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1. A short primer in kaon CP violation

CP violation in kaon physics is a mature and well-established field in particle physics. Far
from being exhaustive, the present chapter is only meant to introduce thebasic concepts and set the
notations that I will use later on. For details, I refer the reader to the many excellent reviews that
exist in the literature (e.g., [1–3]).

Weak interactions induce mixing between the strong eigenstatesK0 andK̄0, which are related
to the CP eigenstatesK1 andK2 as

K1,2 =
1√
2
(K0∓ K̄0) (1.1)

This explains whyKS (which is mostlyK1) decays into 2π while KL (mostlyK2) into 3π. However,
the fact thatKL → 2π is nonzero points at CP violation, which is regulated by the small parameter
ε̃:

KL =
1

√

1+ |ε̃|2
(K2 + ε̃K1) (1.2)

In order to study CP violation, it is convenient to work with theK → 2π amplitudes in the isospin
decomposition and define the ratios

εK =
A(KL → (ππ)0)

A(KS→ (ππ)0)
; ω =

A(KS→ (ππ)2)

A(KS→ (ππ)0)
; χ =

A(KL → (ππ)2)

A(KS→ (ππ)0)
(1.3)

The previous ratios describe both direct and indirect CP violation. Indirect CP violation is described

by εK , while direct CP violation is accessible through the combinationε ′
K ≡ χ − εK ·ω√

2
.

At the experimental level, one has access to the amplitudes

η+− =
A(KL → π+π−)

A(KS→ π+π−)
; η00 =

A(KL → π0π0)

A(KS→ π0π0)
(1.4)

in terms of whichεK andε ′
K can be determined as

|εK | =
1
3

(

2|η+−|+ |η00|
)

; Re

(

ε ′

ε

)

K
=

1
3

(

1−
∣

∣

∣

∣

η00

η+−

∣

∣

∣

∣

)

(1.5)

Indirect CP violation was confirmed experimentally in 1964, while direct CP violation was only
experimentally established after the KTeV and NA48 measurements (see Figure 1). The current
world average values are [5]

|η00| = 2.220(11) ·10−3 |η+−| = 2.232(11) ·10−3

|εK | = 2.228(11) ·10−3 φε = (43.52±0.05)◦

Re

(

ε ′

ε

)

K
= 1.66(23) ·10−3 φε ′ = (42.3±1.5)◦ (1.6)

From a theoretical point of view, the determination ofεK andε ′
K requires a dynamical description of

theK0− K̄0 andK → 2π matrix elements. These processes are described by the effective∆S= 1,2

2



P
o
S
(
K
A
O
N
1
3
)
0
2
6

Recent developments in nonleptonic kaon decays Oscar Catà

Figure 1: Evolution of the determination ofε ′ with time. Figure taken from Ref. [4]

Hamiltonians [6–8]

H∆S=1
e f f =

GF√
2

λu

10

∑
i=1

[

zi(µ)+ τyi(µ)
]

QS=1
i (µ)

H∆S=2
e f f =

G2
F

4π2

[

λ 2
c F1 +λ 2

t F2 +2λcλtF3

]

QS=2(µ) (1.7)

At the relevant energies,i.e. close to the kaon masses, they can be mapped into ChPT operators:

H∆S=1
e f f =

GF√
2

f 4
0 λu

{

g8O8 +g27O27+e2gewOew
}

+NLO

H∆S=2
e f f = − G2

F

16π2 f 4
0 g2O2 +NLO (1.8)

where (Lµ = UDµU†)

O8 = 〈LµLµ〉23; O27 = 〈Lµ〉23〈Lµ〉11+
2
3
〈Lµ〉21〈Lµ〉13; O2 = 〈Lµλ23L

µλ23〉 (1.9)

The connection withεK can be worked out from the neutral kaon mixing matrix element

M21 =
1

2mK

[

〈K̄0|H∆S=2
e f f |K0〉+∑

n

〈K̄0|H∆S=1
e f f |n〉〈n|H∆S=1

e f f |K0〉
mK −En + iε

]

