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The effective potential of the order parameter for confinement is calculated within the variational

approach to the Hamilton formulation of Yang–Mills theory.Compactifying one spatial dimen-

sion and using a background gauge fixing this potential is obtained by minimizing the energy

density for a given constant and color diagonal background field directed along the compactified

dimension. Using Gaussian type trial wave functionals I establish an analytic relation between

the propagators in the background gauge at finite temperature and the corresponding zero temper-

ature propagators in Coulomb gauge. In the simplest truncation, neglecting the ghost and using

the ultraviolet form of the gluon energy one recovers the Weiss potential. On the other hand from

the infrared form of the gluon energy one finds an effective potential which yields a vanishing

Polyakov loop indicating the confined phase. From the full non-perturbative potential (with the

ghost included) one extracts a critical temperature of the deconfinement phase transition of 269

MeV for the gauge group SU(2) and 283 MeV for SU(3).
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The effective potential of the confinement order parameter in the Hamiltonian Approach Hugo Reinhardt

1. Introduction

Understanding the deconfinement phase transition is one of the major challenges of particle
physics. In quenched QCD reliable results are obtained within the lattice approach. This approach
fails, however, at large baryon density due to the notorious fermion sign problem. Therefore alter-
native non-perturbative approaches to continuum QCD are desirable.In recent years a variational
approach to Yang–Mills theory in Coulomb gauge was developed [1], whichhas provided a decent
description of the infrared sector of the theory [2, 3, 4, 5, 6, 7]. Recently this approach was extended
to finite temperature [8] and also to full QCD [9]. In this talk I will report on thecalculation of the
effective potential of the confinement order parameter within the Hamiltonian approach [10, 11].

In quantum field theory the temperatureT is most easily introduced by compactifying the
Euclidean time and interpreting the lengthL of the compactified time interval as inverse temper-
ature. In finite temperature SU(N) Yang-Mills theory the order parameter of confinement is the
expectation value of the Polyakov loop

P[A0] =
1
N

trP exp

[

−
∫ L

0
dx0A0

(

x0,~x
)

]

. (1.1)

The quantity〈P[A0](~x)〉 ∼ exp[−F∞(~x)L] is related to the free energyF∞(~x) of a (infinitely heavy)
quark at spatial position~x. In the confined phase this quantity vanishes by center symmetry while
it is non-zero in the deconfined phase, where center symmetry is broken.In continuum Yang-Mills
theory the Polyakov loop is most easily calculated in Polyakov gauge∂0A0 = 0, A0 = diagonal.
In the fundamental modular region 0< A0L/2 < π the Polyakov loopP[A0] is (at least for the
gauge groups SU(2) and SU(3)) a unique function of the fieldA0, which, for SU(2), is given
by P[A0] = cos(A0L/2). As a consequence of this relation and of Jenssen’s inequality instead of
〈P[A0]〉 one can use alternativelyP[〈A0〉] or 〈A0〉 as order parameter of confinement, see refs. [12,
13]. Thus the order parameter of confinement can be most easily obtainedby calculating the
effective potentiale[a0] of a temporal background fielda0 chosen in the Polyakov gauge and by
calculating the Polyakov line (1.1) from the field configurationamin

0 which minimizese[a0], i.e.
〈P[A0]〉 ≃ P[amin

0 ]. The effective potentiale[a0] was first calculated in refs. [14, 15] in 1-loop
perturbation theory and is shown in fig. 1. This potential is minimal for a vanishing field and the
order parameter accordingly yieldsP

[

amin
0 = 0

]

= 1, which indicates the deconfining phase. In
this talk I report on a non-perturbative evaluation ofe[a0] [10, 11] in the Hamilton approach to
Yang-Mills theory [1].

