
P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Grid Management Using Instant Messaging

Tan Nam Beng1

Nanyang Polytechnic

Singapore

E-mail: tan_nam_beng@nyp.gov.sg

In this paper, we describe an implementation that utilizes an instant messaging system for

providing Grid Computing submission, monitoring and management capabilities. Currently,

accessing the Grid Network is usually via command line-based terminals or a web-based user

interface. The user will compose the job specification via some standard job submission

language. The target grid node to execute the job can be predetermined by the user or a Grid

broker can assist to identify the suitable grid resource. There is presently limited intuitive

means for users to assess the grid network utilization and situation before making the decision.

An improved method for Grid job submission, monitoring and management is proposed.

The International Symposium on Grids and Clouds (ISGC) 2013

March 17-22, 2013

Academia Sinica, Taipei, Taiwan

1
 Speaker

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

1. Introduction

A conventional grid computing (FIG. 1) allows members to share computing resources in a

network of computers in a distributed and coordinated manner [1], [2], [3]. Accessing the grid

network is usually done at a user’s workstation, either via a command line or web-based

interface. Typically, a user of a grid node composes the job specification in accordance with a

computing language and syntax. The job specification is then sent to a Resource Broker engine

in a Supervisory Node for the job to be submitted to a suitable Resource Node. In addition, the

job is monitored by a Job Monitor engine. Both the Job Submitter and Job Monitor engines

reside in the Supervisory Node. The user is, therefore, unaware whether he/she is using a

computer or data at one’s resource node or that at a remote resource node. In other words, the

complexity of sharing computing resources in a grid network is hidden from the users; there is

no intuitive means for users to assess or monitor the grid network utilization before submitting a

job. Further, there is no way to determine whether a Resource Node in the grid has failed. For

example, if one of the node connectivity is temporarily affected but a job has been successfully

completed, the status of the job is deemed to have failed.

 Figure 1: Grid Network

2. Instant Messaging

An Instant Messaging (“IM”) system is a client-server system. The IM server tracks the

presence information of IM clients that an IM client has subscriptions with. Presence

information includes means, ability, capability, status, willingness and location. By publishing

presence information, it is getting easier to contact people or to utilise resource. It helps the

current service offering much better service according to customer’s different presence status

[4], [5] , [6]. The IM system thus links these IM clients together and allows the IM clients to

communicate with one another. The IM Server is connected to a Directory/Authentication

Server. The Directory/Authentication Server runs a Roster engine. The Roster engine manages

transactions and associated roster subscription details of the IM clients connected to the IM

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Server. The roster subscription details of the IM clients are stored in a Repository. For example,

as shown in FIG. 2, IM Client A connects up with the IM Server and notifies the IM Server that

it is connected. The IM Server returns a list of contacts to IM Client A together with their

presence information from the Repository. The contact list contains the contact details of those

clients who have subscribed to both the IM Server and the IM Client A. The IM Client A then

sends out its presence information to the IM Server stating that it is “available”. The IM Server

updates its Repository and simultaneously sends the presence information of IM Client A to all

clients that have subscribed to the IM Client A. For example, as shown in a Roster in FIG. 2, IM

Client B has IM Client A in its contact list (but not IM Client C). The IM Server would send the

presence information of IM Client A to IM Client B only.

Figure 2: Instant Messaging Architecture

Conventional Instant Messenger (IM) systems, such as MSN, Yahoo, AOL, and Skype [7] and

so on, can therefore provide computer users who have subscribed to and are connected on-line

to such IM servers to “chat” or communicate synchronously. Some of these messaging may not

be routed through the respective IM server but directly with other IM clients A, B, C by

communicating through the use of Peer-to-Peer protocols after the IM server(s) has/have linked

the IM clients together. In addition, these conventional IM systems can also provide

asynchronous communication. Hence, an IM system can provide a suitable platform for

implementing a grid computing network where the IM clients are Resource nodes or computing

machines. FIG. 3 shows a conventional IM system being hosted on an internet gateway. As

depicted in FIG. 3, the IM clients etc. are linked to the internet gateway through their respective

Internet Service Provider (ISP) servers.

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Figure 3: IM System hosted on Internet Gateway

3. Grid Management Using Instant Messaging

It can thus be seen that there exists a need for a new system for implementing grid computing

submission, monitoring and scheduling using Instant Messaging in a manner that can minimize

if not overcome the limitations of conventional grid computing systems.

Figure 4: IM System integrated with Grid Computing

Above shows an architecture of an Instant Messenger (IM) system forming a grid computing.

