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Simulations in lattice gauge theory suggest that the formation of a flux tube between quark and
antiquark leads to quark confinement. It is conjectured that the infrared behaviour of the flux
tube is governed by an effective string theory and simulations show good agreement between
lattice data and its predictions. To next-to leading order (R−3) in the inverse qq̄ separation R

the effective string theory is equivalent to Nambu-Goto string theory. For the open flux tube in
three dimensions corrections appear at order R−4. We compare these predictions to high-accuracy
measurements of the groundstate energy of the flux tube in 3d SU(2) and SU(3) gauge theory and
extract the coefficient of the leading order boundary term in the effective action.
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1. Introduction

Lattice simulations provide strong evidence that the formation of a flux tube between a static
quark and antiquark is a valid mechanism to describe the confinement of quarks. In the ultraviolet
it is conjectured that the dynamics of the flux tube is well described by an effective string theory [1,
2, 3, 4]. A simple ansatz for the woldsheet field theory is the action of a free bosonic string, the
Nambu-Goto (NG) action with the spectrum [5]

ENG
n (R) = σ R

√
1+

2π

σ R2

(
n− 1

24
(d−2)

)
. (1.1)

Here σ is the string tension and R the qq̄ separation. In d 6= 26 the quantisation of the NG action
suffers from the well known Weyl anomaly [1], rendering the interpretation of the NG action as the
low energy effective action for the flux tube in the ultraviolet region inconsistent.

This consistency problem has triggered the development of alternative frameworks to write
down the effective string action. Historically there are two main methods, the ansatz by Polchinski
and Strominger [6] and the one by Lüscher and Weisz [7, 8] and for a long time it was unknown
how to connect these two. Recently Aharony and collaborators performed extensive calculations
in both theories, showing that the spectrum is equivalent in the two theories up to O(R−5) and
that it includes corrections to the NG spectrum [9, 10, 11, 12]. Furthermore, they provided a
relation between the two methods based on a generalisation of the AdS/CFT correspondence for
pure gauge theory where the confining string is a weakly coupled fundamental string moving in
a weakly curved background [13]. Within this framework the two approaches correspond to the
‘conformal’ or ‘static/unitary’ gauge, respectively. Alternative methods to calculate the spectrum
of the confining string have also been proposed recently [14, 15], leading to compatible predictions.

Simulations in pure gauge theories 1 show striking agreement with the NG predictions for the
energy levels of the open and the closed flux tube, as well as for the width of the flux tube at its
midpoint. The accordance persists down to surprisingly small values of the qq̄ separation where the
flux tube cannot be expected to be shaped like a string. Deviations from NG became visible only
recently with increasing precision in the measurements of the energy levels. For the open string
spectrum these deviations are well described by the predictions from the effective string theory [22,
23]. Similar agreement has also been found concerning the predictions at finite temperature [24, 25]
and for other objects in gauge theories with an effective string description (e.g. [26] and references
therein).

In this proceedings article we present new results concerning the coefficient of the leading
order correction to the NG spectrum of the open string. We begin by summarising the predictions
from the effective string theory before we discuss briefly the details of the simulations and the
extraction of the flux tube spectrum. We close with the discussion of the results for the boundary
coefficient.

1For results see [16, 17] (open spectrum), [18, 19, 20] (closed spectrum), [21] (width) and the included lists of
references.
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N Lat β r0/a
√

σ a
√

σr0 size R/a ts nt #meas

2 A 5.0 3.9472(4) 0.31212(7) 1.2320(3) 483 2-12 2 30000 1600
B 7.5 6.2863(7) 0.19630(4) 1.2340(3) 643 2-26 4 30000 1400
C 10.0 8.5992(6) 0.14354(2) 1.2343(2) 963 2-30 6 30000 2200

3 F 14.0 4.4433(3) 0.27682(4) 1.2300(2) 483 2-13 2 20000 1900
G 20.0 6.7073(4) 0.18367(2) 1.2319(2) 603 3-27 4 20000 2300

Table 1: List of simulation parameters. R denotes the qq̄ separation, ts is the temporal extent of the Lüscher-
Weisz sublattices and nt denotes the number of sublattice updates.

2. Spectrum of the open confining string

In the fundamental effective string theory, discussed in detail in [13], the full NG action is the
only ‘weight zero’ 2 term entering the action, so that all additional terms in the spectrum will appear
with respect to eq. (1.1). For the open string the first correction that appears is a four-derivative
boundary term [9]. The associated energy levels are given by [10]

EBC
n (R) = ENG

n (R)− b̄2
π3

√
σ3 R4

(
4 Nn +

d−2
60

)
, (2.1)

where Nn is a factor that depends on the eigenstate at energy level n (for a classification of the states
via charge conjugation C and parity P, Nn = NCP

n and N0 = 0, N1 = 1, N++
2 = 2 and N−−2 = 8;

see [22]) and b̄2 ≡
√

σ3b2 is a dimensionless non-universal parameter. The same result has also
been found using an alternative ansatz [23]. The next correction is a regular (non-boundary) term
appearing at O(R−5) and can be expected to be non-universal as well. However, in d = 2+1, the
case considered in this study, it vanishes identically.