It is obvious that the effective potential of〈A0〉 cannot be straightforwardly evaluated in the
Hamiltonian approach since the letter assumes Weyl gaugeA0 = 0. However, we can exploit O(4)

invariance of Euclidean quantum field theory and compactify instead of the timeone spatial axis
(for example thex3-axis) to a circle and interpret the lengthL of the compactified dimension as in-
verse temperature. (For more details see refs. [10, 11].) Therefore we will consider in the following
Yang-Mills theory at a finite compactified lengthL in a constant color diagonal background field~a
and calculate the effective potentiale[~a]. In the Hamiltonian approach the effective potentiale[~a]

of a spatial background field~a is given by the minimum of the energy density〈H〉/V calculated
under the constraint〈~A〉=~a. This minimal property of the effective potential calls for a variational
calculation.
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2. Hamilton approach in background gauge

In the presence of an external constant background field~a the Hamiltonian approach can be
most conveniently formulated in the background gauge

[

~d,~A
]

= 0, ~d =~∂ +~a, (2.1)

where all fields are taken in the adjoint representation. This gauge allows for an explicit resolution
of Gauss’ law, so that the gauge fixed Hamiltonian can be obtained in explicit form [11].

We are interested here in the energy density in the stateψa[A] minimizing 〈H〉a := 〈ψa|H|ψa〉
under the constraint〈~A〉a =~a. For this purpose we perform a variational calculation with the trial
wave functional

ψa[A] = J[A]−1/2ψ̃[A−a] , ψ̃[A] = N e−
1
2

∫

AωA , (2.2)

whereJ[A] = Det(−~D · ~d) , ~D = ~∂ +~A is the Faddeev-Popov determinant. This ansatz already
fulfills the constraint〈~A〉a =~a and reduces for~a = 0 to the trial wave functional used in Coulomb
gauge [1]. Furthermore the variation kernelω has the meaning of the gluon energy. Proceeding as
in the variational approach in Coulomb gauge [1], from〈H〉a → min one derives a set of coupled
equations for the gluon and ghost propagators. Using the same approximations as in ref. [8] in
Coulomb gauge, i.e. restricting to two loops in the energy, while neglecting the so-called Coulomb
term and also the tadpole arising from the non-Abelian part of the magnetic energy, one finds from
the minimization of〈H〉a the following gap equation

ω2 = −~d · ~d+ χ2 , (2.3)

whereχ is the ghost loop (referred to as “curvature”) see ref. [11]. Lattice calculations [16] of the
gluon propagator in Coulomb gauge show that the gluon energy can be nicely fitted by Gribov’s
formula [17]

ω(|~p|) =
√

~p2 +M4/~p2 . (2.4)

A full self-consistent solution of the gap equation (2.3) and the ghost DSEreveals thatω(p) con-
tains in addition sub-leading UV-logs, which on the lattice are found to be small.

3. The effective potential

The background gauge field enters the background gauge fixed Hamiltonian only via the co-
variant derivative~d (2.1) in the adjoint representation. It is therefore convenient to go to the Cartan
basis in which the generators of the Cartan subalgebra are diagonal. In the adjoint representation,
their eigenvaluesσk form the root vectorsσ = (σ1,σ2, . . . ,σr), wherer is the rang of the group
(r = 1 for SU(2) andr = 2 for SU(3)). Compactifying the 3-axis to a circle with circumference
L and choosing the background field along the compactified dimension~a = a~e3 the eigenvalues of
−i~d = −i(~∂ +~a) read

~pσ = ~p⊥ +(pnσ ·a)~e3 , pn = 2πn/L , (3.1)

where~p⊥ is the projection of~p into the 1-2-plane andσ ·a = ∑r
k=1 σkak, with the componentsak

of the gauge field along the generatorsHk of the Cartan algebra. Ifta (a= 1, . . .N2−1) denotes the
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Figure 1: The Weiss potentialeUV (3.4).

-2.5

-2

-1.5

-1

-0.5

 0

 0  0.2  0.4  0.6  0.8  1

L4  (
e I

R
[a

]-
e I

R
[a

=
0]

)

x

Figure 2: The infrared potentialeIR (3.5).
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Figure 3: The full effective potential for
SU(2) for different temperaturesL−1.
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Figure 4: The Polyakov loopP[amin] calcu-
lated at the minimuma = amin of the effective
potential for SU(2) as a function ofT/Tc.

