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1. Introduction

The AdS/CFT correspondence [1] is the postulated equivalence between a four-dimensional
gauge theory — the maximally supersymmetric .4~ = 4 Super-Yang-Mills theory and superstring
theory on AdSs x §°, a specific ten-dimensional curved background. Despite the fact that there
is no general proof of this correspondence, currently we have overwhelming evidence that it is
indeed true, including very explicit comparisions between standard gauge theory perturbative com-
putations at quite high loop order and string computations on the dual side.

One reason why the AdS/CFT correspondence is a very valuable tool for the understanding
of gauge theory dynamics is the fact that in the nonperturbative strongly coupled regime, the dual
string description simplifies dramatically and reduces either to classical gravity or (semi-)classical
strings depending on concrete gauge theory observables. Thus it provides us with completely new
ways of looking at nonperturbative gauge theory physics. In particular, many dynamical problems
in gauge theory dynamics are translated into problems in higher dimensional General Relativity.
Apart from the purely pragmatic interest in obtaining gauge theory answers in this way, the very
possibility of doing so is fascinating theoretically as is the link between so apparently diverse
branches of physics as General Relativity and gauge theory.

Currently, the range of applications of the AdS/CFT correspondence is immense — the original
article [1] had, as of 15" November 2013, 9389 citations. So in this talk I will concentrate only on
reviewing some of its recent applications to the study of the dynamics of strongly coupled plasma.
Also, due to time and space constraints, I will pick out just one strand of research concentrating on
nonequilibrium dynamics of plasma and the transition to a hydrodynamic behaviour.

The applications of the AdS/CFT correspondence in this domain essentially started with the
calculation of the shear viscosity of strongly coupled plasma in the .#” = 4 gauge theory [2]. A very
valuable insight came from the realization that the ratio of the shear viscosity to entropy density is
universal and equal to 1/47 for a very wide class of strongly coupled gauge theories [3]. A feature
worth emphasizing is that even if the corresponding value for realistic QCD quark-gluon plasma
is not exactly the same, the value of 1/47 from the AdS/CFT correspondence gave a ballpark
figure as a point of reference for what would be expected for QCD plasma. I believe that this kind
of input from the AdS/CFT correspondence may be very useful. This is especially important for
nonequilibrium phenomena for which effective nonperturbative methods are quite scarce.

The preceeding investigations involved essentially the emergence of linearized hydrodynamics
around a static uniform plasma system. In [4] it was shown that the AdS/CFT correspondence
predicts also fully nonlinear hydrodynamic flow (Bjorken flow) at late times in a boost-invariant
setting. Since then, the emergence from AdS/CFT of nonlinear viscous hydrodynamics without
any symmetry assumptions was understood [5] as arising from a gradient expansion within the
gravitational Einstein’s equations.

Once we approach truly out of equilibrium processes, the gradients become large and an ana-
lytical scheme for solving Einstein’s equations is no longer feasible in practice. The first work on
applying numerical methods in this context was [6] dealing with isotropization of a spatially uni-
form plasma. All the investigations which I describe in more detail in this talk involve numerical
relativity methods.

The plan of this talk is as follows. I will start with a discussion of the similarities and differ-
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ences between ./~ = 4 and QCD plasma, then I will review briefly the AdS/CFT methods used for
the description of evolving plasma systems and mention some key questions. In the rest of the talk
I will review five selected recent studies of various aspects of out-of-equilibrium plasma dynamics
using AdS/CFT. I will close the talk with some conclusions. The topics covered in this talk are
neccessarily just a selection. For a more in-depth recent review see [7].

2. ./ =4 plasma versus QCD plasma

The technically simplest case of the AdS/CFT correspondence is its original form stating a
duality between the supersymmetric .4~ = 4 gauge theory and superstring theory on the curved
ten-dimensional AdSs x S° background. The recent investigations of the nonequilibrium dynamics
of strongly coupled plasma were performed, almost exclusively, within this context. This leads us
at once to the question, to what extent will such studies be relevant for the case of realistic QCD
quark-gluon plasma.

