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1. Introduction

The Belle II experiment [1, 2] is an upcoming experiment based on the SuperKEKB e+e−

collider, which will provide almost two orders of magnitude higher instantaneous luminosity than
the KEKB e+e− collider. We aim to measure precisely the parameters of the Standard Model and
search for physics beyond the Standard Model.

We report here on the time-of-propagation (“TOP”) detecter, which plays an essential role in
the identification of charged particles at the Belle II experiment. Each TOP counter consists of a
quartz radiator and 32 micro-channel-plate photomultiplier tubes (“MCP-PMTs”). The Cherenkov
photons traveling in the quartz radiator are detected by the MCP-PMTs (Figure 1), and the time and
the position are used to reconstruct the Cherenkov angle corresponding to the velocity. Combining
with the momentum measured in the inner trackers, the mass is identified.

In total 16 TOP counters are planned to be installed in the barrel region of the Belle II detector.
The expected efficiency of identifying a kaon or a pion is typically 95%, while the expected proba-
bility (“fake rate”) of misidentifying a pion (kaon) as a kaon (pion) is typically 5%, both depending
on the momentum. In the following, the key features of the TOP counter as well as a performance
study using a full-size prototype are presented.

2. Quartz Radiator

A quartz radiator consists of two quartz bars, a quartz bar with mirror, and a wedge-shaped
quartz block (Figure 2). The dimensions of a quartz bar, a quartz bar with mirror, and a wedge-
shaped quartz block are 1250×450×20 mm3, 100×450×20 mm3, and 100×450×(20–50) mm3,
respectively, where the height of wedge-shaped block varies from 20 mm to 50 mm.

The Cherenkov photons are emitted inside the quartz radiator, and are propagated with hun-
dreds of reflections at the quartz surfaces and/or a reflection at the mirror. The quartz material is
Corning 7980 Class 0 Grade F or better. The surfaces of the quartz radiator are polished with a
roughness of < 0.5 nm in RMS to ensure photon efficiency. A flatness of < 6.3 µm, a perpen-
dicularity of < 20 arcsec, and a parallelism of < 4 arcsec are required for the largest surfaces of
the quartz bars to maintain the angles of the Cherenkov photons. The mirror has a curvature of a
radius of 5000 mm to cope with chromatic dispersion. The wedge-shaped quartz block expands the
Cherenkov photon path for a better photon separation.

We have established a system consists of laser and photodiodes to measure the bulk transmit-
tance and the surface reflectance, which are the key parameters related to the photon efficiency.
For a prototype bar, we obtain a bulk transmittance of (99.4±0.2) %/m and a surface reflectance
of more than 99.9 % per bounce for various reflection angles in 55–70◦. We have also established
a system consists of laser and CCD to check the photon path inside the quartz. For a prototype
bar, no significant change from the ideal path is observed. The systems for measuring the mirror
reflectivity and the wedge angle have also been developed, and checks have been performed for
prototypes.

The quartz components are glued together for forming a quartz radiator. The stage has been
developed using solid aluminum plates, whose surface flatness is kept to be within ±0.05 mm using
micrometer heads. The quartz is put on hundreds of POM balls on the stage, where the quartz-
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surface flatness is kept to be within ±0.01 mm. The quartz components are aligned with a relative
angle of O(0.01) mrad and a displacement of O(0.01) mm. Norland Optical Adhesive 63, which
is cured with ultra-violet light emission, is selected as the glue. We successfully glued prototype
components and the first (almost-)full-size quartz radiator has been developed (Figure 3).

3. Support Structure

The quartz radiator is supported by hundreds of peek buttons attached on the aluminum honey-
comb plates (Figure 4). The peek buttons are selected so that the quartz surfaces are not damaged.
Since the refractive index of the peek buttons are different from air, the area of the contact between
quartz and peek is kept small by using button shape. The aluminum honeycomb plates have an
enough rigidity with low material volume. A prototype of the support structure has been devel-
oped, and the prototype quartz radiator has been installed.

4. MCP-PMT

The Cherenkov photons are detected by the MCP-PMTs (Figure 5). They have square shape
for effectively covering the quartz-surface area. Single MCP-PMT has 4×4 channels in the active
area of 23×23 mm2. The Cherenkov photon is converted into an electron at the photocathode made
of NaKSbCs. The quantum efficiency is > 24 % at a wave length of 380 nm. The produced electron
is amplified by hitting the walls of the halls of two micro-channel plates (“MCPs”). The collection
efficiency, which corresponds to the MCP aperture ratio, is 50–55 %. The gain is 2×106 at a bias
voltage around 3.4 kV, which enables single photon detection. The transit time spread is ∼ 40 psec,
which is essential for obtaining required particle-identification performance. The performance loss
in a magnetic field of 1.5 T, designed for the Belle II experiment, has been measured to be small.
The mass production started in 2011, and the quality checks are ongoing.

