of a semi-simple Lie group
global symmetry. Let ϕ A be scalar fields spanning a representation of the Lie group G generated
by the (antihermitian) matrices T aAB. If the dynamics is governed by a G -invariant action and if the
potential has minima for non vanishing ϕ A,s , symmetry is broken and the vacuum is degenerate
under G -rotations. The conserved charges are Qa =

∫
∂µϕ B T aBA ϕ A d3x. As in the abelian case

above, the propagators of the fields ϕ B such that ⟨[Qa,ϕ B]⟩ = T aBA ⟨ϕ A⟩ ̸= 0 have a NG pole at
q2 = 0.

3. The BEH Mechanism

3.1 From global to local symmetry

The global U(1) symmetry in Eq.(2.1) can be extended to a local U(1) invariance ϕ(x) →
eiα(x)ϕ(x) by introducing a vector field Aµ(x) transforming according to Aµ(x)→Aµ(x)+(1/e)∂µα(x).
The corresponding Lagrangian density is

L = Dµϕ ∗Dµϕ −V (ϕ ∗ϕ)− 1
4

FµνFµν , (3.1)
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with covariant derivative Dµϕ = ∂µϕ − ieAµϕ and Fµν = ∂µAν −∂νAµ .
Local invariance under a semi-simple Lie group G can be realized by extending the Lagrangian

Eq.(3.1) to incorporate non-abelian Yang-Mills vector fields Aa
µ

LG = (Dµϕ)∗A(Dµϕ)A −V − 1
4

Fa
µνFa µν , (3.2)

where

(Dµϕ)A = ∂µϕ A − eAa
µT aABϕ B,Fa

µν = ∂µAa
ν −∂νAa

µ − e f abcAb
µAc

ν . (3.3)

Here, ϕ A belongs to the representation of G generated by T aAB and the potential V is invariant
under G .

The success of quantum electrodynamics based on local U(1) symmetry, and of classical gen-
eral relativity based on a local generalization of Poincare invariance, provides ample evidence for
the relevance of local symmetry for the description of natural laws. One expects that local sym-
metry has a fundamental significance rooted in causality and in the existence of exact conservation
laws at a fundamental level, of which charge conservation appears as the prototype. As an example
of the strength of local symmetry we cite the fact that conservation laws resulting from a global
symmetry alone are violated in presence of black holes.

The local symmetry, or gauge invariance, of Yang-Mills theory, abelian or non abelian, appar-
ently relies on the massless character of the gauge fields Aµ , hence on the long range character of
the forces they transmit, as the addition of a mass term for Aµ in the Lagrangian Eq.(3.1) or (3.2)
destroys gauge invariance. But short range forces, such as the weak interaction forces, seem to
be as fundamental as the electromagnetic ones despite the apparent absence of exact conservation
laws. To reach a basic description of such forces one is tempted to link the violation of conservation
to a mass of the gauge fields which would arise from spontaneous symmetry breaking. However
the problem of spontaneous broken symmetry is different for global and for local symmetry.

To understand the difference, let us break the symmetries explicitly. To the Lagrangian Eq.(2.1)
we add the term

ϕh∗+ϕ ∗h , (3.4)

where h,h∗ are constant in space time. Let us take h real. The presence of the field h breaks
explicitly the global U(1) symmetry and the field ϕ1 always develops an expectation value. When
h → 0, the symmetry of the action is restored but, when the symmetry is broken by a minimum of
V (ϕϕ ∗) at |ϕ | ̸= 0, we still have ⟨ϕ1⟩ ̸= 0. The tiny h-field simply picks up one of the degenerate
vacua in perfect analogy with the infinitesimal magnetic field which orients the magnetization of a
ferromagnet. As in statistical mechanics, spontaneous broken global symmetry can be recovered in
the limit of vanishing external symmetry breaking. The degeneracy of the vacuum can be put into
evidence by changing the phase of h; in this way, we can reach in the limit h → 0 any U(1) rotated
vacuum.

