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Gravitational waves can constitute a unique probe of the very early universe. We discuss here the

gravitational wave signal from a primordial first order phase transition occurring at high energy

scales. The gravitational waves are produced by the collision of broken phase bubbles and by the

magnetohydrodynamic turbulence in the primordial plasma stirred by the bubble collision. We

show how the shape and amplitude of the gravitational wave power spectrum can be predicted by

general arguments based on the source properties, such as its time evolution and space structure.

The parameters describing the characteristics of the phase transition (for instance, its duration and

strength), which enter in the determination of the gravitational wave spectrum, can be evaluated

in the context of specific models of the first order phase transition. We present here two examples

of first order phase transitions which lead to a gravitational wave signal falling in the frequency

range of detection of the future space-based interferometer eLISA.
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1. Introduction

In the course of its adiabatic expansion, the universe might have undergone several phase

transitions (PT) driven by the temperature decrease. The nature of the primordial PT depends

on the particle theory model, but if they are first order they proceed through the nucleation of

broken phase bubbles, which is a very violent and inhomogeneous process capable of sourcing

gravitational waves (GW). GW produced in the early universe form a fossil radiation: expansion

prevents them from coming in thermal equilibrium with the other components of the universe

because of the weakness of the gravitational interaction. Important information on the nature of the

GW source is thus imprinted in relic GW and can be decoded. The detection of a fossil background

of GW from a primordial PT would constitute a probe of the high energy processes giving rise to

the PT and ultimately of the nature of the theoretical model describing the universe at high energy

scales, possibly higher than those that can be reached in terrestrial laboratories. For example, the

electro-weak phase transition (EWPT) in the standard model is a crossover, and it is not expected

to lead to any appreciable cosmological signal; however, deviations from the standard model in the

Higgs sector or the introduction of supersymmetry can lead to a first order EWPT. If the EWPT

is sufficiently strong, it could lead to a GW signal detectable by the space-based interferometer

eLISA [1]. Similarly, the QCDPT is also predicted to be a crossover by lattice simulations but it

can become first order if the neutrino chemical potential is sufficiently large [2]. GW detection

would help to probe the nature of these PT, and provide interesting information on the underlying

particle theory.

2. Overview of the GW signal: characteristic frequency and spectral shape

In a cosmological context, GW may be represented by a tensor perturbation hi j (i, j = 1,2,3)

of the Friedmann Robertson-Walker metric1 ds2 = −dt2 + a2(t)(δi j + hi j)dxidx j which is trans-

verse and traceless ∂ihi j = hii = 0. The transverse-traceless condition leaves only two independent

degrees of freedom, which are the ones that propagate and carry energy out of a source. In Fourier

space, their linearized equation of motion given by Einstein equations is ḧi j(k, t)+ 3H ḣi j(k, t)+

k2 hi j(k, t) = 16πGΠ
(T T )
i j (k, t), where G is the Newton constant, H is the Hubble rate, a dot denotes

derivative with respect to t, k is the physical wavenumber and Π
(TT )
i j is the transverse-traceless

part of the anisotropic stress Πi j. The latter is given by a2 Πi j = Ti j − pa2 (δi j + hi j), where Ti j

denotes the spatial components of the energy-momentum tensor and p is the background pres-

sure. For a source operating at sub-Hubble scales (k ≫ H), the GW equation of motion may

be approximated as a standard wave-equation ḧi j + k2 hi j = 16πGT
(TT )

i j /a2. Once produced in

the early universe, GW propagate freely until today, being simply redshifted by the expansion of

the universe. Their energy density today can be written as ρgw = 〈ḣi j ḣi j〉/(32πG) =
∫ d f

f

dρgw

d log f
,

where f = (k/2π)(a/a0) is the present-day GW frequency (a0 denoting the scale factor today)

and 〈〉 denotes ensemble average. The superposition of GW produced by a large number of un-

resolved sources in the early universe form a stochastic background that is assumed to be sta-

tistically isotropic, stationary and nearly Gaussian. Its main properties are then described by its

1Where we assume flat spatial sections, a(t) is the scale factor, t denotes the physical time and repeated latin indices

are summed.
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power spectrum. One defines the spectrum of energy density per logarithmic frequency interval di-

vided by the critical density ρc today, h2 Ωgw( f ) =
(

h2

ρc

dρgw

d log f

)

0
, where the subscript 0 refers to the

present epoch and h parametrizes the small uncertainty in the value of the Hubble constant today,

H0 = 100hkm/s/Mpc.

