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Testing extra dimensions I. Volobuev

1. Introduction

The hypothesis about extra dimensions of space-time that was put forward almost a century
ago has been especially widely discussed in theoretical physics during thelast decades. There is a
good reason to believe that this hypothesis stems from the ideas formulated byBernhard Riemann
in his famous lecture "Über die Hypothesen, welche der Geometrie zu Grunde liegen" (1854) (On
the Hypotheses which lie at the Bases of Geometry) [1]:

The questions about the infinitely great are for the interpretation of nature useless questions.
But this is not the case with the questions about the infinitely small. It is upon theexactness with
which we follow phenomena into the infinitely small that our knowledge of their causal relations
essentially depends. ...

Now it seems that the empirical notions on which the metrical determinations of space are
founded, the notion of a solid body and of a ray of light, cease to be valid for the infinitely small.
We are therefore quite at liberty to suppose that the metric relations of spacein the infinitely small
do not conform to the hypotheses of geometry; and we ought in fact to suppose it, if we can thereby
obtain a simpler explanation of phenomena. ...

This leads us into the domain of another science, of physics, into which the object of this work
does not allow us to go today.

In this lecture, the notion of n-dimensional space was formulated, which suggested that one of
the possible ways to modify the space-time geometry at small distances was to assume the existence
of extra dimensions.

A space-time with extra dimensions first appeared in theoretical physics back in 1914, as Gun-
nar Nordström made an attempt to unify a relativistic scalar gravity theory thathe was developing
at that time with electrodynamics in his work "Über die Möglichkeit, das elektromagnetische Feld
und das Gravitationsfeld zu vereinigen" (On the possibility of unifying the electromagnetic and the
gravitational fields) [2]. In Nordström’s approach, our four-dimensional world was embedded in
a five-dimensional one as a submanifold, which was very similar to the present-day brane-world
models. Though Nordström’s scalar theory of gravity was a very importantstep in constructing
Einstein’s general theory of relativity, it was forgotten soon after the latter proved to be a suc-
cess. The idea of extra dimensions was also forgotten for five years to berediscovered by Theodor
Kaluza and implemented in the framework of Einstein’s general theory of relativity.

2. Kaluza-Klein theory

In his famous paper [3], T. Kaluza considered a pure gravity with the standard Einstein equa-
tions in a five-dimensional space-time of the formE = M4×R1, whereM4 is the four-dimensional
space-time. If we denote the coordinates inE by XN = (xν ,y), N = 0,1, · · ·4, ν = 0,1, · · ·3, the
corresponding gravitational action in this space can be written as

S=
1

16πĜ

∫

E
R̂
√−gd5X, (2.1)

whereĜ is the five-dimensional gravitational constant andR̂ is the scalar curvature of the metric
gMN, sign(g) = (−,+ · · ·+). This is the most natural extension of the gravitational action to a
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theory with extra dimensions, but not the only one possible. Below we will touch upon other pos-
sible extensions of the gravitational action, which lead to different properties of multidimensional
gravity.

T. Kaluza decomposed the five-dimensional metricgMN into the four-dimensional part and the
extra components as follows:

gMN =

(

gµν 2αAµ

2αAν 2φ

)

, 2αAµ = gµ4, 2φ = g44.

In the case wheregMN does not depend ony, which Kaluza called the "cylindricity condition", the
scalar curvaturêR can be expressed as

R̂ = R(4)−
α2

2
FµνFµνφ−1− 1

2
φ−2∂µφ∂ µφ

Fµν = ∂µAν −∂νAµ ,

R(4) being the scalar curvature of the four-dimensional space-timeM4 with metricgµν .
In his paper, T. Kaluza interpreted the fieldAµ as the electromagnetic field. But the subsequent

studies showed that this interpretation failed, and even the original ansatz for the five-metric was
inconsistent.

The idea of T. Kaluza was later developed by O. Klein [4], who suggestedto explain the
unobservability of the fifth dimension by its compactness and extremely small sizeof the order of
the Planck length. In this case the five-dimensional space-time looks likeE = M4×S1, whereS1

is the circle of circumferenceL.
He proposed to consider the vacuum configuration of the five-dimensional metric and to in-

clude scalar, spinor and vector fields in the multidimensional theory from the very beginning.
He also pointed out that free fields in five-dimensional space-time satisfy thefive-dimensional

Klein-Gordon equation
(∂M∂ M −m2)φ = 0,

and that any five-dimensional field in the space-timeE = M4×S1 can be expanded in Fourier
harmonics in the coordinatey, in the case of the scalar fieldφ(x,y) the expansion being

φ(x,y) = L− 1
2 ∑

n
φ (n)(x)exp(i

2πny
L

). (2.2)

If one substitutes (2.2) into the five-dimensional equation of motion, one gets the correspond-
ing equations for the modesφ (n)

(∂µ∂ µ −m2
n)φ (n) = 0, m2

n = m2 +
4π2n2

L2 .