(1.10)

whose real part is connected to∆mK , while the imaginary part is proportional toεK . Defining

A(K0 → (ππ)I ) = AI e
iδI ; A(K̄0 → (ππ)I ) = A∗

I eiδI (1.11)

and assuming that the intermediate states in(∆S= 1)2 are dominated byππ exchange, one finds
that

εK = eiφε sinφε

[

Im〈K̄0|H∆S=2
e f f |K0〉

∆mK
+

ImA0

ReA0

]

(1.12)

Using the previous result,ε ′ can be expressed, to a very good approximation, as

ε ′
K =

i√
2

ei(δ2−δ0)
ReA2

ReA0

[

ImA2

ReA2
− ImA0

ReA0

]

(1.13)
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2. ∆S= 2 transitions: BK and εK

Indirect CP violation inK → 2π is responsible for theK0− K̄0 mixing. The contributions to
εK are given by∆S= 2 box diagrams and can be written down as

εK = eiφε sinφε

[

Im〈K̄0|H∆S=2
e f f |K0〉

∆mK
+

ImA0

ReA0

]

(2.1)

The first term is the local∆S= 2 transition, which consists of a short and long distance contribution,
and is given by the effective Hamiltonian [8]

H∆S=2
e f f =

G2
Fm2

W

16π2

[

λ 2
c S0(xc)η1 +λ 2

t S0(xt)η2 +2λcλtS0(xc,xt)η3

]

ci(µ)Q∆S=2(µ) (2.2)

The term in brackets collects the Inami-Lim functions with electroweak and strong perturbative
corrections. Long distances are described by a single (multiplicatively renormalizable) operator
Q∆S=2 = (s̄LγµdL)(s̄LγµdL), whose matrix element inK0− K̄0 mixing defines the so-calledBK bag
parameter, which is a genuine nonperturbative object. For convenience, it is common to work with
the RG-invariantB̂K :

〈K0|ci(µ)Q∆S=2(µ)|K̄0〉 =
8
3

f 2
Km2

KB̂K (2.3)

The second part in Eq. (2.1) is a purely long-distance(∆S= 1)2 piece, which gives a sublead-
ing (but nonnegligible) contribution toεK . In the last years, there has been progress on both the
perturbative and nonperturbative contributions. RegardingB̂K , at present the best determinations
come from lattice simulations [9]

B̂K

∣

∣

∣

Nf =2+1
= 0.738(20); B̂K

∣

∣

∣

Nf =2
= 0.729(25)(17) (2.4)

Determinations with analytical methods cannot compete with the lattice precision butare nonethe-
less essential to understand the previous numbers. In particular, combining the chiral and large-
Nc expansions has proven to be very effective. At leading order in both expansions one finds
BK = 0.75, which substantially improves the vacuum saturation approximation,BVS

K = 1. When
1/Nc corrections are included one is sensitive to the scale-dependence and acareful matching be-
tween long and short distances has to be done [10].O(1/Nc) corrections turn out to be sizable and
negative, but they are compensated to a large extent by sizable and positive chiralO(p4) contribu-
tions. As a result, the final number barely changes toBK = 0.70(10) [10]. Comparison with the
lattice results shows remarkable agreement.

However, the situation is not entirely satisfactory. In the chiral limit,BK is known from the
relation [11]

Bχ
K =

5
4

g27 ∼ 0.37 (2.5)

which holds to all orders in the momentum expansion. Using the 1/Nc expansion with proper long
and short-distance matching, the previous result was successfully reproduced already atO(p4,1/Nc)

in a series of works by different groups [12–15]. However, comparison between Eq. (2.4) and
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Eq. (2.5) indicates that mass corrections should bring a huge contribution,accounting for roughly
50% of the value ofBK . Attempts to compute the mass corrections consistently within chiral per-
turbation theory have fallen systematically short of the lattice value. As far asI know, the issue of
mass corrections inBK has not yet been fully understood.