A source that operates at sub-Hubble scales at some time t∗ after inflation emits GW with a

characteristic wave-number k∗ that is larger than the Hubble rate H∗ at that time: k∗ = H∗/ε∗ with

ε∗ ≤ 1. The characteristic GW frequency today is then given by fc = (k∗/2π)(a∗/a0). For GW

produced in the radiation era when the plasma temperature is T∗, and assuming a standard adiabatic

thermal history for the evolution of the universe after GW production, the characteristic frequency

today can be written as fc ≃ 1.6×10−4 Hz ε−1
∗ (T∗/1TeV)(g∗/100)1/6 , where g∗ is the number of

relativistic degrees of freedom at temperature T∗. The parameter ε∗ ≤ 1 depends on the dynamics

of the specific GW source under consideration. For a first-order phase transition, one may have for

instance ε∗ ∼ 10−3 −1. In that case, GW produced around the EW scale are potentially interesting

for detection with eLISA, which operates in the frequency range 10−5 Hz < f < 1Hz [1].

Towards the end of the PT, the true vacuum bubbles collide and convert the entire universe

to the broken phase. The collisions break the spherical symmetry of the bubble walls, generating

a non-zero anisotropic stress which acts as a source of GW. Moreover, bubble collision causes an

injection of energy in the primordial plasma, which has a very high Reynolds number (of the order

of 1013 at 100 GeV and at the typical scale of the bubbles [3]): the energy injection leads to the

formation of magnetohydrodynamic (MHD) turbulence, which sources GW through the anisotropic

stresses of the chaotic fluid motions and of the magnetic field present in the plasma. Both GW

generation processes are related to the collision of bubbles, which involves two quantities: the

duration of the PT β−1, and the typical size of the bubbles at the moment of collision, R∗ ≃ vb β−1,

where vb is the bubble wall velocity. The characteristic frequency of the GW generated by the two

processes can correspond either to the duration of the PT or to the bubble size: k∗ ≃ β or R−1
∗ ,

depending on the details of the time evolution of the source. These two parameters can therefore

both determine the value of ε∗. If the growth of the bubble proceeds at a highly relativistic speed,

the two time/length-scales are equal. Assuming for the moment k∗ ≃ β , one obtains the following

order of magnitude estimate of the characteristic frequency today:

f ≃ 10−2 β

H∗

T∗

100GeV

( g∗

100

)
1
6

mHz . (2.1)

The parameter β/H∗ is the ratio of the Hubble time to the duration of the PT. Since the entire

universe must be converted to the broken phase, the PT must complete faster than a Hubble time,

so in general we expect β/H∗ > 1. From Eq. (2.1) it appears that the characteristic frequency of GW

emitted at the EWPT at 100 GeV falls in the frequency range of eLISA for values 1 . β/H∗ . 104.

As another example, we see from the above formula that GW production at the QCDPT at T∗ ≃ 100

MeV can fall into the frequency range of detection with pulsar timing array, f ≥ 10−8Hz (see e.g.

[4] and references therein). The precise value of β/H∗ has to be determined in the context of a

given model for the first order PT (c.f. section 3).

A simple estimate of the GW amplitude, which shows how the result scales with the duration

and the energy density of the GW source, can be given through the following heuristic argument.

