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Testing extra dimensions I. Volobuev

1. Introduction

The hypothesis about extra dimensions of space-time that was put balvaost a century
ago has been especially widely discussed in theoretical physics duritagtitecades. There is a
good reason to believe that this hypothesis stems from the ideas formulaBeatriiyard Riemann
in his famous lecture "Uber die Hypothesen, welche der Geometrie zu Gliegegn" (1854) (On
the Hypotheses which lie at the Bases of Geomefly) [1]:

The questions about the infinitely great are for the interpretation of natsedess questions.
But this is not the case with the questions about the infinitely small. It is upcextieness with
which we follow phenomena into the infinitely small that our knowledge of thesat relations
essentially depends. ...

Now it seems that the empirical notions on which the metrical determinatiosgaze are
founded, the notion of a solid body and of a ray of light, cease to be valid éoinfmitely small.
We are therefore quite at liberty to suppose that the metric relations of $pdke infinitely small
do not conform to the hypotheses of geometry; and we ought in factpose, if we can thereby
obtain a simpler explanation of phenomena. ...

This leads us into the domain of another science, of physics, into whicljiaet of this work
does not allow us to go today.

In this lecture, the notion of n-dimensional space was formulated, whidested that one of
the possible ways to modify the space-time geometry at small distances wasrteedbs existence
of extra dimensions.

A space-time with extra dimensions first appeared in theoretical physiksrba814, as Gun-
nar Nordstrom made an attempt to unify a relativistic scalar gravity theonhthaias developing
at that time with electrodynamics in his work "Uber die Moglichkeit, das elektrowetigche Feld
und das Gravitationsfeld zu vereinigen" (On the possibility of unifying thetedenagnetic and the
gravitational fields)[]2]. In Nordstrém’s approach, our four-dimenalovorld was embedded in
a five-dimensional one as a submanifold, which was very similar to the prdagrborane-world
models. Though Nordstrém’s scalar theory of gravity was a very impost&t in constructing
Einstein’s general theory of relativity, it was forgotten soon after therlgiteved to be a suc-
cess. The idea of extra dimensions was also forgotten for five yearséaliseovered by Theodor
Kaluza and implemented in the framework of Einstein’s general theory divigfa

2. Kaluza-Klein theory

In his famous papef][3], T. Kaluza considered a pure gravity with thelatarEinstein equa-
tions in a five-dimensional space-time of the fofra= M* x RY, whereM# is the four-dimensional
space-time. If we denote the coordinate€iby XN = (xV,y), N=0,1,---4,v=0,1,---3, the
corresponding gravitational action in this space can be written as

1

S= =
16nG

/E Ry/—gPX, 2.1)

whereG is the five-dimensional gravitational constant & the scalar curvature of the metric
owmn, Sign(g) = (—,+---+). This is the most natural extension of the gravitational action to a
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theory with extra dimensions, but not the only one possible. Below we wilhteypon other pos-
sible extensions of the gravitational action, which lead to different ptigsenf multidimensional
gravity.

T. Kaluza decomposed the five-dimensional meggig into the four-dimensional part and the
extra components as follows:

20A
OvMN = ( Guv “) , 200A; = Qua, 2 = Qaa.

In the case whergyn does not depend oy which Kaluza called the "cylindricity condition", the
scalar curvatur® can be expressed as

. a? 401

R = R(4) - ?FWF“V(P 1_ E(p Zdu(pdu(p

Fuv - 0‘JAV - avAu,

R4) being the scalar curvature of the four-dimensional spaceMrheith metricg,y.

In his paper, T. Kaluza interpreted the fiélg as the electromagnetic field. But the subsequent
studies showed that this interpretation failed, and even the original ansdteffive-metric was
inconsistent.

The idea of T. Kaluza was later developed by O. Kldih [4], who suggestezkplain the
unobservability of the fifth dimension by its compactness and extremely smatifdize order of
the Planck length. In this case the five-dimensional space-time lookE kkév1* x St, whereSt
is the circle of circumferencke.

He proposed to consider the vacuum configuration of the five-dimengiogtac and to in-
clude scalar, spinor and vector fields in the multidimensional theory fromethebeginning.