One of the most interesting implications of the current lattice precision onBK is that one can
no longer dismiss the(∆S= 1)2 nonperturbative contributions toεK [16]. These extra long-distance
effects can be parametrized in terms of an overall prefactorκε as follows

εK = eiφε sinφε

[

ImM12

∆mK
+ρ

ImA0

ReA0

]

≡ κε
eiφε
√

2

[

ImM12

∆mK

]

(2.6)

If ρ = 1, one obtains the estimateκε ∼ 0.92(2) [16]. However, as initially observed in [17], the
(∆S= 1)2 contribution is related by a dispersion relation to nonlocal (other thanBK) long distances
in M12, with some cancellation between both effects.1 Taking both effects into account [19]ρ gets
reduced toρ = 0.6(3) and accordingly

κε = 0.94(2) (2.7)

In Eq. (2.6), it is implicitly understood that the first term corresponds to theBK contribution, while
ρ collects the non-BK contributions. Using the values ofκε , BK on the nonperturbative side and the
perturbative corrections to NNLO [20], the latest theoretical result forεK reads [21]

|εK | = 1.90(26) ·10−3 (2.8)

which falls a bit shy of the experimental number.
As noticed in [16], failure to fit the experimental value ofεK leads to some tension in the CKM

fit between the K and B systems. Specifically, using the parameterization

|εK | ∼ κε f 2
KB̂K |Vcb|4ξ 2

s
Cs

Cd
sin2β (2.9)

the suppression induced byκε combined with lower values ofBK would require a slightly too large
sin2β , which would conflict withBs data. A way out would be to invoke new CP-violating phases,
e.g. SψKs = sin(2β + 2φd). If this tension is of eventual significance remains to be seen. What
seems to be on a rather good handle is the value ofκε . Lattice simulations for the absorptive part
find [27]

(κε)abs= 0.924(6) (2.10)

which is in excellent agreement with the analytical estimate reported in [16].

3. Recent progress in ∆S= 1 transitions

The determination ofε ′
K boils down to an understanding of the so-called∆I = 1/2 ruleand the

contributions of theQ6 andQ8 matrix elements. Their separate influence onε ′
K can be seen below:

ε ′
K =

i√
2

ei(δ2−δ0)
ReA2

ReA0

[

ImA2

ReA2
− ImA0

ReA0

]

(3.1)

1Local dimension-eight contributions toM12 can be shown to be negligible [18].
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where the different effects are color-coded. The main difficulty from atheoretical point of view is
to understand the∆I = 1/2 rule puzzle, namely why ReA0 ≃ 22.5ReA2 is roughly 15 times bigger
than expected from naive factorization.

While at present there is no solid quantitative understanding of the∆I = 1/2 rule, at least there
is widespread consensus on the following qualitative points:

• The RG-mixing of the current-current operators as they evolve down in energy can account
for roughly 10% of the enhacement.

• The bulk of the corrections come from nonperturbative effects, whereenhanced hadronic
matrix elements should bring in 90% of the effect.

• Penguin contributions get enhanced at hadronic energies and are an important ingredient to
explain the size ofA0.

Considerable quantitative progress has been achieved by combining different nonperturbative meth-
ods with the large-Nc expansion [22–26]. For instance, it has been realized that non-factorizable
contributions are sizeable and point in the right direction. However, quantitative improvement on
the determination of hadronic matrix elements is extremely challenging. As it happened withBK ,
lattice QCD simulations can be an extremely useful tool here. However,K → 2π decays are much
more challenging to simulate thanK0− K̄0 mixing and that has hindered progress on∆S= 1 tran-
sitions for a long time. This situation might however have reached a tipping point.Quite recently,
in a series of papers appearing in the last 2 years [27, 28], the RBC-UKQCD collaboration has
released results that hint at a solution of the∆I = 1/2 rule puzzle. Specifically, they reported [28]
an accidental cancellation of contributions (let me abstractly denote them ast1 andt2) in A2. This
cancellation is closely linked to the breakdown of factorization: instead oft2 ≃ t1/3 they obtain
t2 ≃ −0.7t1. Interestingly, the same contributions appear inA0 but with different signs, such that
no cancellation is observed there. Schematically, the overall picture that emerges is