The IM system has an Instant Messaging (IM) server, an Authentication server connected to the

IM server, a Repository connected to the Authentication server and Resource nodes (IM clients)

connected to the IM server. Each Resource node includes a terminal for a user to send IM text

messages to the IM server and other Resource nodes users. The Repository includes a Roster,

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

which contains all the Resource nodes’ (IM clients’) subscriptions to the IM server and other

Resource nodes (IM) clients. In above scenario, all the Resource nodes (IM Clients) and IM

Clients (users) have subscription with each other. Each Resource node(IM Client) is connected

to the IM system via a background service process and does not require human intervention; the

background service process connects a Resource node(IM client) to the IM System each time

the computing machine is started. In the proposed IM system, once an IM client (user) has

successfully signed-on to the IM system, the user is allowed to submit jobs to one or more

Resource nodes. In IM System, each IM client (user) is required to register with the IM system;

the registration data are stored in the Client Authorisation server, for example in a Grid

Repository. A user may first have to enrol onto the grid which may require authentication for

security purposes. The user positively establishes his identity with a Certificate Authority (CA).

Each IM client (user) installs listing engine into one’s computer. The listing engine provides a

contact list showing the status of all the available or active Resource nodes that are on-line by

using the log-in data kept in the Repository. An IM client is then able to submit a job request to

the grid computing system via the IM system by selecting a Resource node or group of

Resource nodes from the contact. Typically, the listing engine is installed when sign-on or

registration to the IM system is successfully completed. The listing engine may prompt an IM

client that a new Resource node is added to the IM system after a new sign-in or registration is

made. An example of a dialogue prompt from the listing engine is shown in FIG. 5. An IM

Client(user) who is on-line can either choose to allow the new Resource node to be added to

one’s contact list or not. If the user’s choice is positive, data in the Repository or Client

Authorisation Server is updated and the user’s contact list would indicate the newly added

Resource node as “available” or “on-line”. If the user’s choice is negative, data in the

Repository or Client Authorisation Server is not updated and the user’s contact list would not

list the newly added Resource node or would indicate it as “not available”.

Figure 5: Adding Grid Nodes

The contact list in diagram shows the status of the utilisation and job status of each resource

node in the IM System. The status of utilization of each available resource node is indicated by

the CPU usage, RAM size and available data storage or disc capacity whereas the status of a job

at each node is indicated by a job identification number if it is processing a job. In addition, the

status of each Resource node is colour coded. For example, when a Resource node is

“available” or online, it is indicated by a green smiley icon. If a Resource node is not available

or offline, it is indicated by a grey icon. In addition, a Resource node is also identified if it is a

Resource broker. A resource node can be identified by its node numbering and broker label.

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Each IM client is allowed to be additionally given the brokering function. When a group of

resource nodes are selected to execute a job, a predetermined Resource node in the group acts as

a supervisory broker. An advantage of the IM system is that a Resource node having brokering

function is able to broker a job it is handling or assigned to other Resource nodes. A job

specification includes an executable application and defines the computing resources, the

number of Resource nodes required to execute a job, the input data files and a job expiry time.

The computing resource definition includes the operating system, processor type, RAM, data

storage capacity and so on.

4. Implementing IM in Grid Management

The following section provides a brief description on the implementation of the system. Every

node in the grid network is to be installed with the IM Client software. This includes the grid

broker in the grid network. The IM Client may be implemented by using freely available IM

libraries (e.g. http://jmsn.sourceforge.net/, http://hamsam.sourceforge.net/) [8], [9], [10]. Every

time the grid node is available for grid usage, it will have to use the IM Client to connect to the

IM Server. This is to ensure the usability of the nodes by the users. When the grid node is not

available, it will be shown as offline at the IM client. The users have to register before being

exposed to the nodes available in the grid network. Registrations may be in the form of email or

online registration. Once registered, the users’ registration information will be stored in a

repository in a Client Authentication Server. The Client Authentication Server may or may not

be part of the grid network. Registration information may contain the following (but not limited

to): the validity of the registration, the type of access and rights the users are entitled to and

number of jobs the users may submit in a day. The process of authentication will be done by the

Grid node when the user is adding the grid nodes into his IM and when the user is

communicating with the Grid node. The Grid node will contact the Client Authentication Server

to have the user request (of adding or of job submitting) validated. When a user failed to be

validated, an error message will be sent to the user. Similarly when a user is validated correctly,

a message informing him that his job has been assigned (to a grid node) will be sent. The adding

process of the grid nodes over at the user sides may be done automatically via some scripts or

manually. Typically a user will usually perform queries to check how busy the grid is, to see

how the submitted jobs are progressing and to look for resources on the grid. Thus, prior to

submitting job, user can check the status of specific grid nodes by issuing the following

commands:

a. check processor capacity

b. check storage capacity

c. check memory capacity

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

http://hamsam.sourceforge.net/

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Figure 6: Check node status

There are two methods available to submit a job:

1. User can select a particular grid node and submit the job to it, or

2. User can submit the job to a designated grid broker and asks the broker to assign the job

according to the capability of the broker.