He also pointed out that free fields in five-dimensional space-time satisfiv#éhdimensional
Klein-Gordon equation

(0moM —mP)p =0,

and that any five-dimensional field in the space-tiine M* x St can be expanded in Fourier
harmonics in the coordinate in the case of the scalar fielg(x,y) the expansion being

o0xy) =L 1Y o ) expli ) 22)

If one substituteg[(3.2) into the five-dimensional equation of motion, one getothespond-
ing equations for the modeg"
41Pn?
(u0% ~1R)g =0, mh=nP 4 T
Thus, the mass spectrum of four-dimensional fields is defined by thevaiges of the mass oper-
ator, which in this case is justd*. Such a mass spectrum is a characteristic feature of the theories
with extra dimensions, the form of the mass operator being defined by timeefysoof the space
of extra dimensions.
As we noted, O. Klein assumed the sizef the extra dimension to be of the order of the
Planck length. Within the framework of the mathematical apparatus of the mgdamum field
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theory this assumption leads to the conclusion that the observed fields inltimakdein theory
(i.e., the fields of the Standard Model) should be the so called zero modeshowld not depend
on the coordinates of extra dimensions. Moreover, for each obséielddhere should exist a
tower of fields with masses of the order of the Planck ngs~ 1/1p|, which cannot be observed
at the energies, which are available for experiments nowadays.

Nevertheless, even in this case there remain relations between the multidina¢asidrithe
four-dimensional theories, which can manifest themselves as certain syasratihe reduced
four-dimensional theories and the values of their coupling constantsarticylar, an important
point is the relation between the Planck mass in four dimensissand the Planck madd in
multidimensional space-time

M3, = M3L, (2.3)

which can be obtained for the zero modes of gravitational field from adldh {n space-time
E = M* x S just by integrating it over the circl'.

3. Large extradimensions

In the end of the sixties it was shown in pagégr [5] that a gravity theoryimnaunder the action
of a Lie groupG in space-timé& = M* x G renders a gauge field in the four-dimensional space-time
M# with the gauge grouf®. In other words, a non-abelian generalization of Kaluza-Klein theory
was found, which led to a revival of the interest in theories with extra diroeas There were
numerous attempts to construct the Standard Model along these lines staming multidimen-
sional theory. Since the spinor fields could not be derived from the nadttite multidimensional
space-time, such fields and also gauge and scalar fields were intradtecte multidimensional
theory from the very start. The interpretation of a theory in a space-time wiith dimensions in
terms of a four-dimensional one was given then the nanténeénsional reductionTo explain the
factorized structure of the multidimensional space-time dynamically as a résh& mteraction
of gravity with gauge and scalar fields, the ideaspbntaneous compactificatiovas put forward.
The attempts to construct the Standard Model in this approach showedrtigagidra dimensions
were needed]6], which was obviously in contradiction with their unolag®lity.

In 1983 Rubakov and Shaposhnikov found a solution to this problem ainfbpvard a new
scenario for Kaluza-Klein theories based on the idea of localization obdfHteThey considered
a real Higgs field in 5-dimensional space-time with the Lagrangian

1 M A 2”‘22
L = édepd o Z((P T)

The Higgs vacua of the system apé= i% and an exact solution connecting these vacua is

cl m my
= —th(—%=).
#(y) = 5t
The energy density of the solution is localized in the vicinity of the 3-dimensioygérsurface
y = 0 and has a width of the ordeyrh. Such an object is called a thick domain wall and serves as

a potential well for the fluctuations of the fieda(x).



Testing extra dimensions I. Volobuev

It was shown that there are only two modes of the fluctuations that are ledalizthe domain
wall. Moreover, interaction of these modes cannot produce unlocalizddsni the center of mass
energy is less thag'6m. Thus, for sufficiently small energies the theory describes a 4-dimeaision
world, although the whole world is, in fact, 5-dimensional.

This model suggests a possibility for extra dimensions to be unobservalihe, fields of
the Standard Model are localized by a certain mechanism on a three-dimartgypersurface in
multidimensional space-time. The corresponding localization mechanism tamed be rather
simple for spinors, but a plausible mechanism for gauge fields has nofdesd yet.

Rubakov and Shaposhnikov also proposed the following ansatz for multidior&al metric,
which is compatible with this hypothesig [8]:

dg = e 200)g,,dxdx’ + gdXdxX, (3.1)

{y'} being the coordinates of extra dimensions.

If the thickness of the domain wall goes to zero, it turns into a three-dimealdigpersurface
in the multidimensional space, on which the field of the Standard Model asempably trapped,;
such an object is called a membrane, or just a "brane". There are ind#tit this scenario can
be implemented in the theory of superstrings.

It is clear that within the framework of this scenario extra dimensions may bé mauger,
than the Planck length (or even infinite). In pagér [9] a single brane witilemsion (i.e. energy
density) in a space-time with an arbitrary number of compact extra dimensemeamsidered. In
this case relatiorﬂz.B) between the multidimensional Planck mass and tharfmmnsibnal one,
which ford extra dimensions looks like

Mlgl — Md+2|_d,

yields that the Planck mass in multidimensional space (in the ilk)ay be much less than the
Planck mass in four dimensiomdp, if the volume of the space of extra dimensidrsis large.
In other words, gravity in multidimensional space-time becomes "strong'tlo¢ &nergies of the
order of 18°GeV, but at much lower energies, maybe of the order-eflDTeV. Thus, the scenario
provides a solution to the hierarchy problem: it gives a strong gravity in thédimiensional
space-time and a weak gravity on the brane. The effects due to the intarattiois "strong"
gravity with the fields of the Standard Model could be observable alretheanergies, which
are available at the existing colliders.