When the symmetry is extended from global to local, one can still break the symmetry by an
external “magnetic” field. However in the limit of vanishing magnetic field the expectation value of
any gauge dependent local operator will tend to zero because, in contradistinction to global symme-
try, it cost no energy in the limit to change the relative orientation of neighboring “spins”; there is
then no ordered configuration in group space which can be protected from disordering fluctuations.
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B

q Fig. 2

(a)

(c)

(b)

As a consequence, the vacuum is generically non degenerate and points in no particular direction
in group space as the external field goes to zero. Local gauge symmetry cannot be spontaneously
broken3 and the vacuum is gauge invariant4. Recalling that the explicit presence of a gauge vector
mass breaks gauge invariance, we are thus faced with a dilemma. How can gauge fields acquire
mass without breaking the local symmetry?

3.2 Solving the dilemma

In perturbation theory, gauge invariant quantities are evaluated by choosing a particular gauge.
One imposes the gauge condition by adding to the action a gauge fixing term and one sums over
subsets of graphs satisfying the Ward Identities5.

Consider the Yang-Mills theory defined by the Lagrangian Eq.(3.2). Let us choose a gauge
which preserves Lorentz invariance and a residual global G symmetry. This can be achieved by
adding to the Lagrangian a gauge fixing term (2η)−1∂µAµ

a ∂νAaν . The gauge parameter η is arbi-
trary and has no observable consequences.

The global symmetry can now be spontaneously broken, for suitable potential V , by non zero
expectation values ⟨ϕ A⟩ of BEH fields. In Fig.2 we have represented fluctuations of this parame-
ter in the spatial q-direction and in an internal space direction orthogonal to the direction A. The
orthogonal direction depicted in the figure has been labeled B. Fig.2a pictures the spontaneously

3For a detailed proof, see reference [8].
4Note that for global symmetry breaking, one can always choose a linear combination of degenerate vacua which is

invariant under, say, the U(1) symmetry. This choice has no observable consequences and only masks the degeneracy of
the vacuum which is guaranteed by a superselection rule. The Hilbert space splits indeed, as in the ferromagnetic case
analyzed by Robert Brout (section V of “The Paleolitic Age”), into an infinite number of orthogonal spaces formed by
all the finite excitations on each degenerate vacuum.

5To this end, it is often necessary, in particular for non abelian gauge theories, to include Fadeev-Popov ghosts terms
in the action. These contribute when closed gauge field loops are included in the computation.
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Gauge field

Complex scalar field

Fig. 3

broken vacuum of the gauge fixed Lagrangian. Fig.2b and 2c represent fluctuations of finite wave-
length λ .

Clearly as λ → ∞ these fluctuations can only induce global rotations in the internal space.
In absence of gauge fields, such fluctuations would give rise, as in spontaneously broken global
continuous symmetries, to massless NG mode. In a gauge theory, fluctuations of ⟨ϕ A⟩ are just local
rotations in the internal space and hence are unobservable gauge fluctuations. Hence the NG bosons
induce only gauge transformations and its excitations disappear from the physical spectrum.

The degrees of freedom of the NG fields were present in the original gauge invariant action
and cannot disappear. But what makes local internal space rotations unobservable in a gauge theory
is precisely the fact that they can be absorbed through gauge transformations by the Yang-Mills
fields. The absorption of the long range NG fields renders massive those gauge fields to which
they are coupled, and transfers to them the missing degrees of freedom which becomes their third
polarization.

We shall see in the next sections how these considerations are realized in quantum field the-
ory, giving rise to an apparent breakdown of symmetry: despite the absence of spontaneous local
symmetry breaking, gauge invariant vector masses will be generated in a coset G /H , leaving long
range forces only in a subgroup H of G .

3.3 The quantum field theory approach [1]

α) Breaking by BEH bosons
Let us first examine the abelian case as realized by the complex scalar field ϕ exemplified in

Eq.(3.1).
In the covariant gauges, the free propagator of the field Aµ is

D0
µν =

gµν −qµqν/q2

q2 +η
qµqν/q2

q2 , (3.5)

where η is the gauge parameter. It can be put equal to zero, as in the Landau gauge used in reference
[1], but we leave it arbitrary here to illustrate explicitly the role of the NG-boson.