Thus, the mass spectrum of four-dimensional fields is defined by the eigenvalues of the mass oper-
ator, which in this case is just∂4∂ 4. Such a mass spectrum is a characteristic feature of the theories
with extra dimensions, the form of the mass operator being defined by the geometry of the space
of extra dimensions.

As we noted, O. Klein assumed the sizeL of the extra dimension to be of the order of the
Planck length. Within the framework of the mathematical apparatus of the modernquantum field
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theory this assumption leads to the conclusion that the observed fields in the Kaluza-Klein theory
(i.e., the fields of the Standard Model) should be the so called zero modes, i.e.should not depend
on the coordinates of extra dimensions. Moreover, for each observedfield there should exist a
tower of fields with masses of the order of the Planck massMPl ∼ 1/lPl, which cannot be observed
at the energies, which are available for experiments nowadays.

Nevertheless, even in this case there remain relations between the multidimensional and the
four-dimensional theories, which can manifest themselves as certain symmetries of the reduced
four-dimensional theories and the values of their coupling constants. In particular, an important
point is the relation between the Planck mass in four dimensionsMPl and the Planck massM in
multidimensional space-time

M2
Pl = M3L, (2.3)

which can be obtained for the zero modes of gravitational field from action (2.1) in space-time
E = M4×S1 just by integrating it over the circleS1.

3. Large extra dimensions

In the end of the sixties it was shown in paper [5] that a gravity theory invariant under the action
of a Lie groupG in space-timeE = M4×G renders a gauge field in the four-dimensional space-time
M4 with the gauge groupG. In other words, a non-abelian generalization of Kaluza-Klein theory
was found, which led to a revival of the interest in theories with extra dimensions. There were
numerous attempts to construct the Standard Model along these lines starting from a multidimen-
sional theory. Since the spinor fields could not be derived from the metricof the multidimensional
space-time, such fields and also gauge and scalar fields were introducedinto the multidimensional
theory from the very start. The interpretation of a theory in a space-time with extra dimensions in
terms of a four-dimensional one was given then the name ofdimensional reduction.To explain the
factorized structure of the multidimensional space-time dynamically as a result of the interaction
of gravity with gauge and scalar fields, the idea ofspontaneous compactificationwas put forward.
The attempts to construct the Standard Model in this approach showed that large extra dimensions
were needed [6], which was obviously in contradiction with their unobservability.

In 1983 Rubakov and Shaposhnikov found a solution to this problem and put forward a new
scenario for Kaluza-Klein theories based on the idea of localization of states [7]. They considered
a real Higgs field in 5-dimensional space-time with the Lagrangian

L = −1
2

∂Mφ∂ Mφ − λ
4

(φ2− m2

λ
)2.

The Higgs vacua of the system areφ0 = ± m√
λ

and an exact solution connecting these vacua is

φ cl(y) =
m√
λ

th(
my√

2
).

The energy density of the solution is localized in the vicinity of the 3-dimensionalhypersurface
y = 0 and has a width of the order 1/m. Such an object is called a thick domain wall and serves as
a potential well for the fluctuations of the fieldφ(x).
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It was shown that there are only two modes of the fluctuations that are localized on the domain
wall. Moreover, interaction of these modes cannot produce unlocalized modes, if the center of mass
energy is less than

√
6m. Thus, for sufficiently small energies the theory describes a 4-dimensional

world, although the whole world is, in fact, 5-dimensional.
This model suggests a possibility for extra dimensions to be unobservable, ifthe fields of

the Standard Model are localized by a certain mechanism on a three-dimensional hypersurface in
multidimensional space-time. The corresponding localization mechanism turnedout to be rather
simple for spinors, but a plausible mechanism for gauge fields has not been found yet.

Rubakov and Shaposhnikov also proposed the following ansatz for multidimensional metric,
which is compatible with this hypothesis [8]:

ds2 = e−2σ(yi)gµνdxµdxν +gikdxidxk, (3.1)

{yi} being the coordinates of extra dimensions.
If the thickness of the domain wall goes to zero, it turns into a three-dimensional hypersurface

in the multidimensional space, on which the field of the Standard Model are presumably trapped;
such an object is called a membrane, or just a "brane". There are indications that this scenario can
be implemented in the theory of superstrings.