ReA0

ReA2
∼ 2t2− t1

t1 + t2
(3.2)

There are a number of reasons to be optimistic about this result. First of all,A2 has been simulated
down to the physical masses, giving [27]

ReA2 = 1.381(46)(258) ·10−8GeV; ImA2 = −6.54(46)(120) ·10−13GeV (3.3)

These results have to be refined to reduce the systematic errors for a moremeaningful comparison,
but so far they are in good agreement with experiment, ReA2 = 1.479(4) ·10−8GeV. Second of
all, while A0 is more challenging and up to now simulations are still at unphysical masses, naive
extrapolation of what they have observed so far gets in the ballpark of theexperimental value. This
naive extrapolation has to be taken with a grain of salt, but it should be a good indication, espe-
cially given the mild mass dependence observed inA0. Finally, their results confirm the smallness
of penguins at perturbative scales. For more details, see the talks by Norman Christ and Robert
Mawhinney at this conference. So far the lattice results are in good overall agreement with the
qualitative features pointed out in previous large-Nc-based studies [22, 23], which is certainly re-
assuring. However, to complete the picture, it would be very interesting if thelattice could assess
how much of an enhancement penguins get at low energies and their actual impact onA0.
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4. Experimental and theoretical status of K → 3π

CP conservingK → 3π modes admit the general decomposition [29]

M (KL → π+π−π0) = α1−β1u+(ζ1 +ξ1)u
2 +

1
3
(ζ1−ξ1)v

2 ,

M (KL → π0π0π0) = −3α1−ζ1(3u2 +v2) ,

M (K+ → π+π+π−) = 2α1 +β1u+(2ζ1−ξ1)u
2 +

1
3
(2ζ1 +ξ1)v

2 ,

M (K+ → π+π0π0) = −α1 +β1u− (ζ1 +ξ1)u
2− 1

3
(ζ1−ξ1)v

2 (4.1)

where I have kept only the dominant octet contributions.u,v,si ands0 are kinematic variables

u =
s3−s0

m2
π

, v =
s1−s2

m2
π

, si = (pK − pπi )
2 , s0 =

1
3

3

∑
i=1

si (4.2)

while α1,β1,ζ1,ξ1 are dynamical parameters that can be expressed in terms of the low-energy
couplings of the chiral (strong and electroweak) Lagrangian. At NLO one finds [30]

α1 = α(0)
1 − 2g8

27fK fπ
m4

K {(k1−k2)+24L1} ,

β1 = β (0)
1 − g8

9 fK fπ
m2

πm2
K {(k3−2k1)−24L2} ,

ζ1 = − g8

6 fK fπ
m4

π {k2−24L1} ,

ξ1 = − g8

6 fK fπ
m4

π {k3−24L2} (4.3)

whereLi collect the strong low-energy couplings andki the electroweak ones. The structure of
the counterterms makes it manifest thatK → 3π processes involve strong amplitudes with weak
external vertices as well as direct weak terms. Specifically, one finds

L1 = L2 +3L2 = 2L1 +2L2 +L3

k1 = 9(−N5 +2N7−2N8−N9)

k2 = 3(N1 +N2 +2N3)

k3 = 3(N1 +N2−N3) (4.4)

The previous results were recomputed in [31] and fits to data were made including isospin and
electromagnetic corrections. A good overall phenomenological fit to data was found [32]. From
a theoretical viewpoint, however, one would like to understand the dynamicsbehind the values
of the low-energy couplings. That goes beyond the scope of ChPT andone has to adopt some
hadronic-scale models. In the strong sector, vector meson dominance hasproven to be a more than
acceptable mechanism to estimate the low-energy couplings [33]. The same idea was exported to
the electroweak sector in the so-called factorization models [34–36], where resonance exchange
was assumed to dominate both the strong and electroweak low-energy couplings. This leads to
relations betweenNi andLi and makes the electroweak sector predictable. Unfortunately, since the
electroweak sector is less constrained, the accuracy of those models is harder to test. When applied
to K → 3π, all the factorization models found a set of generic features:
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(i) k1 is dominated by the scalar meson sector.