Of course, the .4/ = 4 gauge theory is completely different from QCD in the vacuum. It is
supersymmetric, has no mass scale, being exactly conformal also on the quantum level. Conse-
quently it has no confinement and exhibits an exactly Coulombic potential between colour sources.
However once we consider the theory at nonzero temperature, or more generally for a state with
some nonzero energy density of the order of N2, we get significantly more qualitative similarities.
Supersymmetry is explicitly broken through the introduction of temperature, which becomes the
dominant scale in the problem. The theory is still deconfined but, in case of AdS/CFT studies,
strongly coupled. But now this is not far from the qualitative behaviour of the QCD quark-gluon
plasma above T¢, which is also deconfined and strongly coupled. In fact even at weak coupling, the
differences between .4 = 4 plasma and QCD plasma amount essentially just to differences in the
number of degrees of freedom [8].

Given the above, one should, however, be aware of certain differences, which may be or need
not be relevant for the physical phenomena studied. Firstly, the .#” = 4 gauge theory has no running
coupling, so even at very high temperatures the coupling remains strong. This may not be a problem
for the description of plasma per se as the asymptotic regime for temperatures is certainly not
reached, it may however be very relevant for mixed perturbative/nonperturbative processes e.g.
hard probes. Secondly, the equation of state for the .4 = 4 plasma remains exactly conformal
(E = 3p). This is certainly not true for QCD plasma close to the phase transition/crossover, but
may be quite a good approximation for a range of higher temperatures. Finally, in the .4/ =4
theory, there is no confinement/deconfinement phase transition so the .4~ = 4 plasma expands and
cools indefinitely. Thus, one cannot use this theory to model behaviour in the vicinity of the phase
transition.

One should note that the above differences are so acute just for the simplest case of the
AdS/CFT correspondence. There are explicit, albeit more complicated, examples of AdS/CFT
description of theories for which some of these differences are lifted.

To summarize, the applicability of using .#” = 4 plasma to model real world phenomenae de-
pends on the physical problems considered. The basic motivation for undertaking this study is that
one can use it as a theoretical laboratory where we may compute from ‘first principles’ nonequi-
librium nonperturbative dynamics all the way from some nonequilibrium initial state to a precise
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Figure 1: The procedure for extracting the entropy from a boost invariant numerical simulation. The entropy
at a given time 7T (here T = 0) is read off from the area element of the apparent horizon at the point of
intersection with a null geodesic emitted from the boundary at time 7.

hydrodynamic description. All this can be done within the same calculational framework. We may
thus gain qualitative insight into the physics which is very difficult to access using other methods.
Then we may use the behaviour of strongly coupled .4 = 4 plasma as a point of reference for
analyzing/describing QCD plasma and eventually consider more realistic theories with AdS/CFT
duals.

3. The AdS/CFT description

In this section we will review the methods used for the AdS/CFT description of an evolving
strongly coupled plasma system. Since the plasma system is a complex state involving & (NCZ)
degrees of freedom, it is described through an effective 5D geometry'

ds? — guv (¥, 2) dxtdx¥ + dz?
= =

= gz% dx®dxP (3.1)

where x* are the boundary (Minkowski) coordinates, while z > 0 is the 5" coordinate which ex-
tends from the 4D boundary at z = 0 into the 5D bulk. Let us note that this simple description arises
only at strong coupling. Then there is a large mass-gap (going to infinity as A — oo) between the
gravity modes and massive string excitations in AdSs x S°, so one can reduce the dynamics to just
the gravity sector. In contrast, for weakly coupled .#” = 4 plasma, there would be no justification
for neglecting the massive string modes and a dual string description is currently beyond our reach.

The time evolution of the plasma system follows from 5D Einstein’s equations with negative
cosmological constant

i
Rop = 58upR— 6805 =0 3.2)

Once the background geometry is known, either analytically or numerically, physical observables
may be extracted. In the present context, the most relevant observable is the expectation value of

IThis geometry can be uplifted to a 10D string background in a canonical way. However this will not play any role
in the following.
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the energy momentum tensor <Tuv(xp)> which can be read off from the asymptotic behaviour of
the geometry (3.1) near the boundary z = 0. Namely

N2 (@
P17

guv(P.2) = Nuy + 8 (P A+ 0 (L) (Tu(xP)) = 573 8uv () (3.3)

Once the energy-momentum tensor is known, one can check when it starts to have hydrodynamic
form to investigate the transition to hydrodynamics, whether in a local frame it is isotropic in order
to check for local thermal equilibrium etc.