A flaw of this approach is the approximation of the zero brane tension, whicther too
rough; it turns out that the proper gravitational field of the brane dabhadaken into account
perturbatively at all. Moreover, for the equations of Einstein gravity acggtime with compact
extra dimensions to be consistent, there should exist at least two branetemston, and the
number of extra dimensions can be either one or two, because otheraiseskurn into black
holes.

In paper [IP] the first exact solution for two branes interacting withigyaw five-dimensional
space-time was found, which allows one to estimate the influence of the g@séational field
of the brane on these results. We would like to note that the background iwfethis solution is
exactly of form [3]1). Below we will discuss in more detail the five-dimendiomadel, which is
based in this solution.
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4. The Randall-Sundrum model

This model is called the Randall-Sundrum model and is similar to the original &a&lein
theory in the sense that it is a gravity theory in 5-dimensional spaceBimevi* x St with co-
ordinatesX™ = (x#,y), the circleS' now being of circumferencel2 But unlike the original
Kaluza-Klein theory the gravity interacts with two 3-branes. Thus, the aofitime system is

/d“/dyR N)y/=g— /\1/ /G — /\2/ Jogd% (4.0

where/\ is the cosmological constant in 5-dimensional space-tgpeisthe metric induced on the
branesg= detj,,, and the subscripts 1,2 distinguish the branes. Moreover, the 5-rgetrist
be invariant under the reflectiaqw,y) — (x*, —y), which is equivalent to identifying the points
(x*,y) and(x#, —y) of St and reducing it to the orbifol&"/Z,.

If ansatz [[3]L) for the metric, which in the case of one extra dimension loaks lik

161G

ds = e 290, dxdx’ + dy? = yn(y)dxMdx, (4.2)
is substituted into Einstein equations following from actipn](4.1), they reduce to
o\ _ A
dy ) 12
d’o

GW = 16mG (A13(y) +A20(y—L)).

The solution to these equation with the orbifold symmetry is

o(y) = kly|l+¢c, A=-122 (4.3)
3k
M= A= —x,
' >" 4nG

wherek is a new parameter of the dimension of mass, which can be interpreted as engeinv
effective thickness of the branes, and c is an integrations constantchbitwe of this constant is
equivalent to a choice of the coordinateg, } on the branes, and we will keep it arbitrary for the
moment.

Two remarks are in order. First, the sp&e®ith metric (4.2) ando given by solution[(4]3) is
a piece of five-dimensional anti-de Sitter space in horospherical categifil]l]. Second, we see
that brane 1 has a positive energy density, whereas brane 2 haata@ege.

Metric (¢.2) with o given by equation[(4].3) is taken to be the vacuum of the theory, and the
physical fields are fluctuatioris,n (X, y) above this vacuum, which are treated perturbatively:

gMN(va) = WN(y)+RhMN(X7y)a (44)
wherek = vV 167G.

If we substitute this representation into actipn](4.1) and keep the terms obmbpink, we
get a free action for the physical degrees of freedom of the modelcdinesponding Lagrangian
looks like
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LIy =~ (DRhMNDRhMN OghORN -+ 20w hMN Oy h— (4.5)
— 20wh"NORhgy) +k§(hMNhMN+hh)+
—2khv.Nh'V'N+khﬁ—khv.\,h'\""+3k(hwh“"—%ﬁﬁ) 5.

wherey = detyyn, h = yMNhyn,Ou stands for the covariant derivative with respect to meig,
andd = &(y) — &(y—L).

Itis a common knowledge that linearized gravity is a gauge theory, and toesb&physical
degrees of freedom we have to study the gauge invariance of thisrigagna

On can check that the Lagrangian is invariant under the gauge trarafons

hf& (X,y) = hua (X, ) (5u54+ 0aéy +2040&),)

4 (X,Y) = Naa(X,Y) — 204&a,

whered, = and the gauge functior&n (X, y) satisfy the orbifold symmetry conditions.
With the help of these transformations one can prove that there exist a gaug

hua = 0, hag = hga(x) = @(x), 4.7)

which we callthe unitary gaugebecause the main degrees of freedom, which include the tensor
field hy, and the scalar filegp(x), are already isolated. Nevertheless, this name is somewhat
relative, because there remain gauge transformations, satisfying

s (€298,) =0, (4.8)

which are necessary to remove the gauge degrees of freedom of thlessagaviton.

