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The effective potential of the order parameter for confineinecalculated within the variational
approach to the Hamilton formulation of Yang—Mills theo§ompactifying one spatial dimen-
sion and using a background gauge fixing this potential isiobtl by minimizing the energy
density for a given constant and color diagonal backgroweid @lirected along the compactified
dimension. Using Gaussian type trial wave functionals &lgisgsh an analytic relation between
the propagators in the background gauge at finite temperahd the corresponding zero temper-
ature propagators in Coulomb gauge. In the simplest triotgateglecting the ghost and using
the ultraviolet form of the gluon energy one recovers thesd/pptential. On the other hand from
the infrared form of the gluon energy one finds an effectiveeptial which yields a vanishing
Polyakov loop indicating the confined phase. From the fuli-perturbative potential (with the
ghost included) one extracts a critical temperature of g@dfinement phase transition of 269
MeV for the gauge group S@2) and 283 MeV for S3).
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1. Introduction

Understanding the deconfinement phase transition is one of the major cleallehparticle
physics. In quenched QCD reliable results are obtained within the latticeaqprThis approach
fails, however, at large baryon density due to the notorious fermion s@rlem. Therefore alter-
native non-perturbative approaches to continuum QCD are desilablecent years a variational
approach to Yang-Mills theory in Coulomb gauge was develofjed [1], widslprovided a decent
description of the infrared sector of the thediy[]4]3] 4] $] 6, 7]. Rebzéhis approach was extended
to finite temperaturd]8] and also to full QC [9]. In this talk | will report on ttedculation of the
effective potential of the confinement order parameter within the Hamiltomiproach [[Zo[ 31].

In quantum field theory the temperatufeis most easily introduced by compactifying the
Euclidean time and interpreting the lendthof the compactified time interval as inverse temper-
ature. In finite temperature SNJ Yang-Mills theory the order parameter of confinement is the
expectation value of the Polyakov loop

P[A] = ;trﬂexp{—/ol_dono (. )] . (1.1)

The quantity(P[Ag] (X)) ~ exp[—Fx(X)L] is related to the free enerdy.(X) of a (infinitely heavy)
quark at spatial positioR. In the confined phase this quantity vanishes by center symmetry while
it is non-zero in the deconfined phase, where center symmetry is briokeontinuum Yang-Mills
theory the Polyakov loop is most easily calculated in Polyakov g@agée = 0, Ag = diagonal.

In the fundamental modular region<©AgL/2 < 11 the Polyakov loopgP[A] is (at least for the
gauge groups S(2) and SU3)) a unique function of the field,, which, for SU?2), is given

by P[Ag] = cos(AoL/2). As a consequence of this relation and of Jenssen’s inequality instead of
(P[Ao]) one can use alternativeB{(Ao)] or (Ag) as order parameter of confinement, see rgf$. [12,
[3]. Thus the order parameter of confinement can be most easily obtaynealculating the
effective potentiak[ag] of a temporal background fielah chosen in the Polyakov gauge and by
calculating the Polyakov ling (3.1) from the field configurating‘i” which minimizese|ag], i.e.
(P[Ao]) =~ P[aJ'". The effective potentiatlag] was first calculated in refs[ L4 ]15] in 1-loop
perturbation theory and is shown in f{§. 1. This potential is minimal for a vamgsteld and the
order parameter accordingly yiel@&al"™ = 0] = 1, which indicates the deconfining phase. In
this talk | report on a non-perturbative evaluationefdp] [[Ld, [L1] in the Hamilton approach to
Yang-Mills theory [1].

It is obvious that the effective potential ¢fy) cannot be straightforwardly evaluated in the
Hamiltonian approach since the letter assumes Weyl gayge0. However, we can exploit @)
invariance of Euclidean quantum field theory and compactify instead of thedtimepatial axis
(for example thes-axis) to a circle and interpret the lendttof the compactified dimension as in-
verse temperature. (For more details see rgfg[T10, 11].) Theretovélixonsider in the following
Yang-Mills theory at a finite compactified lengthin a constant color diagonal background fiald
and calculate the effective potent&#]. In the Hamiltonian approach the effective potenéfa
of a spatial background field is given by the minimum of the energy density) /V calculated
under the constrair(ﬁ) = a. This minimal property of the effective potential calls for a variational
calculation.
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2. Hamilton approach in background gauge

In the presence of an external constant background di¢tee Hamiltonian approach can be
most conveniently formulated in the background gauge

[&,A} —0, d=d+4, 2.1)

where all fields are taken in the adjoint representation. This gauge albowas explicit resolution
of Gauss’ law, so that the gauge fixed Hamiltonian can be obtained in explicit[L3].

We are interested here in the energy density in the gig# minimizing (H), := (Wa|H |Wa)
under the constrair(t&)a = d. For this purpose we perform a variational calculation with the trial
wave functional

YalA = (A PPIA-a], PN = et A, (2.2)

whereJ|A] = Det(—D-d),D = d + A is the Faddeev-Popov determinant. This ansatz already
fulfills the constraint/A), = & and reduces foi = 0 to the trial wave functional used in Coulomb
gauge [[L]. Furthermore the variation kernehas the meaning of the gluon energy. Proceeding as
in the variational approach in Coulomb gaufje [1], frgif)a — min one derives a set of coupled
equations for the gluon and ghost propagators. Using the same apptioxisnas in ref. [[8] in
Coulomb gauge, i.e. restricting to two loops in the energy, while neglecting tbalksal Coulomb
term and also the tadpole arising from the non-Abelian part of the magnetigyeone finds from

the minimization of(H), the following gap equation

w’=—d-d+ x2, (2.3)

wherey is the ghost loop (referred to as “curvature”) see fefl [11]. Lattalewdations [16] of the
gluon propagator in Coulomb gauge show that the gluon energy can b fitieel by Gribov's

formula [17]
w(|pl) =/ P+ M4/ 2. (2.4)

A full self-consistent solution of the gap equati¢n [2.3) and the ghost 2&€als thato(p) con-
tains in addition sub-leading UV-logs, which on the lattice are found to be small.