A second important physical observable which may be extracted from the geometry is a local
entropy density. The prescription, introduced in [9] and refined later, is more complex (it can
be obtained from an area element of an apparent horizon transported to the boundary through a
null geodesic (see fig. 1)) and suffers from some ambiguities away from equilibrium. Yet in the
hydrodynamic regime it has all the right properties of phenomenological hydrodynamic entropy
density.

4. Key questions

A key question relevant for heavy-ion collisions at RHIC and LHC is the time of applicability
of a hydrodynamic description. Most of the studies described in the present talk address this prob-
lem in the context of the dynamics of strongly coupled .#” = 4 plasma which is initially in a far
from equillibrium state.

We are also interested in more refined characteristics of the transition to hydrodynamics. In
particular, we would like to know whether at the transition to hydrodynamics we have already
local thermal equilibrium (in the sense of isotropy of the energy-momentum tensor). In addition
we would like to understand what characterization of the initial state determines the main features
of its transition to hydrodynamics. Furthermore we would like to have the same kind of detailed
understanding of a collision process and to what extent is Bjorken boost-invariant flow recovered
dynamically. Finally, it is very important to understand what are the implications of AdS/CFT for
the case incorporating radial (and eventually elliptic) flow.

5. Five recent studies

In the remaining part of the talk I will present five selected recent studies of various features of
the dynamics of strongly coupled plasma. They progressively cover larger pieces of a generic col-
lision process, starting from searching for common features in the equilibration of boost-invariant
plasma from diverse initial conditions [10, 11], through a very detailed study of the general proper-
ties of hydrodynamic derivative expansion [12], the incorporation of radial dynamics [13], the treat-
ment of shock-wave collisions [14] and finally a hybrid AdS/CFT/realistic hydro+cascade model
of a heavy-ion collision [15].

Study I. Evolution of boost-invariant plasma from various initial conditions at 7 =0

In the papers [10, 11] we have examined the evolution of a boost-invariant plasma system
(with no transverse dependence) from various initial conditions at T = 0. The initial conditions were
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Figure 2: w = T, 7,7 at the transition to hydrodynamics for various initial conditions (parametrized by the
initial entropy) [10].

represented by different initial geometries used as initial data for solving Einstein’s equations (3.2).
A weak coupling analog of this setup would be to start from a gas of gluons with various nonthermal
momentum distributions at some initial time and then following its evolution up to a hydrodynamic
flow and thermalization. The chief motivation of this study, w.r.t. earlier numerical work [16],
was to investigate very general initial conditions right at T = 0 and seek regularities in the far from
equilibrium behaviour.

The key questions addressed in this study were i) when does hydrodynamics become appli-
cable? ii) is T,y approximately isotropic at the transition to hydrodynamics and iii) is there some
simple physical characterization of the initial state which would determine the characteristics of its
transition to hydrodynamics. This last question is especially acute as clearly a-priori the space of
initial configurations is infinite-dimensional (i.e. parametrized by a function). In fact all the initial
conditions considered in [10, 11] were normalized to have the same energy density at T = 0, so we
seek for a different characterization.

In order to factor out the trivial difference between QCD plasma and ./ = 4 plasma coming
from different number of degrees of freedom, it is convenient to use instead of the energy density
£(7) an effective temperature T,s; defined as the temperature of a thermal system with energy
density equal to the instantenous energy density £(7), namely

e(r)sz%nz-T;}f (5.1)
In addition, it is convenient to form a dimensionless quantity w = T rr - 7.
The basic findings of ref. [10] were as follows.

Firstly, for all initial conditions considered, we found that viscous hydrodynamics works to a
very high accuracy as soon as w > 0.7 and in most cases even for lower w (see fig. 2). In order to get
a feeling for this number, e.g. quite early initial conditions for hydrodynamics at RHIC assumed
in [17], namely 79 = 0.25 fm and Ty = 500MeV correspond to w = 0.63. It is very encouraging
that the .4~ = 4 strongly coupled plasma gives an answer in line with experimental expectations for
realistic quark-gluon plasma.