In absence of symmetry breaking, the lowest order contribution to the self-energy, arising
from the covariant derivative terms in Eq.(3.1), is given by the one-loop diagrams of Fig.3. The

7
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BEH tadpole

NG propagator

Fig. 4

self-energy (suitably regularized) takes the form of a polarization tensor

Πµν = (gµνq2 −qµqν) Π(q2) , (3.6)

where the scalar polarisation Π(q2) is regular at q2 = 0, leading to the gauge field propagator

Dµν =
gµν −qµqν/q2

q2[1−Π(q2)]
+η

qµqν/q2

q2 . (3.7)

The polarization tensor in Eq.(3.6) is transverse and hence does not affect the gauge parameter η .
The transversality of the polarization tensor reflects the gauge invariance of the theory6 and, as we
shall see below, the regularity of the polarization scalar signals the absence of symmetry breaking.
This guarantees that the Aµ -field remains massless.

Symmetry breaking adds tadpole diagrams to the previous ones. To see this write

ϕ =
1√
2
(ϕ1 + iϕ2) ⟨ϕ1⟩ ̸= 0 . (3.8)

The BEH field is ϕ1 and the NG field ϕ2. The additional diagrams are depicted in Fig.4. In this
case, the polarisation scalar Π(q2) in Eq.(3.6) acquires a pole

Π(q2) =
e2⟨ϕ1⟩2

q2 , (3.9)

and, in lowest order perturbation theory, the gauge field propagator becomes

Dµν =
gµν −qµqν/q2

q2 −µ2 +η
qµqν/q2

q2 , (3.10)

which shows that the Aµ -field gets a mass

µ2 = e2⟨ϕ1⟩2 . (3.11)

The generalization of Eqs.(3.6) and (3.9) to the non abelian case described by the action
Eq.(3.2) is straightforward. One gets from the graphs depicted in Fig.5,

Πab
µν = (gµν q2 −qµqν)Πab(q2) , (3.12)

Πab(q2) =
e2⟨ϕ ∗B⟩T ∗aBCT bCA⟨ϕ A⟩

q2 , (3.13)

6The transversality of polarisation tensors is a consequence of the Ward Identities alluded to in the preceding section.
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a

bCa

b

Fig. 5

from which follows the mass matrix

µab = e2⟨ϕ ∗B⟩T ∗aBCT bCA⟨ϕ A⟩ . (3.14)

In terms of the non-zero eigenvalues µa of the mass matrix the propagator for the massive gauge
vectors takes the same form as Eq.(3.10)

Da
µν =

gµν −qµqν/q2

q2 −µa2 +η
qµqν/q2

q2 . (3.15)

The gauge invariance is expressed, as it was in absence of symmetry breaking, through the
transversality of the polarization tensors Eqs.(3.6) and (3.12). The singular 1/q2 contributions to
the polarization scalars Eqs.(3.9) and (3.13), which preserve transversality while giving mass to the
gauge fields, stem from the long range NG boson fields encoded in their 1/q2 propagator. We shall
verify below that this pole has no observable effect as such. On the other hand, its absorption in
the gauge field propagator transfers the degrees of freedom of the NG bosons to the third degree of
polarization of the massive vectors. Indeed, on the mass shell q2 = µa2, one easily verifies that the
numerator in their propagator Eq.(3.15) is:

gµν −
qµqν

q2 =
3

∑
λ=1

e(λ )µ .e(λ )ν , q2 = µa2 , (3.16)

where the e(λ )µ are the three polarization vectors which are orthonormal in the rest frame of the
particle.

In this way, the NG bosons generate massive propagators for those gauge fields to which they
are coupled. Long range forces only survive in the subgroup H of G which leaves invariant the
non vanishing expectation values ⟨ϕ A⟩.