3. Simulation details

We perform simulations of pure SU(2) and SU(3) gauge theory in 2+1 dimensions using
the standard combination of heatbath and overrelaxation updates. The simulation parameters and
lattice sizes are listed in table 1.

The focus is on the groundstate potential that can be extracted with high precision using
Polyakov loop correlation functions. For those correlators excited states are suppressed exponen-
tially with T so that their contribution to the groundstate signal can usually be neglected. In the
following the energies are extracted via

V (R)≡ E0(R) =−
1
T

ln [〈P∗(R)P(0)〉] , (3.1)

where T is the temporal extent of the lattice. The scale is set via the string tension as defined by the
potential from eq. (2.1). For completeness we also list the result for the Sommer scale and

√
σr0

in table 2. The Polyakov loop correlation functions have been measured using the Lüscher-Weisz
multilevel algorithm [27] with the parameters given in table 1. We have checked that finite size
effects as discussed in [22] are small for all spatial extents R. The error analysis is done using the
jackknife method with 100 bins for all lattices. We have also checked that varying the number of
bins did not change the error estimates.

2In this framework the ‘weight’ counts the number of derivatives in the action. The induced metric, with two
derivatives, has zero weight per definition.
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Lat Rmin/a b̄2 aV0 χ2/dof

A 4 -0.0197 (11)(52) 0.2148 (2)(3) 0.1
B 5 -0.0210 ( 4)(16) 0.1740 (1)(2) 0.1
C 8 -0.0231 ( 1)(22) 0.14500 (4)(11) 0.2

F 4 -0.0137 ( 4)(10) 0.2239 (1)(2) 0.02
G 6 -0.0170 ( 3)( 1) 0.18166 (5)(1) 0.02

Table 2: Results for the fitparameters as explained in the text.
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Figure 1: Left: Results for the groundstate qq̄ potential on lattice G, normalised as in [22]. The orange band
is the fit result and the vertical line indicates the fitrange. Right: Results for b̄2 versus the lattice spacing in
units of the string tension in comparison to the result from [22].

4. Extraction of the boundary coefficient

The boundary coefficient has been extracted from the groundstate energies by a fit to the form
given in eq. (2.1) with σ , b̄2 and an additive normalisation constant V0 as free parameters. The lower
cut Rmin has been chosen to be the second smallest qq̄ separation for which the fit still provided
χ2/dof values smaller than one and is listed in table 2 together with the results for b̄2 and V0. σ is
given in table 1. The systematic error associated with this particular choice (the second error for
the quantities in table 2) is estimated from the spread of the results obtained by fits with a minimal
qq̄ separation Rmin±1. Figure 1 (left) shows the result for the groundstate potential of lattice G in
comparison to the fit and the NG prediction. The plot displays the excellent agreement between the
predictions and the data.

In the case of SU(2) the error of b̄2 is dominated by the systematic uncertainty. This is different
for SU(3), where in general much less dependence on Rmin is seen. Furthermore, χ2/dof differs by
an order of magnitude between the two cases. A possible explanation is provided by the fact that the
picture of a single non-interacting flux tube is consistent only in the limit N→∞. This suggests that
we observe a remnant of the interaction of the flux tube with the lightest glueballs which perturbs
the agreement with the effective string predictions (see also the discussions in [19, 28, 29]).

In figure 1 (right) the results for b̄2 are plotted versus the lattice spacing in units of the string
tension. The dependence on the lattice spacing is relatively mild in both cases and the results
are close together, indicating only a small N-dependence of b̄2. Whether this is also true in the
continuum remains to be seen. A detailed continuum extrapolation together with comparisons to
data for the excited states will be presented in a future publication.

It would be interesting to compare to the results from Z(2) gauge theory [23]. This is difficult,
since in [23] the coefficient b̄2 has been extracted using the expansion of the NG energies to O(R−3)

instead of the full resumed energies. Note, that extracting b̄2 from an expansion of eq. (1.1) to
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different orders in 1/R even leads to different signs for b̄2, since the signs of the expansion terms
alternate. Following the discussion in section 2 and in [10, 19], starting from eq. (2.1) thus appears
to be a proper and unambiguous choice for the extraction of b̄2.

Acknowledgments: I would like to thank M. Panero for the invitation to give this talk and M.
Caselle for discussions. The simulations were done in parts on the LC2 cluster at the university of
Mainz and on the computing resources of the university of Regensburg.
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