Secondly, the plasma, when it starts being very well described by viscous hydrodynamics is
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still far from being isotropic. Namely it has a sizable pressure anisotropy

ApLE1—:—L~0.7

(5.2)
This means that the plasma is still not in local thermal equilibrium, but the final approach to equilib-
rium occurs not through some exotic physics but rather is completely described by viscous effects
within hydrodynamics. So ‘hydrodynamization’ is distinct from thermalization. This conclusion
applies for all initial conditions considered.
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Figure 3: Entropy production (left) and the time of transition to hydrodynamics in units of initial temperature
(right) for various initial conditions parametrized by the initial entropy. [10]

Finally, for all initial conditions, we have identified a nonzero initial entropy density per trans-
verse area and unit rapidity. It turns out that this single number is a key characterization of the
initial state in the sense that there is a clear correlation between the initial entropy and such phys-
ical observables as the produced entropy (see fig. 3 (left)) or the time of transition to a viscous
hydrodynamic description (see fig. 3 (right)).

Study II. Behaviour of high order dissipative hydrodynamics

This study [12] is more theoretical in nature, although it may also be a point of departure for
further investigations with some experimental ramifications.

The hydrodynamic description of any physical system is a quintessential example of a deriva-
tive expansion. By including terms with more and more derivatives in the energy-momentum
tensor, we may write higher order viscous hydrodynamic theories?. At each order new transport
coefficients appear. As with any perturbative expansion it is of general interest to understand its
convergence properties, whether it is asymptotic, what are the singularities in the Borel plane etc.
Apart from these formal properties, a natural question arises whether one can define a resummed
all-order hydrodynamics. A proposal based on the linearized regime of AdS/CFT has been made
by Lublinsky and Shuryak in a very interesting work [18] and applied phenomenologically. In this
study, the relevant series is calculated at the full nonlinear level.

In [12], we studied the hydrodynamic derivative expansion in the boost invariant kinematics.
Previously just 3 subleading terms were known from analytical computations. Using the iterative

2This is not a purely academic endeavor, as it is known that ordinary (1 order) relativistic viscous hydrodynamics
is incompatible with causality.
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Figure 4: Singularities of the hydrodynamic gradient expansion in the Borel plane. The cuts marked by the
arrows correspond to the lowest nonhydrodynamic excitations of the plasma (quasi-normal modes).

scheme of fluid/gravity duality we extracted 240 terms in the series, where each order includes
contributions from new transport coefficients.

Given this many terms, we could unambigously determine that the radius of convergence of
the hydrodynamic gradient expansion is zero and that it is an asymptotic series. The pattern of
singularities on the Borel plane is shown in fig. 4. The two branch cuts closest to the origin turn out
to correspond exactly to the lowest non-hydrodynamic degrees of freedom (so-called quasi-normal
modes). Moreover, there does not seem to be any poles on the positive real axis, suggesting the
existence of Borel-resummed hydrodynamics, at least in the boost-invariant context.

Such resummed hydrodynamics may be used along the lines of the investigation from [18],
but also it may serve as a reference point for the understanding of the lowest nonhydrodynamic
excitations in the full numerical simulation.

Study III. Evolution of boost-invariant plasma with radial flow

A natural, but technically involved, extension of the previous studies of boost-invariant plasma
expansion is the incorporation of radial flow. This has been done in [13], where evolution from
Glauber model like initial conditions (with radius ~ 6.5 fm) were studied with an initial effective
temperature adapted to a realistic value at T = 0.6 fm. Here due to a different numerical framework
than in [10, 11] the initial conditions were setup at a small but nonzero initial time 7;,; = 0.12 fm.

The outcome was that very good agreement with hydrodynamics was established from 7 =
0.35 fm as long as one stayed away from the edges. Another feature characteristic of using the
AdS/CFT methods to model a part of the nonequilibrium plasma expansion is that generically one
is bound to obtain nontrivial velocity profiles at the transition to hydrodynamics. This feature was
absent in the boost-invariant study with no transverse dynamics, as there the flow velocity was
completely fixed by symmetry. Once one allows e.g. radial flow, true nontrivial preequilibrium
flow may occur. This may have important experimental consequences as will be described below.

Study IV. Thick and thin shock wave collisions

The preceeding investigations dealt with the evolution of the plasma starting from some initial
state without, however, creating this state from a collision. Of course, the notion of a collision in
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Figure 5: Energy profiles of thick and thin shock wave collisions (from [14]).

the ./~ = 4 theory is not neccessarily very realistic as we have at our disposal only quite specific
configurations which may act as projectiles.