Note that (as in the abelian case) the scalar potential V does not enter the computation of the
gauge field propagator. This is because the trilinear term arising from the covariant derivatives in
the Lagrangian Eq.(3.2), which yields the second graph of Fig.5, can only couple the tadpoles to
other scalar fields through group rotations and hence couple them only to the NG bosons. These
are the eigenvectors with zero eigenvalue of the scalar mass matrix given by the quadratic term in
the expansion of the potential V around its minimum. Hence the mass matrix decouples from the
tadpole at the tree level considered above. An explicit example of this feature will be given for the
Lagrangian Eq.(4.5).

β ) Dynamical symmetry breaking

9



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
3
1

A Brief Course in SSB II François Englert

Γ γν5µ5 axiovector propagator

fermion propagator

Fig.6

The symmetry breaking giving mass to gauge vector bosons may arise from the fermion con-
densate breaking chiral symmetry. This is illustrated by the following chiral invariant Lagrangian

L = L F
0 − eV ψ̄γµψVµ − eA ψ̄γµγ5ψAµ −

1
4

FµνFµν(V )− 1
4

FµνFµν(A) . (3.17)

Here Fµν(V ) and Fµν(A) are abelian field strength for U(1)×U(1) symmetry. Chiral anomalies
are eventually canceled by adding in the required additional fermions.

The Ward identity for the chiral current

qµΓµ5(p+q/2, p−q/2) = S−1(p+q/2)γ5 + γ5S−1(p−q/2) , (3.18)

shows that if the fermion self-energy γµ pµΣ2(p2)−Σ1(p2) acquires a non vanishing Σ1(p2) term,
thus a dynamical mass m at Σ1(m2) = m (taking for simplicity Σ2(m2) = 1), the axial vertex Γµ5

develops a pole at q2 = 0. In leading order in q, we get

Γµ5→2mγ5
qµ

q2 . (3.19)

The pole in the vertex function induces a pole in the suitably regularized gauge invariant
polarization tensor Π(A)

µν of the axial vector field Aµ depicted in Fig.6

Π(A)
µν = e2

A(gµνq2 −qµqν)Π(A)(q2) , (3.20)

with

lim
q2→0

q2Π(A)(q2) = µ2 ̸= 0 . (3.21)

The field Aµ acquires in this approximation7 a gauge invariant mass µ .
This example illustrates the fact that the transversality of the polarization tensor used in the

quantum field theoretic approach to mass generation is a consequence of a Ward identity. This is
true whether vector masses arise through fundamental fundamental BEH bosons or through fermion
condensate. The generation of gauge invariant masses is therefore not contingent upon the “tree
approximation” used to get the propagators Eqs.(3.10) and (3.15). It is a consequence of the 1/q2

singularity in the vacuum polarisation scalars Eqs.(3.9), (3.12) or (3.21 ) which comes from NG
boson contribution.

7The validity of the approximation, and in fact of the dynamical approach, rests on the high momentum behavior of
the fermion self energy, but this problem will not be discussed here.
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3.4 The equation of motion approach [2, 3]

Shortly after the above analysis was presented, Higgs wrote two papers. In the first one [2] ,
he showed that the proof of the Goldstone theorem [6, 7], which states that, in relativistic quantum
field theory, spontaneous symmetry breaking of a continuous global symmetry implies zero mass
NG bosons, fails in the case of gauge field theory. In the second paper [3], he derived the BEH
theory in terms of the classical equations of motion, which he formulated for the abelian case.

From the action Eq.(3.1), taking as in Eq.(3.8), the expectation value of the BEH boson to be
⟨ϕ1⟩, and expanding the NG field ϕ2 to first order, one gets the classical equations of motion to that
order

∂ µ{∂µϕ2 − e⟨ϕ1⟩Aµ}= 0 , (3.22)

∂νFµν = e⟨ϕ1⟩{∂ µϕ2 − e⟨ϕ1⟩Aµ} . (3.23)

Defining

Bµ = Aµ −
1

e⟨ϕ1⟩
∂µϕ2 and Gµν = ∂µBν −∂νBµ = Fµν , (3.24)

one gets
∂µBµ = 0 , ∂νGµν + e2⟨ϕ1⟩2Bµ = 0 . (3.25)

Eq.(3.25) shows that Bµ is a massive vector field with mass squared e2⟨ϕ1⟩2 in accordance with
Eq.(3.11).