We rewrite the GW equation of motion for β/H∗ > 1 simply as β 2h∼ 16πGT , where h denotes the

3



P
o
S
(
E
P
S
-
H
E
P
 
2
0
1
3
)
4
7
7

Gravitational waves from first order phase transitions Chiara Caprini

amplitude of the tensor perturbation, T the energy momentum tensor of the source, and we inserted

1/β as the characteristic time on which the perturbation is evolving (we have dropped indices for

simplicity). This suggests that ḣ∼ 16πGT/β , and the GW energy density at the time of production

can then be estimated as ρgw ∼ ḣ2/(32πG) ∼ 8πGT 2/β 2. Dividing by the total energy density

ρtot = 3H2
∗/(8πG) at the time of GW production, we can write ρgw/ρtot ∼ (H∗/β )2 (ρs/ρtot)

2
∗

where ρs ∼ T denotes the part of the energy density available in the source for the GW generation.

Accounting for the fact that the PT takes place in the radiation-dominated universe and that the

GW energy density is diluted like radiation, one then obtains, for the peak amplitude of the GW

spectrum today

Ωgw ∼ ΩR

(

H∗

β

)2(
ρs

ρtot

)2

∗

, (2.2)

where ΩR = ρR/ρc denotes the radiation abundance today and (ρs/ρtot)∗ the fraction of energy

density that contributes to GW generation at the time of production. The above equation shows

that the GW energy density scales like the square of the ratio of the GW source duration and the

Hubble time, and the square of the energy density in the source. As a rule of thumb, given h2ΩR ≃

4.15× 10−5, a GW signal above the lowest sensitivity of a typical detector, say h2Ωgw & 10−10,

can be generated if (H∗/β )(ρs/ρtot)∗ & 3× 10−3. Therefore, detectable signals arise from very

energetic processes, which involve a sizable fraction of the total energy density in the universe, and

at the same time slow processes, which minimize the value of β/H∗.

The slope of the GW spectrum at wave-numbers k smaller than the Hubble radius H∗ at the

time of production can also be determined on general grounds, valid for any transient stochastic

source after inflation. This is a consequence of the fact that the causal process generating the GW

signal cannot operate on time/length-scales larger than 1/H∗. Therefore, the anisotropic stresses

Π
(TT )
i j (k, t) sourcing the metric perturbations are not correlated for k < H∗, and the anisotropic

stress power spectrum is expected to be flat (white noise) up to the wavenumber k∗. If the anisotropic

stress power spectrum is flat, so is expected to be the GW power spectrum |ḣi j(k, t)|
2, because the

causal horizon sets also the maximal time-scale of the correlation, and the wave equation cannot

lead to any extra correlation for k < H∗. This in turn implies that the spectrum of GW energy

density per logarithmic frequency interval must grow as k3, because dρgw/d log k ∝ k3|ḣi j(k, t)|
2.

Thus the infra-red tail of the present-day GW spectrum behaves as h2Ωgw ∝ f 3 for scales that were

super-Hubble at the time of production.

At sub-Hubble scales k>H∗, the spectrum continues to grow up to the characteristic wavenum-

ber k∗. The slope depends on how long the GW source is active [3]. The anisotropic stresses due to

bubble wall collisions disappear once the PT is completed: therefore, they act as a source of GW

for less than a Hubble time. In this case, no correlations are generated beyond the characteristic

wavenumber, and for H∗ < k < k∗ the GW spectrum behaves as k3. On the other hand, MHD turbu-

lence takes several Hubble times before being finally dissipated (because of the very low viscosity

of the primordial plasma [3]). Therefore, the anisotropic stresses due to the fluid motion and the

magnetic field source GW for several Hubble times: this causes the slope of the GW signal to turn

from k3 to k2 in the scale range H∗ < k < k∗.