Equations of motion for different componentshafn(x.y) can be derived from[(4.5) by the
standard procedure and in the unitary gajgg (4.7) look like:

1) pv-component

dy2
2

1 1 ~
5 (apaphw—a“aphpv 8,0Phy, + o~ >—2k2huv+20udvh+ (4.9)

+ [2khyy — 3kywcp} 5=
2) u4-component
04(0yh— 0V hyy) + 30200, =0, (4.10)
which is a constraint,
3) 44-component

%(a“thw—apaPﬁ)Jr§d4od4ﬁ+6k2<p= 0. (4.11)
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To explicitly isolate and to decouple the physical degrees of freedom we ealbstitution

1 /1 S kL
huy = by = Yuv (Y) (Kly| +5) @+ 22 <2 —Kly| —s+ 2e2ky> ooy, s= (1) (4.12)

It can be inferred from equations (#.9), (4.10), ahd (4.11) that thiasstield ¢(x) is massless
and the fieldo,y (x,y) can be made transverse-traceless by the remaining gauge transformations
and satisfies the equation

102by,
2 0y?

fez"wa — 2k%byy + 2Kby,y 8 = 0. (4.13)
Thus, the fluctuations of the metric above the background of the Randadl<®u solution
are described by the field,, (x,y) of spin 2 and the massless scalar radion figx.
Substitution [(4.72) also diagonalizes Lagrangian (4.5), which gives taatahonically nor-

malized radion field is
.| 3kL2
p=€e°¢ m(p. (4.14)

To understand the physical meaning of the radion field let us calculate tamaisbetween the
branes along a geodesie= const

L

|—/F / % Rhyg)dy= L(1+%k<p(x)). (4.15)

0

This formula implies that the fielgp(x) describes local variations of the brane separation, i.e.
oscillations of the branes with respect to each other.
The tensor fieldyy (x,y) can be expanded as

buv(Xy) = Zb (4.16)

wherebf}, (x) are four-dimensional fields with spin 2 and certain massesThe latter and the
wave functions of the modeg,(y) are defined by the equation

1 d?
2dy?

This equation can be solved exactly, the wave function of the zero modg pedportional to
exp(—20) and those of massive modes being expressible in terms of Bessel and mNefune-
tions.

Now we are in a position to find the relation between the 5-dimensional gravaihtionstant
G and the 4-dimension&, which will give us the relation between the Planck masses. To this end
we have to calculate the curvature of the metric

m%eZG

+2K(8(y) = 8(y = L)) = 2k*| gn(y) = '€ Un(y)- (4.17)

d& = e 290 g, dxdx’ +dy? (4.18)
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with g,y = nNuv + e (X) and integrate it over the extra dimension. Since the wave function of the
massless graviton is proportional to éxj20), this metric corresponds to four-dimensional gravity
only and integrating it over the extra dimension gives an effective actiof-tbmensional gravity

St =

/dye "M*C)/Rg)\/—‘d“x e? / xR@)v—0,  (4.19)

161G 167TGk

which has to coincide with the Hilbert-Einstein action for the megj¢. But since we have two
branes, we have to realize, to which brane this metric corresponds.

If we are on the brane gt= 0, the metric on the brane induced from metfic (#.18) coincides
with g,y only if c= 0. This leads to the following relation between the gravitational constants

Gk
which implies that relatior] (2.3) is modified to be
e
M2 — M31%. (4.21)

Thus, if we live on the brane gt= 0, we have to puM; = Mp;, and in this case relati021)
demands that the five-dimensional Planck mdsand the parametdralso should be of the order
of Mp;, M ~ k~ Mp;. This means that for an observer on brane 1 the five-dimensional gravity is
as weak, as the four-dimensional one.

If we are on the brane gt= L, the metric on the brane induced from metfic (4.18) coincides
with gy only if ¢ = —KkL. In this case formula[(4.19) gives us the following relation between
Newton’s constan®, on brane 2 and the five-dimensional one

Gk
and the corresponding relation betwedsnand the five-dimensional Planck mass M
KL _
M2 = M3 ¢ " (4.23)

Obviously, both relations] (4.R1) [ (4]23) reduce [to](2.3) (Witreplaced by R) for k — 0,
i.e. when the effective thickness of the brane goes to infinity and the \@ignnof a brane is
meaningless.