In this formulation, we see clearly how the Goldstone boson is absorbed into a redefined
massive vector field which has no longer explicit gauge invariance. The same phenomenon in the
quantum field theory approach is related to the unobservability of the 1/q2 pole mentioned in the
discussion of Eq.(3.14); this will be made explicit in the next section.

The equation of motion approach is classical in character but, as pointed out by Higgs [3], the
formulation of the BEH mechanism in the quantum field theory terms of reference [1] indicates its
validity in the quantum regime. We now show how the latter formulation signals the renormaliz-
ability of the BEH theory.

3.5 The renormalization issue

The massive vector propagator Eq.(3.15) differs from a conventional free massive propagator
in two respects. First the presence of the unobservable longitudinal term reflects the arbitrariness
of the gauge parameter η . Second the NG pole at q2 = 0 in the transverse projector gµν −qµqν/q2

is unconventional. Its significance is made clear by expressing the propagator of the Aµ field in
Eq.(3.15) as (putting η to zero)

Da
µν ≡

gµν −qµqν/q2

q2 −µa2 =
gµν −qµqν/µa2

q2 −µa2 +
1

µa2

qµqν

q2 . (3.26)

The first term in the right hand side of Eq.(3.26) is the conventional massive vector propagator. It
may be viewed as the (non-abelian generalization of the) free propagator of the Bµ field defined in
Eq.(3.24) while the second term is a pure gauge propagator due to the NG boson ([1/e⟨ϕ1⟩]∂µϕ2 in
Eq.(3.24) ) which converts the Aµ field into this massive vector field Bµ .

11
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The propagator Eq.(3.15) which appeared in the field theoretic approach contains thus, in the
covariant gauges, the transverse projector gµν − qµqν/q2 in the numerator of the massive gauge
field Aa

µ propagator. This is in sharp contradistinction to the numerator gµν − qµqν/µa2 charac-
teristic of the conventional massive vector field Bµ propagator. It is the transversality of the self
energy in covariant gauges, which led in the “tree approximation” to the transverse projector in
Eq.(3.15). As already mentioned, the transversality is a consequence of a Ward identity and there-
fore does not depend on the tree approximation. This fact is already suggested from the dynamical
example presented above but was proven in more general terms in a subsequent publication8 [9].
The importance of this fact is that the transversality of the self-energy in covariant gauges deter-
mines the power counting of irreducible diagrams. It is then straightforward to verify that the BEH
quantum field theory formulation is renormalizable by power counting.

On this basis we suggested that the BEH theory constitutes indeed a consistent renormalizable
field theory [9]. To prove this statement, one must verify that the theory is unitary, a fact which
is not apparent in the “renormalizable” covariant gauges because of the 1/q2 pole in the projector,
but would be manifest in the “unitary gauge” defined in the free theory by the Bµ propagator. In
the unitary gauge however, renormalization from power counting is not manifest. The equivalence,
at the free level, between the Aµ and Bµ free propagators, which is only true in a gauge invariant
theory where their difference is the unobservable NG propagator appearing in Eq.(3.26), is the clue
of the consistency of the BEH theory. A full proof that the theory is renormalizable and unitary
was achieved by ’t Hooft and Veltman [10].

4. Consequences

The most dramatic application of the BEH mechanism is the electroweak theory, amply con-
firmed by experiment. Considerable work has been done, using the BEH mechanism, to for-
mulate Grand Unified theories of non gravitational interactions. We shall summarize here these
well known ideas and then evoke the construction of regular monopoles and flux lines using BEH
bosons, because they raise potentially important conceptual issues. We shall also mention briefly
the attempts to include gravity in the unification quest, in the so called M-theory approach, and
focuses in this context on an interesting geometrical interpretation of the BEH mechanism.