It is clear that within the framework of this scenario extra dimensions may be much larger,
than the Planck length (or even infinite). In paper [9] a single brane without tension (i.e. energy
density) in a space-time with an arbitrary number of compact extra dimensions was considered. In
this case relation (2.3) between the multidimensional Planck mass and the four-dimensional one,
which ford extra dimensions looks like

M2
Pl = Md+2Ld,

yields that the Planck mass in multidimensional space (in the bulk)M may be much less than the
Planck mass in four dimensionsMPl, if the volume of the space of extra dimensionsLd is large.
In other words, gravity in multidimensional space-time becomes "strong" not at the energies of the
order of 1019GeV, but at much lower energies, maybe of the order of 1−10TeV. Thus, the scenario
provides a solution to the hierarchy problem: it gives a strong gravity in the multidimensional
space-time and a weak gravity on the brane. The effects due to the interaction of this "strong"
gravity with the fields of the Standard Model could be observable already at the energies, which
are available at the existing colliders.

A flaw of this approach is the approximation of the zero brane tension, whichis rather too
rough; it turns out that the proper gravitational field of the brane cannot be taken into account
perturbatively at all. Moreover, for the equations of Einstein gravity in space̋Utime with compact
extra dimensions to be consistent, there should exist at least two branes withtension, and the
number of extra dimensions can be either one or two, because otherwise branes turn into black
holes.

In paper [10] the first exact solution for two branes interacting with gravity in five-dimensional
space-time was found, which allows one to estimate the influence of the propergravitational field
of the brane on these results. We would like to note that the background metricof this solution is
exactly of form (3.1). Below we will discuss in more detail the five-dimensional model, which is
based in this solution.
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4. The Randall-Sundrum model

This model is called the Randall-Sundrum model and is similar to the original Kaluza-Klein
theory in the sense that it is a gravity theory in 5-dimensional space-timeE = M4×S1 with co-
ordinatesXM = (xµ ,y), the circleS1 now being of circumference 2L. But unlike the original
Kaluza-Klein theory the gravity interacts with two 3-branes. Thus, the actionof the system is

S=
1

16πĜ

∫

d4x
∫ L

−L
dy(R̂−Λ)

√−g−λ1

∫

y=0

√

−g̃d4x−λ2

∫

y=L

√

−g̃d4x, (4.1)

whereΛ is the cosmological constant in 5-dimensional space-time, ˜gµν is the metric induced on the
branes, ˜g = detg̃µν , and the subscripts 1,2 distinguish the branes. Moreover, the 5-metricg must
be invariant under the reflection(xµ ,y) → (xµ ,−y), which is equivalent to identifying the points
(xµ ,y) and(xµ ,−y) of S1 and reducing it to the orbifoldS1/Z2.

If ansatz (3.1) for the metric, which in the case of one extra dimension looks like

ds2 = e−2σ(y)ηµνdxµdxν +dy2 ≡ γMN(y)dxMdxN, (4.2)

is substituted into Einstein equations following from action (4.1), they reduce to

(

dσ
dy

)2

= − Λ
12

6
d2σ
dy2 = 16πĜ(λ1δ (y)+λ2δ (y−L)) .

The solution to these equation with the orbifold symmetry is

σ(y) = k|y|+c, Λ = −12k2 (4.3)

λ1 = −λ2 =
3k

4πĜ
,

wherek is a new parameter of the dimension of mass, which can be interpreted as the inverse
effective thickness of the branes, and c is an integrations constant. Thechoice of this constant is
equivalent to a choice of the coordinates{xµ} on the branes, and we will keep it arbitrary for the
moment.

Two remarks are in order. First, the spaceE with metric (4.2) andσ given by solution (4.3) is
a piece of five-dimensional anti-de Sitter space in horospherical coordinates [11]. Second, we see
that brane 1 has a positive energy density, whereas brane 2 has a negative one.

Metric (4.2) withσ given by equation (4.3) is taken to be the vacuum of the theory, and the
physical fields are fluctuationshMN(x,y) above this vacuum, which are treated perturbatively:

gMN(x,y) = γMN(y)+ κ̂hMN(x,y), (4.4)

whereκ̂ =
√

16πĜ.
If we substitute this representation into action (4.1) and keep the terms of zeroorder inκ̂, we

get a free action for the physical degrees of freedom of the model. Thecorresponding Lagrangian
looks like

6
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L /
√−γ = −1

4

(

∇RhMN∇RhMN −∇Rh∇Rh+2∇MhMN∇Nh− (4.5)

− 2∇MhMN∇RhRN
)

+
k2

2
(hMNhMN +hh)+

+

[

−2khMNhMN +khh̃−khMνhMν +3k(hµνhµν − 1
2

h̃h̃)

]

δ̃ ,

whereγ = detγMN, h = γMNhMN,∇M stands for the covariant derivative with respect to metricγMN,
andδ̃ = δ (y)−δ (y−L).