As previously mentioned, the characteristic scale k∗ at which the GW spectrum peaks corre-

sponds either to the duration of the PT or to the bubble size (k∗ ≃ β or R−1
∗ ), depending on the time
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correlation structure of the GW source. Bubble collision events are uncorrelated in time between

each other, but each collision event has a deterministic time evolution. Under these conditions, it is

possible to demonstrate [3] that the GW spectrum is given simply by the square of the time Fourier

transform of the source. Consequently, it peaks at a wavenumber corresponding to the characteris-

tic time-scale of the source, i.e. the total duration of the bubble collision process: k∗ ≃ β . On the

other hand, the time evolution of MHD turbulence cannot be established in a deterministic way:

it is only known that turbulent motions de-correlate with a timescale corresponding to the eddy

turnover time, which depends on the eddy size. This particular evolution structure does not lead di-

rectly to the time Fourier transform of the source of GW, and the peak of the GW spectrum changes

to the characteristic length-scale of the source [3]: the size of the largest eddies, corresponding to

the size of the bubbles at the end of the PT: k∗ ≃ R−1
∗ .

Beyond k∗, the GW power spectrum decays with a slope that depends on the details of the

source power spectrum. For bubble collisions, it turns out that it decays as 1/k [5]; for MHD

turbulence instead, if it is of the Kolmogorov type, it leads to a GW spectrum decaying as k−5/3

[3]. An example of the complete GW spectrum from a first order PT given by the sum of the bubble

collision and MHD turbulence contributions is shown in the left plot of Fig. 1, were it is possible

to appreciate the low and high frequency behaviors and the double peak structure.

3. Parameters entering the GW spectrum

In order to predict the amplitude and peak frequency of the GW signal from a specific first

order PT one has to determine the value of the few parameters entering the GW spectrum. As we

have seen, these are the PT temperature T∗, the inverse duration of the PT β/H∗, the bubble wall

velocity vb, and the fraction of energy that contributes to the GW generation (ρs/ρtot)∗. These

parameters are not all independent, and can only be determined within a given model of the PT.

In general, one needs to find the bounce solution of the three-dimensional Euclidean action S3(T ),

which quantifies the probability of tunneling [6]. From this, one can then calculate the fraction of

space that is covered by bubbles (neglecting overlap): T∗ can be defined as the temperature at which

this fraction is equal to one. Moreover, knowing the three-action as a function of temperature, one

can calculate β/H∗ = T d(S3/T )/dT , which is in general a function of temperature and has to be

evaluated towards the end of the PT to represent, as a matter of fact, the ‘duration’ of the PT 2.

The bubble wall velocity vb and the fraction of energy that contributes to the GW generation

(ρs/ρtot)∗ cannot in general be evaluated solely from the three-action. Since these two parameters

are connected to the dynamics of the bubble expansion in the primordial fluid, a knowledge of the

total particle content and interactions of the theory is in principle necessary to determine them. The

bubble wall velocity vb results from the balance among the driving force that makes the bubble

expand (given by the pressure difference between the interior and the exterior of the bubble, which

is connected to the latent heat) and the friction force due to the interaction of the bubble wall

with the surrounding plasma, which slows down the bubble expansion. This latter can either be

determined in a given particle theory model, for which all interactions are known, or it can be

parameterized in terms of a new parameter, the friction η , providing then a phenomenological

2Alternatively, it is possible to relate β to the typical bubble size at the end of the PT through vb, 〈R〉 ≃ 3vb/β (T ),

where 〈R〉 can be estimated from the maximum of the bubble volume distribution [6].

5
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Figure 1: GW spectra in two models of first order PT, compared with the sensitivity curve of the interfer-

ometer eLISA. Left plot: the SM extended by a dimension 6 operator, with friction η = 1. From bottom

to top, the strength of the PT increases. Right plot: PT connected to the radion stabilization in the Randal

Sundrum model (which is always in the runaway regime). The solid lines are the GW spectra for T∗ = 100

GeV, and from top to bottom β/H∗ = 6 , β/H∗ = 15; the dashed lines are for T∗ = 104 GeV, and the same

values of β/H∗.

picture valid for several PT models [7]. Once vb is known, it gives the boundary condition for

the hydrodynamical description of the bubble growth. The bubble can reach a steady state with

constant velocity, with supersonic (detonation) or subsonic (deflagration) propagation speed; or, if

the friction is subdominant with respect to the driving force, it can accelerate constantly up to the

speed of light (runway solution) [7]. ρs is in general given by the the sum of the gradient kinetic

energy in the Higgs-like field driving the phase transition, the bulk kinetic energy of the fluid set

into motion by the bubble wall, and the kinetic and magnetic energies due to the MHD turbulence.