4.1 The electroweak theory [11]

In the electroweak theory, the gauge group is taken to be SU(2)×U(1) with corresponding
generators and coupling constants gAa

µT a and g′BµY ′. The SU(2) acts on left-handed fermions
only. The electromagnetic charge operator is Q = T 3 +Y ′ and the electric charge e is usually
expressed in terms of the mixing angle θ as g = e/sinθ ,g′ = e/cosθ . The BEH bosons (ϕ+,ϕ 0)

are in a doublet of SU(2) and their U(1) charge is Y ′ = 1/2. Breaking occurs in such a way that Q
generates an unbroken subgroup, coupled to which is the massless photon field. Thus the vacuum
is characterized by ⟨ϕ⟩= 1/

√
2 (0,v).

Using Eqs.(3.11) and (3.14) we get the mass matrix

8The proof given in reference [9] was not complete because closed Yang-Mills loops, which would have required
the introduction of Fadeev-Popov ghosts were not included.

12



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
3
1

A Brief Course in SSB II François Englert

|µ2|=v2

4

g2 0 0 0
0 g2 0 0
0 0 g′2 −gg′

0 0 −gg′ g2

whose diagonalization yields the eigenvalues

M2
W+ =

v2

4
g2 , M2

W− =
v2

4
g2 , M2

Z =
v2

4
(g′2 +g2) , M2

A = 0 . (4.1)

This permits to relate v to the the Fermi coupling G as v2 = (
√

2G)−1.
Although the electroweak theory has been amply verified by experiment, the existence of

the BEH boson has, as yet, not been confirmed. It should be noted that the physics of the BEH
boson is more sensitive to dynamical assumptions than the massive vectors W± and Z, be it a
genuine elementary field or a manifestation of a composite due to a more elaborate mechanism.
Hence observation of its mass and width is of particular interest for further understanding of the
mechanism at work.

4.2 Grand unification schemes

The discovery that confinement could be explained by the strong coupling limit of quan-
tum chromodynamics based on the “color” gauge group SU(3) led to tentative Grand Unifica-
tion schemes where electroweak and strong interaction could be unified in a simple gauge group
G containing SU(2)×U(1)× SU(3) [12]. Breaking occurs through vacuum expectation values
of BEH fields and unification can be realized at high energies because while the renormalization
group makes the small gauge coupling of U(1) increase logarithmically with the energy scale, the
converse is true for the asymptotically free non abelian gauge groups.

4.3 Monopoles, flux tubes and electromagnetic duality

In electromagnetism, monopoles can be included at the expense of introducing a Dirac string
[13]. The latter creates a singular potential along the string terminating at the monopole. For
instance to describe a point-like monopole located at r⃗ = 0, one can take the line-singular potential

A⃗ =
g

4π
(1− cosθ )⃗∇ϕ , (4.2)

This potential has a singularity along the negative z-axis (θ = π) where the string has been put (see
Fig.7). The unobservability of the string implies that its fictitious flux be quantized according to
the Dirac condition

eg = 2πn n ∈ Z . (4.3)

In contradistinction to the string in the U(1) theory, the Dirac string in non abelian gauge
groups can be removed by a gauge singularity for well chosen quantized magnetic charges, reduc-
ing the line singularity to a point like singularity.

An example is the SO(3) monopole, represented in Fig.8, arising from the potential

Aai =
g

4π
ε iab rb

r2 , eg = 4π . (4.4)
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Breaking the symmetry to U(1) by a BEH field belonging to the adjoint group SO(3) one can
remove the point singularity to get the topologically stable ’t Hooft-Polyakov regular monopole
[14].

This procedure can be extended to Lie groups G of higher rank [15]. For a general Lie group
G , the possibility of gauging out the Dirac string depends on the global properties of G . Namely,
the mapping of a small circle surrounding the Dirac string onto G must be a curve continuously
deformable to zero. Closed curves in G are characterized by Z where Z is the subgroup of the
center of the universal covering G̃ of G such that G = G̃ /Z. Gauging out only occurs for the
curve corresponding to the unit element of Z. This is the origin for the unconventional factor of 2
(4π = 2.2π) in Eq.(4.4) as SO(3) = SU(2)/Z2.

