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1. Introduction

The vector boson (V=W,Z and γ) production in association with jets (V+jets) offers an excel-
lent opportunity for precise studies of QCD due to small theoretical and experimental uncertainties
in this particular channel. Since V+jet itself is a main background in many searches for new physics
phenomena an accurate understanding of it is crucial. In this report recent results from the CMS
experiment[1] at the LHC are described. For a complete list of results in the V+Jets channel we
refer to [2].

2. Photon plus jets and double parton scattering in W plus jets

The final state of a photon plus jets is sensitive to the gluon parton distribution function. A
precise understanding of photons is important for many searches and measurements most notably
H→ γγ . The differential cross-section of photon plus jets is measured as function of pT(γ) in eight
bins of |η( j1)| and |η(γ)| [3]. The photon purity corrected unfolded distributions are compared
to full next-to-leading (NLO) parton-level calculations from JETPHOX 1.2.2 [4] and to the Monte
Carlo (MC) generator SHERPA 1.3 [5], which provides multi-leg tree-level matrix element cal-
culations (ME) matched with QCD+QED parton showers (PS). Predictions from JETPHOX agree
slightly better with data than SHERPA predictions, both are consistent with data within uncertainties
(see left Fig. 2).
Double parton scattering (DPS) is studied in the W+2 jet final state[6]. One of several DPS sensi-
tive variables considered is ∆S, the azimuthal angle between W and the dijet system as shown in
right Fig. 2. For DPS events the dijet system and the W boson originate from two separate scatters.
Consequently they are randomly oriented. In the case of single parton scattering events the dijet
system is correlated with the W boson and both tend to be back-to-back. The data is compared
with particle level predictions from MADGRAPH 5.1 [7] in conjunction with PYTHIA 6.4 [8] for
the modeling of underlying event, parton shower and hadronization and PYTHIA 8[9]. A second
version of MADGRAPH is produced switching of the multi parton interactions (MPI) in the par-
ton showering and hadronization step of PYTHIA6. The MC predictions are scaled with a global
k-factor to match the NNLO cross-section. The right Fig. 2 shows that both shape and rate of data
and MADGRAPH with MPI are in agreement. The MC predictions of MADGRAPH without MPI
underestimates the amount of data, shape wise the distribution is shifted to higher values of ∆S.
PYTHIA8 underestimates the data due to missing matrix elements beyond the 2→ 2 process.

3. Z and light jets

The measurement of normalized rapidity distributions of the Z and the leading jet agree with
NLO parton calculations from MCFM[10] and ME+PS predictions from SHERPA and MAD-
GRAPH and within 5 %[11]. Correlations between these two quantities, the sum Ysum = |YZ +Yj1|/2
and Ydif = |YZ−Yj1|/2 are differently reproduced by theory as shown in Fig.3. MCFM and SHERPA

show a good agreement with data, while MADGRAPH disagrees with the measurement. The dif-
ferent behavior between SHERPA and MADGRAPH is introduced in the matching step between the
parton shower and the matrix element calculation.
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Figure 1: Differential cross-sections for 1.5 < |η jet| < 2.5 (left) in photon plus jets events in four different
ranges of ηγ compared with distributions from SHERPA and JETPHOX (left). Fully corrected differential
cross-section for the DPS-sensitive observable ∆S for W+2 jets events compared to MC predictions from
MADGRAPH with and without MPI and PYTHIA8 (right).
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Figure 2: Rapidity distributions Ysum (left) and Ydiff (right) for Z+jets from data corrected for detector effects
compared to predictions from MCFM, MADGRAPH and SHERPA.
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Angular topologies are studied through the transverse thrust variable τT[12] and the azimuthal
observable ∆φ(Z, j1) for various inclusive jet multiplicities [13]. These distributions are of interest
in physics searches for new physics in jet plus missing transverse energy signatures. These have
Z→ νν as irreducible background and the azimuthal angle between the Z and the leading jet
translates into the azimuthal angle between the leading jet and the transverse missing energy vector.
MADGRAPH 5.1. and POWHEG[14] describe the data well. SHERPA 3.1 gives a good description of
data in the 2 and 3 jet bin, but is off by roughly 10 % for the inclusive 1 jet phasespace as displayed
in Fig.3. The expected failure of PYTHIA 6.4 shows the importance of additional ME calculations.
MADGRAPH and SHERPA ME calculation include up to 4 jets in the ME calculation, POWHEG

provides NLO calculations for Z+1 jet. Though the additional radiation beyond the leading jet
comes solely from PS POWHEG provides good predictions for high jet multiplicity regions. The
agreement of the transverse thrust distribution in a regime with a highly boosted Z (pZ

T > 150GeV)
shows an analogous agreement of data and predictions (Fig. 3): while MADGRAPH and POWHEG

provide adequate predictions, SHERPA and PYTHIA6 are shifted towards the dijet region of low
thrust values.
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Figure 3: The distribution of ∆φ(Z, j1) for three different inclusive jet multiplicities (left) and the distribu-
tion of the logarithm of the transverse thrust for pZ

T > 150GeV (right) from data and MC simulations from
SHERPA, PYTHIA6, POWHEG and MADGRAPH in Z+jets events.
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4. Z and heavy flavor quark production

Production of Z+heavy flavor quarks is studied using two different methods of heavy flavor
identification both in the Z+1b and Z+2b final state. The first method relies on the identification
of heavy quark jets through flight distance criteria[15]. The second b-tagging method is based on
the identification of secondary vertices of B-hadrons independent of jets[16]. Thus it is possible
in contrary to the b-jet identification method to access the phasespace where ∆R(b, b̄) is small in
the Z+2 b case. This gives access to a region of collinear b-quark production which is sensitive
to gluon-splitting. MADGRAPH offers two schemes of heavy flavor schemes. The five flavor
(5F) scheme considers the five lightest quarks (including the b) within the proton PDF. The four
flavor (4F) scheme considers the b only as massive final-state particle in the matrix element. The
measured cross-section in Z+b(b) jets at particle level agrees with MADGRAPH for both schemes,
after a rescaling with a constant NNLO k-factor (see Tab.1). The 4F scheme provides a better
description of the collinear region of B-hadrons, whereas the 5F scheme underestimates the rate
(see Fig. 4).

Table 1: Cross sections at the particle level for the production of a Z boson in association with exactly 1 b
jet and at least 2 b jets, and the combination of the two (at least 1 b jet), showing the statistical and systematic
uncertainties. The expectation from MadGraph includes the statistical uncertainty.

Multiplicity bin Measured MadGraph 5F MadGraph 4F
σ (Z(``)+1b) (pb) 3.52±0.02±0.20 3.66±0.02 3.11±0.03
σ (Z(``)+2b) (pb) 0.36±0.01±0.07 0.37±0.01 0.38±0.01
σ (Z(``)+b) (pb) 3.88±0.02±0.22 4.03±0.02 3.49±0.03
σ (Z(``)+b)/σ(Z(``)+j) (%) 5.15±0.03±0.25 5.35±0.02 4.60±0.03
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Figure 4: Differential cross-sections in Z+2 B hadron events in an inclusive selection (left) and a selection
with pZ

T > 50GeV (right) as a function of ∆RBB. The measurements are compared to hadron-level predictions
by MADGRAPH in the four- and five-flavor schemes
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5. Conclusion

The unprecedented amount of data delivered by the LHC makes it possible studying ex-
treme configurations of V plus jets with high precision, which are also interesting for new physics
searches. Several predictions have been compared with data in various distributions. The different
level of agreement reflect the current understanding of QCD dynamics.
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