5. Readout

The Cherenkov photon signal from the MCP-PMTs is read out using waveform-sampling
ASICs [3, 4]. Currently-tested version of the ASIC is IRS3B. It has a high sampling rate of 4×109

samples per second. The chip intrinsic time resolution is < 25 psec. Multihit buffering is possible
for 30 kHz level-1 trigger accept, which is expected at the Belle II experiment. Four chips are at-
tached on a carrier board, and four carrier boards form a module (Figure 6). A module corresponds
to 16 MCP-PMTs. The readout is controlled by Xilinx Spartan-6 FPGA.

Since the calibration of the time and the charge for the above readout system requires a signif-
icant learning curve, an alternative system has been prepared as a backup for performance tests [5].
It is based on constant-fraction discriminators with CAEN V1290A TDCs. Four channels are con-
verted into a single channel in the socket boards due to limited space for the electronics. Eight
constant-fraction-discriminator boards form a module corresponding to two MCP-PMTs (Fig-
ure 7). The time resolution for this readout system is measured to be ∼ 50 psec. The expected
performance loss of using this system relative to using the baseline system corresponds to a de-
crease of efficiency of < 1 % at an increase of fake rate of 1 %.
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6. Performance Study

For evaluating the performance of the TOP counter, a test has been performed using a prototype
counter and 2.0 GeV/c positron beam at the Laser Electron Photon Beamline at SPring-8 (“LEPS”).
Figure 8 represents the overview of the setup. The positron is produced at the lead target, and is
bended by the magnetic field generated by the dipole magnet. The positrons with the momenta of
2.0 GeV/c are tagged by the trigger counters, and the tracks are obtained by the scintillating-fiber
trackers. The time origin is obtained from the radio-frequency pulse for the accelerator with a
resolution of < 25 psec. The beam time is divided into two, one for the baseline readout and the
other for the backup readout. The test has been done in a collaboration with the LEPS group.

Figure 9 shows a very preliminary output from the data taken with the backup readout and a
GEANT 4-based Monte Carlo (“MC”) expectation. The overall structure of the photon arrival time
depending on the channels agree between the data and MC samples. The data analysis does not
include full event selection, e.g. for removing shower background, while it includes a preliminary
channel-by-channel time-origin alignment using the data taken with laser input. Further calibration
and analysis are ongoing for evaluating the time resolution of photon arrival, the velocity resolution
of tracks, and the performance of particle identification. The calibration and the analysis are also
ongoing for the data taken with the baseline readout.

7. Summary

The TOP detecter will play an essential role in the charged particle identification at the Belle II
experiment. The quartz radiator is designed to maintain Cherenkov-photon efficiency and paths.
The MCP-PMTs enable the photon detection with a transit time spread of ∼ 40 psec and a high
quantum efficiency. Baseline readout with waveform sampling and an alternative readout with
constant-fraction discriminator for performance test have been developed. Preliminary output from
the data taken with 2.0 GeV/c positron input at LEPS shows a good agreement with MC expecta-
tion. Further analysis of the beam data is ongoing for evaluating the performance of the charged
particle identification. The mass production of each component is ongoing or to be started soon
aiming for the installation in 2015.
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Figure 1: Schematic drawing of the TOP counter with examples of the Cherenkov-photon paths. The blue
line represents the charged track, where a momentum of 2 GeV/c is assumed. The green line indicates an
example of the photon paths assuming charged-pion track, while the red line assuming charged-kaon track.
The Cherenkov photons are detected at the MCP-PMTs after reflections at the quartz surfaces and the mirror.
Tens of Cherenkov photons are typically detected for single track input.

Figure 2: Prototypes of the quartz components. A wedge-shaped quartz block (left), a quartz bar (right
top), and a quartz bar with mirror (right bottom) are shown. The length of the quartz with mirror is 30 mm,
which is 70 mm shorter than the design value. The material quality and the specifications related to polishing
satisfy the design requirements.

Figure 3: Prototype of the quartz radiator. A wedge-shaped quartz block, two quartz bars, and a quartz bar
with mirror are glued. The radiator is put on peek buttons attached on an aluminum honeycomb plate.
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Figure 4: A schematic drawing of the support structure of the quartz radiator (left) and a picture of the
support structure surrounding a quartz radiator (right). The quartz is supported by the peek buttons attached
on the aluminum honeycomb plates.

Figure 5: A picture of the MCP-PMT (left), a cross-sectional drawing of the MCP-PMT (center), and a
schematic drawing of the MCP (right). Cherenkov photon is converted into electron, which is amplified by
two MCPs.

Figure 6: A picture (left) and a schematic drawing (right) of the readout module with MCP-PMTs.
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Figure 7: A picture (left) and a schematic drawing (right) of the backup readout module for performance
test with MCP-PMTs.

Figure 8: Setup of the performance test using 2.0 GeV/c positrons at LEPS.

Figure 9: Preliminary ring images for data taken by the backup readout (left) and MC simulation (right).
The horizontal axis shows the channel-identification number, while the vertical axis shows the time of pho-
ton detection at the corresponding channel. The events for normal incidence are accumulated. The two
distributions have similar tendency. Further calibration and analysis are ongoing.
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