The construction of regular monopoles has interesting conceptual implications.
The mixing between space and isospace indices in Eq.(4.4) means that the regular monopole

is invariant under the diagonal subgroup of SO(3)space × SO(3)isospace. This implies that a bound
state of a scalar of isospin 1/2 with the monopole is a space-time fermion. In this way, fermions
can be made out of bosons [16].

One can define regular monopoles in a limit in which the BEH-potential vanishes. These

14
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Dp-branes

Fig. 9

are the BPS monopoles. They admit a supersymmetric extensions in which there are indications
that electromagnetic duality can be realized at a fundamental level, namely that the interchange of
electric and magnetic charge could be realized by equivalent but distinct actions.

The BEH-mechanism, when G symmetry is completely broken, is a relativistic analog of
superconductivity. The latter may be viewed as a condensation of electric charges. Magnetic flux
is then channeled into quantized flux tubes. In confinement, it is the electric flux which is channeled
into quantized tubes. Therefore electric-magnetic duality suggests that, at some fundamental level,
confinement is a condensation of magnetic monopoles and constitutes the magnetic dual of the
BEH mechanism [17].

4.4 A geometrical interpretation of the BEH mechanism

The BEH mechanism operates within the context of gauge theories. Despite the fact that grand
unification schemes reach scales comparable to the Planck scale, there was, a priori, no indication
that Yang-Mills fields offer any insight into quantum gravity. The only approach to quantum gravity
which had some success, in particular in the context of a quantum interpretation of the black holes
entropies, are the superstring theory approaches and the possible merging of the five perturbative
approaches (Type IIA, IIB, Type I and the two heterotic strings) into an elusive M-theory whose
classical limit would be 11-dimensional supergravity. Of particular interest in that context is the
discovery of Dp-branes along which the ends of open strings can move [18]. This led, for the
first time, to an interpretation of the area entropy of some black holes in terms of a counting of
quantum states. Here we shall explain how Dp-branes yield a geometrical interpretation of the
BEH mechanism.

When N BPS Dp-branes coincide, they admit massless excitations from the N2 zero length
oriented strings with both end attached on the N coincident branes. There are N2 massless vectors
and additional N2 massless scalars for each dimension transverse to the branes. The open string
sector has local U(N) invariance. At rest, BPS Dp-branes can separate from each other in the
transverse dimensions at no cost of energy. Clearly this can break the symmetry group from U(N)

up to U(1)N when all the branes are at distinct location in the transverse space, because strings
joining two different branes have finite length and hence now describe finite mass excitations. The
only remaining massless excitations are then due to the zero length strings with both ends on the
same brane.
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This symmetry breaking mechanism can be understood as a BEH mechanism from the action
describing low energy excitations of N Dp-branes. This action is the reduction to p+1 dimensions
of 10-dimensional supersymmetric Yang-Mills with U(N) gauge fields [19, 20].

The Lagrangian is

L =−1
4

TrFµνFµν +Tr
(

1
2

DµAiDµAi − 1
4
[Ai ,A j]2

)
+ fermions , (4.5)

where µ labels the p+ 1 brane coordinates and i the directions transverse to the branes. Fµν =

Fa
µνTa, Ai = Aai Ta where Ta is a generator of U(N) in a defining representation.

The states of zero energy are given classically, and hence in general because of supersymmetry,
by all commuting Ai = {xi

mn} matrices, that is, up to an equivalence, by all diagonal matrices
{xi

mn}= {xi
mδmn}. Label the N2 matrix elements of Aµ by Aµ mn. The (N2 −N) gauge fields given

by the non diagonal elements m ̸= n acquire a mass

m2
mn ∝ (⃗xm − x⃗n)

2 , (4.6)

if x⃗m ̸= x⃗n, as is easily checked by computing the quadratic terms in Aµ mn appearing in the covariant
derivatives TrDµAiDµAi.