Various commands will be implemented to create a list of syntax which may be used by the user

in his communication with the grid nodes. The list may contain the following commands or

more:

Submit job

o specifying criteria for selection of node (for Grid broker)

o specifying requirement for number of nodes to execute the job

o specifying requirement for minimum processor/memory to execute job

When a job is assigned to a grid node, the grid node will translate the text input made by the

user in the IM Client into a Grid-understood job. As there will be fixed command syntaxes

which users have to follow when interfacing with the Grid nodes over IM Client, the translation

may be done automatically. After translation, the grid node will then start processing the job.

When the job is completed, users will be informed by a push (prompt) message by either the

grid node which executed the job or the grid broker, depending on who is in charge of the job.

The result of the job may be returned in the form of text messages or files. Text messages may

be presented in the form of messages to the user. Files may be presented in the form of file

transfer to the user.

FIG. 7 shows an IM window of the supervisory broker transferring the result of the completed

job.

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Figure 7: Transferring completed Job

FIG. 8 shows a window of the requestor IM client(user) acknowledging receipt of the completed

job result from the supervisory broker (gridnode 3). Once the completed job result is received

by the requestor IM client(user), the process is ended.

Figure 8 : Receiving completed job

The figure showed a typical job submission process flow:

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Figure 9: Job Submission Flow

An IM client (user) selects a group of resource nodes from one’s IM contact list. In the next

step, the user submits one’s job request via one’s IM window, for example, by attaching the job

specification and submitting it to the group of selected Resource nodes for execution. The

group of selected Resource nodes receives the job request and a selected Resource node,

designated as a supervisory broker, splits the job request into smaller job units according to the

number of nodes specified in the job specification and/or number of selected Resource nodes.

For example, when 10 Resource nodes are selected to perform a job involving image rendering

of 1000 frames, each selected Resource node would then render 100 frames of the images. The

job units are then brokered out among the selected Resource nodes for processing. FIG. 10

shows a IM window of a selected Resource node participating in a job execution. When a job is

completed, the supervisory broker consolidates all the completed job units together and sends

the completed job result back to the IM client (user) that issued the job.

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Figure 10 : Resource nodes participating in Job Execution

5. Related Works

With the advent and proliferation of non-secured instant messaging (IM) via the Internet,

information is sent within the organization and between organizations. This poses a problem

especially when it is used to send confidential business messages as they are open to the prying

eyes of eavesdroppers. One method used to solve the confidentiality problem is to use Public

Key Infrastructure (PKI). This requires users to own and install digital certificates issued by the

Certificate Authorities (CA). IM is peer-to-peer by nature and the method involve a third party

to maintain information, e.g. certificate information required for encryption / decryption of

messages. Our institution is researching in this area that relates to a cryptographic code installed

in end-user stations for secure Instant Messaging. A passphrase is generated to invoke the

secured channel. The passphrase may be used to generate a symmetric key for encryption. The

passphrase can be split into sub-passphrases, which can be sent to a recipient via separate

communication channels. The sub-passphrases can then be assembled to obtain the complete

passphrase for generating the symmetric key for decryption. The solution provides more

efficient security algorithm and key management/distribution [11]

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Figure 11 Secured Messaging using Out-band Authentication

References

 [1] OGF – Open Grid Forum. Online. http://www.ogf.org.

[2] Globus Toolkit. Online. http://www.globus.org/toolkit/.

 [3] Bart Jacob, Michael Brown, Kentaro Fukui, Nihar Trivedi, Intoduction to Grid Computing, IBM

Red Book,December 2005

[4] Linan Zheng, Dr Stephan Rupp Instant Messaging: Architectures and Concepts , June 2005

 [5] MDay, J Rosenberg, H.Sugano A Model for Presence and Instant Messaging, RFC 2778, , Feb

2000

[6] Peter Saint-Andre, Kevin Smith & Remko Troncon, XMPP: The Definitive Guide, 2009

[7] Tim Van Lokven, Review and Comparision of Instant Messaging Protocol, January 2011

[8] Online: http://taverna.sourceforge.net

[9] XMPP toolkit (http://xmpp.org/xmpp-software/libraries/)

[10] IM SDK (http://www.interactiveni.com/sdk/)

[11] Teo Yong King, Secure Messaging using Outband Mode Authentication, Oct 2007

P
o
S
(
I
S
G
C

2
0
1
3
)
0
2
3