If our world is situated on the brane at L, we have to puM, = Mp. In this case relation
(B.23) withkL ~ 35 gives that the five-dimensional Planck misand the parametdrmay be of
the order of TeV. That is the hierarchy problem of the gravitational interaction is solvedriab-
server on brane 2: the energy scale of the five-dimensional gravityscdaven to the electroweak
energy scale, and the gravity on the brane becomes weak due to theeetipbwarp factor in
relation (4.2B). Thus, five-dimensional gravity in the Randall-Sundrumetiiodks different for
observers on different branes.

In what follows we will assume that we live on the braneyat L and will consider the
interaction of the physical fields with matter. This interaction can be deringd the standard
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action of matter in gravitational field and has the following form:

= / Y (x,0) T3 w/—dety,lv(O)dxjur% / Y (x, L) T2, 1/ — detyy (L)dx, (4.24)

y=L
WhereT,}v andTﬁv are energy-momentum tensors of matter on brane 1 and brane 2 reslyectiv

oLt? 212

1,2
THV = 25yuv Hv

On the brane at = L the explicit form of this interaction is

Se=j | (biﬁ )T + k1 Z Blde ) i ()T““—\’%W‘) dx  (4.25)

y=L

where

./ kK _ ./ k
=K m, K2:K1e kL:K m, (426)

and the facto»“%oe_kL in front of b}, (x) turns out to be of the order of unity for small
With the help of this Lagrangian one can calculate the effects due to the tiarat the
five-dimensional gravity with matter on brane 2. In particular, one gets éovtbin's law

eZkL
V=-0G <1+ 3> T (4.27)

The second term in the brackets in this formula is the contribution of the raditeh Which is
e’L/3 ~ 10°2 times larger than the contribution of the massless graviton. Thus, a scalily gra
is realized on brane 2, which is phenomenologically unacceptable. A wayréotlsis problem
without violating the solution of the hierarchy problem is to give a mass to therratt turns out
that this is equivalent to stabilizing the distance between the branes.

5. Stabilized Randall-Sundrum model

Mechanisms for stabilizing the Randall-Sundrum model were put forwapaers [[12[ 13].
Both of them employ a five-dimensional scalar field to stabilize the inter-bret@nde, but the
mechanism of papef [IL13] seems to be preferable because it is baseéxacasolution for gravity
interacting with two branes and a scalar field in five-dimensional space-tirne.pfiysical de-
grees of models stabilized by this mechanism were isolated in gaper [14y. af&eensor fields
b} (x),n=0,1,--- with massesm(mp = 0) and wave functions in the space of extra dimension
Wn(y)), and scalar fieldg$,(x),n= 1,2, - - with masses$i, and wave functions in the space of extra
dimensiongn(y). Their interaction with the SM fields is described by the Lagrangian

Snt = > / (WO X)THY 4 Z Un(L x)THY — Z On(L Tﬁfla) dx. (5.1)

y=L

10
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THY being the energy-momentum tensor of the SM fields.

The wave function of the zero modgy(L) again gives us relatior] (4]23) between the five-
and four-dimensional Planck masses. The coupling constants to mattema@dsé/e tensor fields
remain essentially the same as in the unstabilized model, i.e. of the ordee\6f'1 The couplings
of the scalar fields are also defined by their wave functions and anetiedlyeof the same order.

The present-day results from the Tevatrpn [15] indicate that we doe®the resonances,
corresponding to these tensor and scalar modes. We can assume tleaewmtyet reached the
energies necessary for their production. In this case the interactierte duchange of these tensor
and scalar modes can be very well approximated by contact interactiangeof special form:

1.82 ~
Leff = THYALY 06 TP, (5.2)
e /\%m% UV, p0
~ 1 1 1 o
Dy po = E”Iupﬂva"‘ érluorlvp - (3 - 2> NuvNpo, (5.3)

wherem; and/A\;; are the mass and the coupling constant of the first tensor mode and tt@ntons
0 describes the contribution of the scalar modes. For exampl®] fer2TeV, k = 1TeV, kL = 35
and the mass of the first scalar mode of the order of 2 TeV these paranuetecit to be/\; ~
8TeV,m ~ 3.83TeV, d ~0.7.

6. Modelswith morethan one extra dimension

When one considers the Randall-Sundrum model, a natural questios: dsisepossible to
construct such models with more than one extra dimension? The answer todki®q essentially
depends on the extension of gravity theory to the multidimensional space-tonex&mple, for
the extension given by formul@ (.1) it is impossible to construct brane wooidels with more
than two extra dimensions, because in this extension we still have the Einsteity gn multidi-
mensional space-time, and branes with more than two extra dimensions tureickchbles. A
solution for two branes in space-time with two extra dimenions with a metric cannelamy to a
factorizeable geometry was found [n]16].

