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Scalar dark matter models invariant under a discrete Z3 symmetry are studied. Unlike in the
usual Z2 case, their phenomenology can contain semi-annihilations – processes in which two dark
sector particles scatter into a dark sector and a SM particle. The simplest such model has complex
scalar singlet DM stabilised by Z3. Compared to the well-known Z2 case, the new processes can
significantly change relic abundance and prospects for direct detection. The requirement that Z3

be not broken spontaneously, however, places a lower bound on the direct detection cross section
and will allow the whole parameter space to be tested by XENON1T. Addition of new scalars can
stabilise the Higgs potential up to the GUT scale.
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1. Introduction

One of the most appealing candidates of dark matter (DM) is a weakly interacting massive
particle or WIMP. In this case, DM is a thermal relic whose cosmic density is determined by
freeze-out. At high temperature, DM is at thermal equilibrium with the rest of the universe but as
the universe expands and cools it begins to annihilate away, but freezes out with further dilution.

What keeps a massive DM particle from decaying into Standard Model (SM) particles? The
simplest possible symmetry that prevents DM decay is of course a Z2 parity. However, there
is a priori no reason to believe that the symmetry must be Z2. It can very well be Z3, Z4, or
something more complicated. As we shall see, higher ZN symmetries imply important changes to
the phenomenology.

With ZN , where N is larger than two, semi-annihilation processes xi x j → xk X , where xi is a
dark sector particle and X is a SM particle, become possible [1, 2, 3]. With Z4 and higher, one
can have multi-component DM and the so-called DM conversion xixi ↔ x jx j becomes possible
[4, 5, 6]. This is annihilation, but from one DM component to another.

If a field ϕ has discrete charge Xϕ , it transforms under ZN as

ϕ → ei Xϕ

N 2π
ϕ. (1.1)

Therefore, addition of charges is modulo N and without loss of generality one can consider charges
from 0 to N−1.

The ZN symmetry can come from breaking of a U(1) gauge group that may be embedded in
SO(10), for example: SO(10) ⊃U(1)X → ZN by a GUT Higgs with X = N. However, from the
phenomenological point of view, different assignments of discrete charges can give the same low
energy potential.

For given field content, there is a limited number of possible terms in the scalar potential due
to renormalisability. For higher N, the ZN symmetry approximates the original U(1). In the scalar
potential, there is always a U(1) symmetric part and then a few extra terms.

In this talk we look at scalar DM that is made stable by a ZN symmetry. Scalars are perhaps
simplest DM, and they could be seen via their couplings to the Higgs boson. Also, the stability of
the Standard Model vacuum is a borderline case [7]. The quartic self-coupling may run to negative
values around 1010 GeV – this is below the unification scale. It could well be metastable. Adding
new scalars to the model can improve the vacuum stability of the scalar potential.

From the purely phenomenological point of view, the simplest model of DM the scalar singlet
stabilised by a Z2 symmetry. This model has been studied very thoroughly (see [8] and refs.
therein). The model is very constrained because the same coupling that determines the relic density
– the quartic coupling of the Higgs and DM – gives the direct detection cross section, Fig.1a,c,
proportional to λSH .

If the scalar singlet is instead stabilised by Z3, however [9, 10], there is a new, cubic term in
the scalar potential:

VZ3 = µ
2
H |H|2 +λH |H|4 +µ

2
S |S|2 +λS|S|4 +λSH |S|2|H|2 +

µ3

2
(S3 +S†3), (1.2)

which will induce the semiannihilation reaction given by the Feynman diagram in Fig.1b, propor-
tional to λSH µ3.
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Figure 1: Feynman diagrams contributing to (a) annihilation and (b) semi-annihilation of DM; and (c) DM
cross section with nucleons.

There is a bound on the cubic coupling:

max µ3 ≈ 2
√

2

√
λS

δ
MS, (1.3)

where 0 6 δ 6 2 (absolute stability is given by δ = 2, while δ < 2 gives metastability). Namely, if
µ3 is too large, the minimum of the potential where Z3 is conserved is not global.1

To compute the relic density we solve the Boltzmann equations with the micrOMEGAs pack-
age [11, 12, 13, 14]. The equations for the number density, n, have been generalised to include
semi-annihilation processes

dn
dt

=−vσ
SS∗→XX (n2−n2)− 1

2
vσ

SS→S∗h (n2−nn
)
−3Hn, (1.4)

where X is any SM particle. The treatment of the semi-annihilation term is described in [15] and
the fraction of semi-annihilation is defined as

α =
1
2

vσSS→S∗h

vσSS∗→XX + 1
2 vσSS→S∗h

. (1.5)

Note that SS→ S∗h is the only semi-annihilation process in this model.
We vary the physical parameters in the ranges allowed by perturbativity and vacuum stability,

select points in the experimentally allowed range for the DM relic density.
In Fig. 2 we show the dependence of λSH and µ3 on DM mass. The colour code shows the

fraction of semi-annihilation. The narrow black area with µ3 ≈ 0 corresponds to Z2 DM.
Naïvely it would seem that we could make semi-annihilation arbitrarily large while making

λSH arbitrarily small and get a zero annihilation – and direct detection cross section. But as we
saw there is a bound on µ3 that depends on DM mass and also on its self-coupling λS, shown here
for various values. Note that in order to have large semi-annihilation one has to have a rather large
self-coupling λS and will require TeV scale new physics to deal with loss of perturbativity.

1We have also checked that if we allow metastability, the results practically do not change.
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Figure 2: Couplings λSH and µ3 vs. DM mass. Colour code shows fraction of semi-annihilation α

In Fig. 3, left, we show the direct detection cross section. In the area at high mass bounded
by a white line, the model is valid up to the Grand Unified Theory scale. The larger the semi-
annihilation, the smaller the cross section, but due to the upper bound (1.3) on µ3, the model can
be disproved in XENON1T.
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Figure 3: Direct detection in the Z3 models with a singlet (left) and singlet and doublet (right).

What if you want a quartic coupling that gives semi-annihilation? A new, inert doublet has to
be added to the model [15]. The scalar potential is

VZ3 = µ
2
1 |H1|2 +λ1|H1|4 +µ

2
2 |H2|2 +λ2|H2|4 +µ

2
S |S|2 +λS|S|4 +λS1|S|2|H1|2

+λS2|S|2|H2|2 +λ3|H1|2|H2|2 +λ4(H
†
1 H2)(H

†
2 H1)+

µ ′′S
2
(S3 +S†3)

+
λS12

2
(S2H†

1 H2 +S†2H†
2 H1)+

µSH

2
(SH†

2 H1 +S†H†
1 H2),

(1.6)

The singlet S and the doublet H2 mix into x1 and x2 with a very small mixing angle, to avoid large
coupling to the Z boson. x2 decays into x1 since they have the same discrete charge.

Now, besides the several other new couplings, there is the quartic semi-annihilation coupling
λS12, giving rise to a new semi-annihilation process x1x1→ x2h. The Higgs-DM coupling behaves
similarly, but now there is semi-annihilation also at large masses [15, 16], see Fig. 3, right. The
direct detection cross section goes even lower, but again one can expect the scalar couplings to go
non-perturbative at a not too high scale in this case.

The h→ γγ rate in this model in Fig. 4 is compatible with the experimental limits [17].
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Figure 4: h→ γγ rate.
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