It is a common knowledge that linearized gravity is a gauge theory, and to isolate the physical
degrees of freedom we have to study the gauge invariance of this Lagrangian.

On can check that the Lagrangian is invariant under the gauge transformations

h(′)
µν (x,y) = hµν (x,y)−

(

∂µξν +∂νξµ −2γµν∂4σξ4
)

(4.6)

h(′)
µ4(x,y) = hµ4 (x,y)−

(

∂µξ4 +∂4ξµ +2∂4σξµ
)

h(′)
44(x,y) = h44(x,y)−2∂4ξ4,

where∂4 ≡ ∂
∂y and the gauge functionsξMN(x,y) satisfy the orbifold symmetry conditions.

With the help of these transformations one can prove that there exist a gauge

hµ4 = 0, h44 = h44(x) ≡ φ(x), (4.7)

which we callthe unitary gauge, because the main degrees of freedom, which include the tensor
field hµν and the scalar filedφ(x), are already isolated. Nevertheless, this name is somewhat
relative, because there remain gauge transformations, satisfying

∂4
(

e2σ ξµ
)

= 0, (4.8)

which are necessary to remove the gauge degrees of freedom of the massless graviton.
Equations of motion for different components ofhMN(x,y) can be derived from (4.5) by the

standard procedure and in the unitary gauge (4.7) look like:
1) µν-component

1
2

(

∂ρ∂ ρhµν −∂µ∂ ρhρν −∂ν∂ ρhρµ +
∂ 2hµν

∂y2

)

−2k2hµν +
1
2

∂µ∂ν h̃+ (4.9)

+
1
2

∂µ∂νφ +
1
2

γµν

(

∂ ρ∂ σ hρσ −∂ρ∂ ρ h̃− ∂ 2h̃
∂y2 +4∂4σ∂4h̃−∂ρ∂ ρφ +12k2φ

)

+
[

2khµν −3kγµνφ
]

δ̃ = 0,

2) µ4-component
∂4(∂µ h̃−∂ νhµν)+3∂4σ∂µφ = 0, (4.10)

which is a constraint,
3) 44-component

1
2
(∂ µ∂ νhµν −∂ρ∂ ρ h̃)+

3
2

∂4σ∂4h̃+6k2φ = 0. (4.11)

7
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To explicitly isolate and to decouple the physical degrees of freedom we make a substitution

hµν = bµν − γµν(y)(k|y|+s)φ +
1

2k2

(

1
2
−k|y|−s+

s
2

e2k|y|
)

∂µ∂νφ , s=
kL

(e2kL−1)
. (4.12)

It can be inferred from equations (4.9), (4.10), and (4.11) that the scalar fieldφ(x) is massless
and the fieldbµν(x,y) can be made transverse-traceless by the remaining gauge transformations
and satisfies the equation

1
2

e2σ
�bµν +

1
2

∂ 2bµν

∂y2 −2k2bµν +2kbµν δ̃ = 0. (4.13)

Thus, the fluctuations of the metric above the background of the Randall-Sundrum solution
are described by the fieldbµν(x,y) of spin 2 and the massless scalar radion fieldφ(x).

Substitution (4.12) also diagonalizes Lagrangian (4.5), which gives that the canonically nor-
malized radion field is

ϕ = e−c

√

3kL2

e2kL−1
φ . (4.14)

To understand the physical meaning of the radion field let us calculate the distance between the
branes along a geodesicx = const:

l =

L
∫

0

√
ds2 ∼

L
∫

0

(1+
1
2

κ̂h44)dy= L(1+
1
2

κ̂φ(x)). (4.15)

This formula implies that the fieldφ(x) describes local variations of the brane separation, i.e.
oscillations of the branes with respect to each other.

The tensor fieldbµν(x,y) can be expanded as

bµν(x,y) = ∑
n

bn
µν(x)ψn(y), (4.16)

wherebn
µν(x) are four-dimensional fields with spin 2 and certain massesmn. The latter and the

wave functions of the modesψn(y) are defined by the equation

[

1
2

d2

dy2 +2k(δ (y)−δ (y−L))−2k2
]

ψn(y) =
m2

n

2
e2σ ψn(y). (4.17)

This equation can be solved exactly, the wave function of the zero mode being proportional to
exp(−2σ) and those of massive modes being expressible in terms of Bessel and Neumann func-
tions.