A possible solution to the problem can be in passing to Lovelock grdvity [1Hemultidi-
mensional space-time instead of the Eistein one. The Lovelock Lagrargignaivity theory in
d-dimensional space-time looks like:

16mGy. 4 = apA2PY g,
0<p<(d+1)/2

where

1 iy Top1J
_ = pphl | pU2p-192p
"g’ﬁ(P) ~op 53132'“32;) R 112 R I2p-1l2p”

Ilplop - . . . . )
6352“_52’; is a generalized Kronecker deltg, is a dimensionless parameter ants a parameter
of the dimension of mass.
In particular, we have for the first three terms in the sum:

Loy=1 L1y=R L =RHYR"Br—4RumR"N +F.

11
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Thus, %) is the cosmological constangy) is the standard Lagrangian of the Einstein grav-
ity, and .,2”@ is the Gauss-Bonnet term, which is often used in multidimensional extensions of
gravity.

In paper [1B] it was argued that passing to Lovelock gravity could allegto construct brane
world models with more than two extra dimensions.

7. Processeswith Kaluza-Klein gravitons

In this section we will study processes with Kaluza-Klein gravitons within thbil&zad
Randall-Sundrum model. In the first approximation in the SM coupling cotsstae effective
interaction Lagrangiar{ (§.2) includes a sum of various 4-particle eftecperators (not only 4-
fermion, but also 2-fermion-2-boson and 4-boson), which are invavidéth respect to the SM
gauge group and lead to a well defined phenomenology. Various gescdee to this Lagrangian
were studies in papef [119].

Below we show the results of numerical studies of Drell-Yan processeapise they are most
sensitive to new physics. These analytical and numerical calculatiotsdiimg the Monte-Carlo
simulation of the SM background in a Gedankenexperiment for the LHG waeried out with the
help of the CompHEP packade]20], realized on the basis of the packagynfibolic calculations
FORM [22]. The Feynmann rules following from effective Lagrangfa@) were incorporated into
this programme, which allows one to use this code for event generation emdbthdata analysis
in a real experiment.

In figure 1 dilepton invariant mass distributions are plotted for differefiesof the cou-
pling parameter .1//\%m§ for the Tevatron. In figures 2,3 such distributions are plotted for
0.91/A2m2 x TeV* = 0.66 for the Tevatron and for.81/A2m2 x Te\* = 0.0014 for the LHC.
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Figure 1. Dilepton invariant mass distribution for Figure 2. Dilepton invariant mass distribution for
paramete_r% X Te\/‘=0_.66 (dash-dotted line), 1.82 95% CL paramete;\% x TeV#=0.66 for the Tevatron
(dashed line), 4 (dotted line) for the Tevatron (L=10fb"?}
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The error bars in these figures are not usual error bars, but tekadnount both systematic
errors (detector resolution, QCD uncertainties, errors in electrowasneters and luminosity)
and the statistical uncertainties of the dilepton invariant mass distribution §ine tiee values of
the coupling parameter, for which the contact interaction cannot bewausat the Tevatron and
the LHC. For the largest luminosities, they are

0.91
N

! TeV < 00014 (7.1)

Tevatror{10fb™1) :
N

x TeV < 0.66, LHC(100fb™1):
These constraints can be used to estimate the lowest value of pardmngeler which the ef-
fects of the contact interaction cannot be resolved, from the demanith¢haidth of the resonance
is less than its mass$i; < my /&, whereé is a numberf > 1. Utilizing (7.3) and the expression
for the total graviton width[[]9], we find the following unobservability rarigethe parametef ;.

Tevatron : Ay > 0.61-EY4TeV, LHC: Ap>2.82-EY4TeV, &> 1. (7.2)

Next we consider the case, where the mass of the first KK resonandéhis or close to
the accessible energy range. Here the approximation of the interactido theeexchange of the
first KK resonance by a contact interaction fails, and we have to take iacttount exactly. The
contribution of all the KK modes above it can still be described by effettagrangian [(5]2) with
the coupling parameter4ll/A2né, remaining after dropping the contribution of the first resonance
to the sum.

>10'E H|E 10'2;
& F - - E i
s F pp - K 82 13k pp - Wi
B10° e E ]
S E - SM T F venn SM+ KK sum
o F — SM uncertainty 10%E
L wer SM + KK grav sum F
10°E n
E 10°E
10 ? 10° 3
L IR 107 3
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Figure 3: Dilepton invariant mass distribution for Figure 4. Dilepton invariant mass distribution from
95% CL paramete2L x TeV#=0.0014 for the LHC the SM (solid line) and from the SM plus sum of KK
NZme
(L = 100fb~Y) " modes including the first KK resonance withes =
3.83TeV, Nes= 0.08 TeV, Ay = 8 TeV(dashed line )
for the LHC