generators of the gauge group in the usual representation we haveH1 = t3 for SU(2) and for SU(3)
in additionH2 = t8. The effective potential is then obtained as [10, 11]

e(a,L) = ∑
σ

1
L

∞

∑
n=−∞

∫

d2p⊥(ω(pσ )−χ(pσ )) , pσ = |~pσ | , (3.2)

whereω andχ are the gluon energy and the ghost loop at zero temperature in Coulomb gauge,
which, however, have to be taken here at the momentum argument (3.1) shifted by the background
field. This potential has the required periodicity

e(a,L) = e(a+ µk/L,L) , (3.3)

whereµk denotes the co-weights of the gauge algebra, which are related to the center elements
zk ∈ Z(N) of the gauge group by exp(i2πµk) = zk. The expression (3.2) for the effective potential
is surprisingly simple and requires only the knowledge of the gluon energyω and the ghost loopχ
in Coulomb gauge at zero temperature.

If one ignores the ghost loopχ(p) = 0 the potential (3.2) becomes the energy density of a
non-interacting Bose gas with single-particle energyω(p), living, however, on the spatial manifold
R2×S1. With χ(p) = 0 and replacing the gluon energyω(p) (2.4) by its ultraviolet partωUV(p) =
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Figure 5: SU(3) effective potential below (left panel) and above (right panel) Tc as functions ofx =

a3L/(2π) andy = a8L/(2π).

|~p| one obtains from (3.2) precisely the Weiss potential [15]

eUV(a,L) =
4
3

π2

L4 x2(x−1)2 , x≡ aL/(2π) (3.4)

corresponding to the deconfined phase. If on the other hand one chooses the infrared form of the
gluon energy (2.4)ωIR(p) = M2/|~p| one obtains the potential

eIR(a,L) = 2
M2

L2

(

x2−x
)

, x≡ aL/(2π) , (3.5)

which is shown in figure 2, whose minimum occurs at the center symmetric configuration, which
yields a vanishing Polyakov loop corresponding to the confined phase. Obviously, the deconfine-
ment phase transition results from the interplay between the confining IR-potential and the decon-
fining UV-potentials. Choosingω(p) = ωIR(p)+ωUV(p), which can be considered as an approx-
imation to the Gribov formula (2.4), one has to add the UV- and IR-potentials, given by eqs. (3.4)
and (3.5), respectively, and finds a phase transition at a critical temperatureTc =

√
3M/π. With the

Gribov massM = 880 MeV this gives a critical temperature ofTc ≈ 485 MeV, which is much too
high. One can show analytically, see ref. [11], that the neglect of the ghost loopχ(p) = 0 shifts the
critical temperature to higher values. If one uses eq. (2.4) forω(p) and includes the ghost loop one
finds the effective potential shown in fig. 3, which gives a transition temperatureTc ≈ 269 MeV for
SU(2), which is in the right ball park. The Polyakov loopP[amin] calculated from the minimum
amin of the effective potentiale(a,L) is plotted in fig. 4.

The effective potential for the gauge group SU(3) can be reduced to that of the SU(2) group
by noticing that the SU(3) algebra consist of three SU(2) subalgebras characterized by the three

positive roots~σ = (1,0),
(

1
2, 1

2
√

3

)

,
(

1
2,− 1

2
√

3

)

resulting in

eSU(3)(a) = ∑
σ>0

eSU(2)[σ ](a) . (3.6)

The effective potential for SU(3) is shown in fig. 5 as a function ofa3, a8. As one notices, above
and belowTc the minima of the potential occur in both cases fora8 = 0. Cutting the 2-dimensional
surfaces ata8 = 0 one finds the effective potential shown in fig. 6. This shows a first order phase
transition, which occurs at a critical temperature ofTc = 283 MeV. The first order nature of the
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Figure 6: SU(3) effective potential, cut at
a8 = 0, for different temperaturesL−1.
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Figure 7: The Polyakov loopP[amin] calcu-
lated at the minimuma = amin of the effective
potential for SU(3) as a function ofT/Tc.

SU(3) phase transition is also seen in fig. 7 where the Polyakov loopP[amin] is shown. In the
present approach the deconfinement phase transition is entirely determined by the zero-temperature
propagators, which are defined as vacuum expectation values. Consequently, the finite-temperature
behavior of the theory and, in particular, the dynamics of the deconfinementphase transition must
be fully encoded in the vacuum wave functional. The results obtained above are encouraging for
an extension of the present approach to full QCD at finite temperature andbaryon density.
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