A class of natural projectiles in the .4” = 4 theory was suggested in [4]. These were shock
waves corresponding to the energy momentum tensor with the only nonvanishing component con-
centrated along one lightcone direction

(T-_(x7))=wud(x")  ormore generally (7T__(x))=f(x") (5.3)

Their advantage is an explicit gravitational description

,  —dxTdx" + f(x)dx? +dx? N ﬁ
- 2

ds 5

54

< <

and the fact that they can be studied wholly within gravity without any excision (there are no
sources in the bulk in contrast to the shock waves employed e.g. in [19]). Unfortunately the
gravitational description of a collision of two such shock waves is still a very complicated problem.

The first few orders in a power expansion in T of the geometry were obtained in [20] in the
case of thin shock waves. A first numerical investigation of gaussian smeared shock waves was
performed in [21]. In this case of relatively thick shock waves, one found a scenario of full stopping
(see [14] for this interpretation) and remnants moving away with a speed v < c.

The very recent study [14] revisited the issue of shock wave collision and investigated shock
waves of varying width (see Fig. 5). It turned out that the resulting dynamics is surprisingly varied.
The chief outcome was that the character of the collision significantly depends on the thickness of
the shock wave (namely the width in x~ of the profile f(x™) relative to energy per unit transverse
area). For thick shock waves full stopping was recovered as in [21], however for thin shock waves,
fragments move away at speed of light with regions of trailing negative energy density (reminis-
cent of some features of the analytical picture of [20]). The paper [14] also analyzed the detailed
features of the resulting hydrodynamic flow. One observation was a gaussian rapidity profile. Thus
there was no restoration of strict boost-invariance. However it seems that a significant part of
the hydrodynamic flow can be well described by a (viscous) Bjorken flow with the single scale
A appearing in the Bjorken asymptotics (€(7) ~ A/ 3) being rapidity dependent A — A(y) [22].
However currently there does not seem to be a complete consensus on this issue.
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Figure 6: A comparision of experimental spectra of central Pb-Pb collisions from ALICE with i) the hybrid
AdS/CFT+hydro code and ii) hydro code with conventional initial conditions (from [15]).

Study V. A hybrid treatment of central nuclear collisions

One of the features of the preceeding investigations was that they dealt directly with strongly
coupled plasma of the .#" =4 SYM theory. In a recent paper [15], the authors adopted a very
interesting hybrid approach using the AdS/CFT correspondence (and hence the .4 = 4 plasma)
to model the initial nonequilibrium stage of the collision until the transition to a hydrodynamic
description. Then from the resulting energy momentum tensor they extracted the flow velocities
and energy density/pressure and used it as initial conditions for a standard realistic viscous hydro-
dynamic code coupled with a hadronic cascade model to describe the particles measured in the
detector.

Let us note that such a matching between AdS/CFT and realistic hydro has some inherent
problems and ambiguities — in particular the equation of state in the hydro code is different from the
one for .4 = 4 plasma leading to some discontinuities in the pressure, however the authors found
that their results are quite stable and robust w.r.t. modifying the matching time between AdS/CFT
and the hydro simulation. The authors also adopted some approximations in the treatment of the
shock wave collision with radial profiles. The obtained results are, however, very promising as
seen in Fig. 6.

In this study, the novel input of the AdS/CFT correspondence was a prescription for the initial
conditions for hydrodynamics which naturally included significant nontrivial radial flow already
at the very begining of the applicability of hydrodynamics. As emphasized earlier this is a very
generic feature of modelling the nonequilibrium phase using AdS/CFT methods. It is very encour-
aging that the preequilibrium radial flow emerging even from the approximate AdS/CFT treatment
using the .4~ = 4 theory, goes in the direction of improving the description of light particle spectra.

6. Conclusions

The AdS/CFT correspondence provides a very general framework for studying time-dependent
dynamics of strongly coupled gauge theory plasma. What is especially important is that it does not
presuppose hydrodynamics and is applicable even in very out-of-equillibrium contexts. The vari-
ous studies briefly reviewed in this talk provide examples of qualitative insight that one may gain

10
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from these techniques e.g. sizable pressure anisotropy at the transition to viscous hydrodynamic
description, a simple dimensionless estimate of the ‘hydrodynamization’ time, the importance of
an ‘initial entropy’ as a characterization of initial conditions and subsequent dynamics, the varied
range of behaviours from full stopping to transparency in shock wave collisions and finally the
importance of preequilibrium radial flow.
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