To illustrate the modification of distributions due to the contributions of the towkekKo
gravitons we carried out the calculations for two sets of parametersrcisoghat for one set the
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first KK resonance lies within the energy range of direct observatidrf@nthe other one beyond

it. The first set includes the already mentioned valmgs= 3.83 TeV, A; = 8 TeVand the width

of the first resonancE; = 0.08 TeV. In the context of the RS1 model such a resonance (figure 4)
lies close to the boundary of direct observation expected for the LHE .nTdss of the first KK
resonance in the second set of paramet®is= 10 TeV, Ay = 14 TeV, '1 = 0.5 Te\) is close to

the maximal collider energy and it is not directly observable.
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£ E wenn KK grav first res
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Figure 5. The normalized dilepton invariant mass
distribution from the first KK resonance plus the
sum of KK tower states starting from the second
mode (solid line) and from the first KK resonance
only (dashed line) forMyes = 3.83 TeV, les =
0.08 TeV, Ay =8TeV for the LHC
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Figure 6: The normalized dilepton invariant mass
distribution from the sum of KK tower states starting
from the first mode (solid line) and from the first KK
resonance only (dashed line) Mdfes= 10TeV, IMes=
0.5TeV, Ay = 14TeV for the LHC

In figure 5 and figure 6 one can see that the contribution of the KK towegases the produc-
tion cross-section more than three times for invariant masses below theKingsénance mass.
The situation is quite different for invariant masses above the first aaeenmass, where, on a
par with the resonance peak, there appears a dip due to the destruttifer@mce between the
contribution of the first KK resonance and the contribution of the restekid tower. The local
minimum is atMmin &~ 1.5my. The cross-section growth after this minimum is strongly suppressed
by the parton structure functions, which leads to an extra hump in the distrbutitne invari-
ant mass. However, figure 6 shows that an experimental observatibrs dfump against the SM

background is rather unlikely.

Similar interference effects take place, when one considers KK towehe &M fields.

8. Universal Extra Dimensions and processes with the excitations of the SM gauge

bosons

If the SM gauge bosons can propagate in the bulk, there also arise KKstoiviheir excita-
tions, which may produce similar effects. First we consider the simpler dake ¥/ boson and

14
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its KK tower. The coupling constants of its excitations and their masses edlyatgjgend on the
fundamental parameters of a stabilized brane-world model, which is alsfofrtiee excitations
of other particles to be discussed below. In particular, in pgdpér [19] thesesaof the graviton
excitations were explicitly calculated in terms of the fundamental parameteid) winned out to
be a rather complicated task.

Under these assumptions we will study the procesges- tb+ X at the LHC. It occurs
due to the weak procewl_—> th, which is mediated by th&/ boson and its KK tower. In our
approximation the amplitude of the process can be represented by thentagra

u W b u w b Us.cw, b
_>ww< + _>ww< + _><
d t d t d t

The contact term CW is, in fact, Fermi's interaction with the coupling conggh2Mg, <,m)-
Explicit calculations in UED models with flat extra dimension and in certain stabilirade-
world models show that this mass is just a little larger than th¥t’ofHere we will take the value
Mw'_sum= 1.4My, previously used in[[21], as the effective mass of the KK tower abvand
will apply the same relation to the excitations of the other gauge bosons.
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Lk o gt T
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M 5{Cev] Pr(0)[Gev]
Figure 7: Distribution in the invariant mass dab Figure 8: Top quarkp distribution forMyy, = 2TeV
pair for My, = 2TeV for the LHC. Dash-dotted line for the LHC. Dash-dotted line corresponds to the SM,
corresponds to the SM, solid line corresponds to the solid line corresponds to the sum SM + W’, dashed
sum SM + W', dashed line corresponds to the sum line corresponds to the sum SM + W'+ KK.
SM + W'+ KK.

The cross-sections of this process can be obtained by calculating tiesmamding partonic
cross-sections and integrating them with the parton distribution functiomsjnaso doing we
neglect the light quark masses. The results of these calculations aemteisn figures 7 and
8 and show that the interference with the contribution of the rest of the Kientmanges the
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curves significantly.

Here we will also consider processes with the excitations of the neutral &igegbosons.
Examples of processes mediatedZdyy and the corresponding KK towers are thgroduction
process and the Drell-Yan procgsp — u* i~ + X. The effective Lagrangians for the KK towers
of y andZ have the same form as the one for theboson with the weak charged curreht*
replaced by the electromagnetic current and the weak neutral cuesg@atively. In this case the
processiu — Ut~ is described in our approximation by the following diagrams:

The diagrams for the processtbfproduction can be obtained by replacing titeu— pair by

tt pair.
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Figure9: Distribution in the invariant mass tf pair

for My = 2TeV, Mz = 2.3TeV for the LHC. Dash-
dotted line corresponds to the SM, solid line corre-
sponds to the sum SM + A+ Z', dashed line corre-
sponds to the sum SM + A+ Z’ + KK.
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Figure 10: Top quark p; distribution for My =
2TeV, Mz = 2.3TeV for the LHC. Dash-dotted line
corresponds to the SM, solid line corresponds to the
sum SM + A+ Z', dashed line corresponds to the sum
SM + A+ Z' + KK.