3. Theeffective potential

The background gauge field enters the background gauge fixed Haamltonly via the co-
variant derivative:T@) in the adjoint representation. It is therefore convenient to go toanaic
basis in which the generators of the Cartan subalgebra are diagona ddjthint representation,
their eigenvaluesy form the root vectorer = (01, 02,...,0;), wherer is the rang of the group
(r =1 for SY2) andr = 2 for SU(3)). Compactifying the 3-axis to a circle with circumference
L and choosing the background field along the compactified dime@sioag; the eigenvalues of
—id = —i(d + &) read

P7=pL+(pno )&, pn=2m/L, (3.2)

wherep, is the projection ofg into the 1-2-plane and -a= S _; okak, with the componentay
of the gauge field along the generatbisof the Cartan algebra. 1 (a= 1, ...N?— 1) denotes the
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Figure 3: The full effective potential for  Figure 4: The Polyakov loopP[a™"] calcu-
SU(2) for different temperaturels—. lated at the minimuna = a™" of the effective
potential for SU(2) as a function df/Te.

generators of the gauge group in the usual representation wethavés for SU(2) and for SU(3)
in additionH, = tg. The effective potential is then obtained pg [19, 11]

c@li=Y L 5 [Ep(e)-x(p). =16, @2

wherew and x are the gluon energy and the ghost loop at zero temperature in Coulorgb,gau
which, however, have to be taken here at the momentum argumgnt (3t&jidhyfthe background
field. This potential has the required periodicity

e(a,L) =e(a+ u/L,L), (3.3)

where L denotes the co-weights of the gauge algebra, which are related to the elemtents
z. € Z(N) of the gauge group by exi@ruy) = z. The expressior] (3.2) for the effective potential
is surprisingly simple and requires only the knowledge of the gluon ereryd the ghost looy
in Coulomb gauge at zero temperature.

If one ignores the ghost loop(p) = 0 the potential [(3]2) becomes the energy density of a
non-interacting Bose gas with single-particle enexgy), living, however, on the spatial manifold
R2 x St. With x(p) = 0 and replacing the gluon energy p) (£:4) by its ultraviolet partwyy (p) =
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Figure 5. SU(3) effective potential below (left panel) and above (right @ari; as functions ofx =
azL/(2m) andy = aglL/(2m).

|p| one obtains from[(32) precisely the Weiss potenfidl [15]

euv(aL) = gfsz (x—1)%, x=aL/(2m) (3.4)

corresponding to the deconfined phase. If on the other hand onseht infrared form of the
gluon energy[(2]4)ar (p) = M? /|| one obtains the potential

er(a L) = ZI\LAZZ (-x), x=aL/(2m), (3.5)

which is shown in figur¢]2, whose minimum occurs at the center symmetric aoatiign, which
yields a vanishing Polyakov loop corresponding to the confined phadsdaoly, the deconfine-
ment phase transition results from the interplay between the confiningtdRvmd and the decon-
fining UV-potentials. Choosing(p) = wr(p) + wuv(p), which can be considered as an approx-
imation to the Gribov formulg[(24), one has to add the UV- and IR-potentialendiy egs.[(3]4)
and [3.b), respectively, and finds a phase transition at a critical tetapefa= /3M /1. With the
Gribov massM = 880 MeV this gives a critical temperature Bf~ 485 MeV, which is much too
high. One can show analytically, see rgf][11], that the neglect of thstdbopy (p) = O shifts the
critical temperature to higher values. If one uses pq] (2.4fq) and includes the ghost loop one
finds the effective potential shown in f{g. 3, which gives a transition teatpesT. ~ 269 MeV for
SU(2), which is in the right ball park. The Polyakov lodjja™"] calculated from the minimum
a™n of the effective potentiad(a, L) is plotted in fig [B.

The effective potential for the gauge group SWUcan be reduced to that of the §) group
by noticing that the S(B) algebra consist of three $P) subalgebras characterized by the three
positive rootsd = (1,0), (%,ﬁ), <%,—2%@) resulting in

esy) (@) = ) esuplol(@). (3.6)
0>0
The effective potential for S(B) is shown in fig[ls as a function @&, ag. As one notices, above
and belowT; the minima of the potential occur in both casesdge= 0. Cutting the 2-dimensional
surfaces asg = 0 one finds the effective potential shown in fify. 6. This shows a firstrgptiase
transition, which occurs at a critical temperatureTpf= 283 MeV. The first order nature of the
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Figure 6: SU(3) effective potential, cut at Figure 7: The Polyakov loopP[a™"] calcu-
ag = 0, for different temperaturds . lated at the minimuna = a™n of the effective
potential for SU(3) as a function df/Te.

SU(3) phase transition is also seen in fig. 7 where the Polyakov Ri@p"] is shown. In the
present approach the deconfinement phase transition is entirely detebwyitie zero-temperature
propagators, which are defined as vacuum expectation values. qCemsly, the finite-temperature
behavior of the theory and, in particular, the dynamics of the deconfingshase transition must
be fully encoded in the vacuum wave functional. The results obtainedead@vencouraging for
an extension of the present approach to full QCD at finite temperaturieaapdn density.
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