This symmetry breaking is induced by the expectation values {xi
m}. The gauge invariance is

ensured, as usual, by unobservable (N2 −N) NG bosons. To identify the latter we consider the
scalar potential in Eq.(4.5), namely

V = Tr
1
4
[Ai ,A j][Ai ,A j] =

1
4 ∑

i, j;m,n
⟨m|[Ai ,A j]|n⟩⟨n|[Ai ,A j]|m⟩ . (4.7)

We write
⟨m|A j|n⟩= x j

mδmn + y j
mn . (4.8)

Here the diagonal elements {x j
m} are the BEH expectation values and the y j

mn(= −[y j
nm]∗) define

d(N2 −N) hermitian scalar fields (yi
mn)

a (a = 1,2) where y j
mn = (y j

mn)1 + i(y j
mn)2 , m > n , and d is

the number of transverse space dimensions. The mass matrix for the fields (yi
mn)

a is

∂ 2V
∂ (yk

mn)
a∂ (yl

mn)
b = δ ab[(⃗xm − x⃗n)

2δ kl − (xk
m − xk

n)(x
l
m − xl

n)] , (4.9)

and has for each pair m,n (m< n), two zero eigenvalues corresponding to the eigenvectors (yl
mn)

a ∝
(xl

m−xl
n). These are the required (N2−N) NG bosons, as can be checked directly from the coupling

of Ai to Aµ in the Lagrangian Eq.(4.5) .
As mentioned above, the breaking of U(N) up to U(1)N may be viewed in the string picture as

due to the stretched strings joining branes separated in the dimensions transverse to the branes. One
identifies the {xi

m} as coordinates transverse to the brane m. The mass of the vector meson Aµ mn is
then the mass shift due to the stretching of the otherwise massless open string vector excitations.
The unobservable NG bosons y⃗mn ∥ (⃗xm − x⃗n) are the field theoretic expression of the unobservable
longitudinal modes of the strings joining the branes m and n. In this way Dp-branes provide a
geometrical interpretation of the BEH mechanism.
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It may be worth mentioning the interesting situation which occurs when p = 0 [20, 21]. The
Lagrangian Eq.(4.5) then describes a pure quantum mechanical system where the {xi

mn} are the
dynamical variable. The time component At which enters the covariant derivative DtAi can be
put equal to zero, leaving a constraint which amounts to restrict the quantum states to singlets of
SU(N). The {xi

m} which define in string theory D0-brane coordinates (viewed as partons in the in-
finite momentum frame in reference [21]) are the analog, for p = 0, of the BEH expectation values
in the p ̸= 0 case, although they label now classical collective position variables of the quantum
mechanical system and not vacuum expectation values. The nondiagonal quantum degrees of free-
dom y⃗mn ⊥ (⃗xm − x⃗n) have a positive potential energy proportional to the distance squared between
the D0-branes m and n. Hence they get locked in their ground state when the D0-branes are largely
separated from each other. In this way, the D0-brane Ai = {xi

mn} matrices commute at large dis-
tance scale and define geometrical degrees of freedom. However these matrices do not commute at
short distances where the potential energies of the yi

mn go to zero. This suggests that the space-time
geometry exhibits non commutativity at small distances, a feature which may well turn out to be
an essential element of quantum gravity.

5. Remarks

Physics, as we know it, is an attempt to interpret the apparent diversity of natural phenomena in
terms of general laws. By essence then, it incites one towards a quest for unifying diverse physical
laws.

Originally the BEH mechanism was conceived to unify the theoretical description of long
range and short range forces. The success of the electroweak theory made the mechanism a can-
didate for further unification. Grand unification schemes, where the scale of unification is pushed
close to the scale of quantum gravity effects, raised the possibility that unification might also have
to include gravity. This trend towards the quest for unification received a further impulse from
the developments of string theory and from its connection with eleven-dimensional supergravity.
The latter was then viewed as a classical limit of a hypothetical M-theory into which all pertur-
bative string theories would merge. In that context, the geometrization of the BEH mechanism is
suggestive of the existence of an underlying non commutative geometry.
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