The cross-sections of these processes can be obtained in the sameswagse with the
excitations of th&V boson. The distributions in the invariant mass ofttheair and in the transverse
momentum of the top quark are shown in figures 9 and 1(M(pt 2TeV, M, =23TeVandin

figures 11 and 12 foM, = 3TeV, M7 = 3.4TeV.
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Figure 11: Distribution in the invariant mass ¢f
pair for My, = 3TeV. Mz = 3.4TeV for the LHC.
Dash-dotted line corresponds to the SM, solid line cor-
responds to the sum SM + A" + Z’, dashed line corre-
sponds to the sum SM + A+ Z' + KK.
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3TeV, Mz = 3.4TeVfor the LHC. Dash-dotted line
corresponds to the SM, solid line corresponds to the
sum SM + A + Z’, dashed line corresponds to the sum
SM + A+ Z' + KK.

The distributions in the invariant mass of the u~ pair and in the transverse momentum of
the muon are shown in figures 13 and 14Kty = 2TeV, M; =2.3TeV.
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Figure 13: Dilepton invariant mass distribution for
My = 2TeV, Mgz = 2.3TeV for the LHC. Dash-
dotted line corresponds to the SM, solid line corre-
sponds to the sum SM + A+ Z’, dashed line corre-
sponds to the sum SM + A'+ Z'+ KK.
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We have to note here, that the case of Zhdoson and/ turns out to be more complicated,
because in theories with extra dimensions the KK gravigérand its tower also contribute to all
the processes mediated by the neutral vector boson. (To be precigeistib@e more tower that
contributes to all these processes, namely that of the scalar radion.eRuairttribution of the scalar
modes is suppressed by the factoy,/M)?, my being the mass of a first generation quark &hd
being the fundamental energy scale of the order of several[TéVFb8this reason the contribution
of the scalar modes is negligible and we discard it completely.) The contributitie rocesses
with the first graviton excitation and its KK tower f@" u~ pair production is described by the
following diagrams, which are not summed coherently:

u gr’ P U cor, 1T
e O
u- [T VE i
g gr’ ut 9y cor 1t
W + Eb<
g u- g u-

The results of the calculations with the inclusion of these diagrams of the digiribun the
invariant mass of the™ i~ pair and in the transverse momentum of the muon are shown in figures
15 and 16 foM, = 2TeV, M} =2.3TeVandMg. = 3.83TeV.
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Figure 15: Dilepton invariant mass distribution for Figure 16: Dilepton p distribution for My, =
My =2TeV, Mz =2.3TeVandMy = 3.83TeV for 2TeV, Mgz = 2.3TeV and Mg = 3.83TeV for the
the LHC. Dash-dotted line corresponds to the SM, LHC. Dash-dotted line corresponds to the SM, solid
solid line corresponds to the sum SM + A+ Z' + gr’ + line corresponds to the sum SM + A+ Z’ + gr’ + KK.
KK.
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9. Conclusion

Theories with extra dimensions have a long history marked by alternatinglpari@blivion
and keen interest. The latest developments in this field abolished the oldti@sérian the size of
the extra dimensions, and now their predictions can be confronted with pleeieent.

Since in higher-dimensional Einstein gravity it is impossible to find branewotidiens with
more that two extra dimensions, we believe that nowadays the most consmsidalk with extra
dimensions is the stabilized Randall-Sundrum model. If its fundamental parariet® theTeV
energy range for the observer on the negative tension brane, gutsafue to the massive modes
can be observed in collider experiments. If the masses of the KK gravitmhefadhe excitations
of the SM fields are beyond the energy range of direct observatiorintii@ctions due to KK
towers can be well approximated by contact interactions of the type ofabhg@n [5.R) or of
Fermi’s four-fermion Lagrangian, the Tevatron data demanding the caupbtinstant\; to be
larger than 61GeV. If these masses are in the energy range of direct observation, dotivadf
contact interaction induced by the infinite towers of the massive gravitooistbe KK excitations
of the SM particles should also be taken into account to correctly look fordédénances and to
model the distribution tails. An observation of the interference between gtk graviton or
SM patrticle resonance and the rest of its KK tower should be consideragtiong argument in
favor of the extra dimensions hypothesis.
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