Either of these components can dominate ρs, depending on the characteristics of the PT and on

the bubble propagation: if the friction is high, the bulk motions and the MHD turbulence dominate

(e.g. in deflagrations); if on the contrary the friction is low, the transfer of energy from the bubble

wall to the surrounding fluid is poor and most of the energy remains in the form of kinetic gradient

energy of the Higgs-like field (e.g. in runaways).

To determine the parameter (ρs/ρtot)∗ entering the amplitude of the GW spectrum one further

has to know the total energy density in the universe at the moment of the PT: ρtot = ρ∗
rad + ρvac,

the sum of the radiation and the vacuum energy densities, of which the latter is known from the

action in a given PT model. It is important to point out that the strength of the PT, customarily

parameterized by the ratio α = ρvac/ρ∗
rad, is in general connected with its duration, parameterized

by β/H∗: strong PT last longer, leading to small β/H∗. This increases the amplitude of the GW

signal (c.f. Eq. 2.2), but shifts the peak frequency to low values (c.f. Eq. 2.1).

4. Discussion and conclusions

In Fig. 1 we show two examples of the GW signal from first order PT [8]. The first example

is the EWPT in the standard model augmented with dimension 6 operators [6], and with the phe-

nomenological parameter representing the friction set to η = 1. The GW signal increases with the

6
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strength of the PT, and correspondingly the peak frequency shifts to lower frequencies. The low

frequency tail of the spectrum for k < k∗ raises as k3. If the strength of the PT is low, the bulk ki-

netic energy dominates the GW production with respect to the kinetic gradient energy of the Higgs

field: therefore, the peak of the GW spectrum is at k∗ ≃ R−1
∗ , set by the contribution from MHD

turbulence. As the strength of the PT increases, the contribution from bubble collisions (which is

determined by the gradient kinetic energy of the Higgs field) gains importance, and the peak of

the GW spectrum becomes the inverse time-scale of the source, k∗ ≃ β . Moreover, as the PT gets

stronger, the temperature of the PT T∗ diminishes and the duration of the PT increases (β/H∗ gets

smaller): therefore, the peak of the GW spectrum is shifted to lower frequencies, progressively

exiting the sensitivity range of the eLISA interferometer.

The second example is the GW signal in the holographic PT corresponding to the stabilization

of the radion in the Randall Sundrum model [9]. This PT is characterized by a very high supercool-

ing: the bubbles expand in the runaway regime (at the speed of light) and the fraction of energy

that contributes to the GW generation is always given by the kinetic gradient energy of the scalar

field. No MHD turbulence is present, and the spectrum always peaks at k∗ ≃ β .

To summarize, we have little information about the physics and the processes operating in

the very early universe, but it is in principle possible to generate a stochastic background of GW

detectable by the next generation interferometers, which will reach an ultimate sensitivity around

10−10 in the GW energy density. In particular, the space-based interferometer eLISA will be sen-

sitive to very strong PT occurring around 10 TeV and which last long [8], such as for example PT

connected to the presence of extra-dimensions and warped geometries. A well defined prediction of

the spectral shape is crucial for establishing detection prospects, and to distinguish the signal from

the noise. Some of the characteristics of the GW spectrum can be predicted on general grounds and

from analytical estimates, such as the k3 raise of the the large scale part of the spectrum, and the

position of the spectrum peak in connection with the PT properties. In general, GW are a powerful

mean to learn about the early universe and high energy physics: the detection is difficult, but it

would lead to a great payoff.
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