(ii) k2,k3 are affected mostly by vector meson exchange and related to the strong counterterms
as follows:

k2 = 24L1 = 0 ,

k3 = 24

(

L2 +
3
4

L9

)

= 24

(

L3 +
3
4

L9

)

(4.5)

where the second equality can be linked to the Skyrme structure of theO(p4) strong ChPT
Lagrangian.

(iii) Strong cancellations between the strong and weak diagrams are to be expected.

Using the results from vector meson dominance in the strong sector [33], one is led to conclude that
k3 = 0, which violates the vector meson dominance hypothesis and, worst of all, isin contradiction
with experimental data [42, 43], which seems to favor insteadk3 ∼ 5 · 10−9. The fact that there
are strong cancellations (see last point above) already indicates thatk3 = 0 might be a fine-tuned
solution instead of a generic result. However, the absence of a model withk3 6= 0 was definitely
puzzling.

In Ref. [37] a model for the electroweak chiral Lagrangian was introduced based on the
gauge/gravity duality [38–40]. In these settings, the Standard Model fields live in a 4-dimensional
boundary brane, while a fifth dimension is responsible for the strong interactions, conjectured to
be dual to a weakly-coupled gravitational theory with Anti-de Sitter (AdS) geometry. The bound-
aries can thus be seen as probes of the strong interactions. In [37] it was shown that introducing
the electroweak interactions as double-trace perturbations in the boundary [41] is equivalent to a
factorization model for the electroweak interactions, where both the strongand electroweak low-
energy couplings are determined in terms of the AdS geometry of the 5-dimensional bulk space.
Remarkably, in that modelL3 = −11

24L9 andk3 ∼ 3 ·10−9, showing that, contrary to [34–36], com-
pliance with experiment can be achieved within vector meson dominance. The seeming failure of
vector meson dominance inK → 3π was therefore not generic but a model-dependent artifact.

I will conclude this Section with some brief comments on the status of CP violation inK → 3π
decays. Here, for once, theory is ahead of experiment. Regarding theindirect CP violation, KLOE
has recently improved the bound onKS→ 3π0 to [44]

Br(KS→ 3π0) < 2.8·10−8 (4.6)

which is still one order of magnitude above the Standard Model estimate at 1.9 ·10−9. For more
details, see the talk of Patrizia De Simone in this conference.

For direct CP violation, NA48/2 has values for the slope asymmetries compatiblewith no
signal at the 10−4 level [45], while the Standard Model expectation is at 10−5 [46].

5. Summary and future directions

Kaon physics has a rather mature status and a long track of experimental successes. Indirect
and direct CP violation are nowadays known, respectively, within a 5‰ and 14% accuracy,K0−K̄0
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mixing still being the most stringent flavor test for new physics models. However, there are still
some long-standing fundamental issues that remain unexplained. In this paper I have mentioned
the tension between the theoretical prediction ofεK and its experimental number, which persists
after nonperturbative effects and NNLO perturbative corrections are accounted for. On the direct
CP side, a quantitative understanding of the∆I = 1/2 rule is still pending, despite the efforts of the
community over the years. On the experimental side, it is not yet settled whether the amount of CP
violation inK → 3π fits the Standard Model prediction.

Improvements on each of those aspects are hard to achieve and might be perceived from an
outsider’s perspective as slow, but they are steady. An example is the promising path recently
opened in lattice QCD to determineε ′

K , which is making solid headway and will provide, in the
coming of years, a most wanted determination of Re(ε ′/ε)K . ∆mK is also in the agenda. A clean
determination of the short-distance vs long-distance budget in this quantity would be a valuable
tool to constraint new physics scenarios.

It is hard to overstate the importance of such determinations. However, it would certainly be
unsatisfactory to consider them a solution without supplementing them with a deeper analytical un-
derstanding than we have today. The recent lattice progress should thusalso serve as both stimulus
and guidance to continue improving on the theoretical analytical side.
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