Now we are in a position to find the relation between the 5-dimensional gravitational constant
Ĝ and the 4-dimensionalG, which will give us the relation between the Planck masses. To this end
we have to calculate the curvature of the metric

ds2 = e−2σ(y)ḡµνdxµdxν +dy2 (4.18)

8
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with ḡµν = ηµν +hµν(x) and integrate it over the extra dimension. Since the wave function of the
massless graviton is proportional to exp(−2σ), this metric corresponds to four-dimensional gravity
only and integrating it over the extra dimension gives an effective action for 4-dimensional gravity

Se f f =
1

16πĜ

∫ L

−L
dye−2(k|y|+c)

∫

R(ḡ)
√
−ḡd4x = e−2c 1−e−2kL

16πĜk

∫

d4xR(ḡ)
√
−ḡ, (4.19)

which has to coincide with the Hilbert-Einstein action for the metric ¯gµν . But since we have two
branes, we have to realize, to which brane this metric corresponds.

If we are on the brane aty = 0, the metric on the brane induced from metric (4.18) coincides
with ḡµν only if c = 0. This leads to the following relation between the gravitational constants

G1 =
Ĝk

1−e−2kL , (4.20)

which implies that relation (2.3) is modified to be

M2
1 = M3 1−e−2kL

k
. (4.21)

Thus, if we live on the brane aty = 0, we have to putM1 = MPl, and in this case relation (4.21)
demands that the five-dimensional Planck massM and the parameterk also should be of the order
of MPl, M ∼ k∼ MPl. This means that for an observer on brane 1 the five-dimensional gravity is
as weak, as the four-dimensional one.

If we are on the brane aty = L, the metric on the brane induced from metric (4.18) coincides
with ḡµν only if c = −kL. In this case formula (4.19) gives us the following relation between
Newton’s constantG2 on brane 2 and the five-dimensional one

G2 =
Ĝk

e2kL−1
, (4.22)

and the corresponding relation betweenM2 and the five-dimensional Planck mass M

M2
2 = M3 e2kL−1

k
. (4.23)

Obviously, both relations (4.21) - (4.23) reduce to (2.3) (withL replaced by 2L) for k → 0,
i.e. when the effective thickness of the brane goes to infinity and the very notion of a brane is
meaningless.

If our world is situated on the brane aty = L, we have to putM2 = MPl. In this case relation
(4.23) withkL∼ 35 gives that the five-dimensional Planck massM and the parameterk may be of
the order of 1TeV. That is the hierarchy problem of the gravitational interaction is solved foran ob-
server on brane 2: the energy scale of the five-dimensional gravity comes down to the electroweak
energy scale, and the gravity on the brane becomes weak due to the exponential warp factor in
relation (4.23). Thus, five-dimensional gravity in the Randall-Sundrum model looks different for
observers on different branes.

In what follows we will assume that we live on the brane aty = L and will consider the
interaction of the physical fields with matter. This interaction can be derived from the standard

9



P
o
S
(
Q
F
T
H
E
P
 
2
0
1
3
)
0
1
6

Testing extra dimensions I. Volobuev

action of matter in gravitational field and has the following form:

κ̂
2

∫

y=o

hµν(x,0)T1
µν

√

−detγµν(0)dx++
κ̂
2

∫

y=L

hµν(x,L)T2
µν

√

−detγµν(L)dx, (4.24)

whereT1
µν andT2

µν are energy-momentum tensors of matter on brane 1 and brane 2 respectively:

T1,2
µν = 2

δL1,2

δγµν − γ1,2
µν L1,2.

On the brane aty = L the explicit form of this interaction is

Sint =
1
2

∫

y=L

(

κ2b0
µν(x)Tµν +κ1

∞

∑
n=1

ψn(L)e−kL

N0
bn

µν(x)Tµν − κ1√
3

ϕ Tµ
µ

)

dx, (4.25)

where

κ1 = κ̂
√

k
1−e−2kL , κ2 = κ1e−kL = κ̂

√

k
e2kL−1

, (4.26)

and the factorψn(L)e−kL

N0
in front of bn

µν(x) turns out to be of the order of unity for smalln.
With the help of this Lagrangian one can calculate the effects due to the interaction of the

five-dimensional gravity with matter on brane 2. In particular, one gets for Newton’s law

V = −G2

(

1+
e2kL

3

)

m
r

. (4.27)

The second term in the brackets in this formula is the contribution of the radion field, which is
e2kL/3 ∼ 1032 times larger than the contribution of the massless graviton. Thus, a scalar gravity
is realized on brane 2, which is phenomenologically unacceptable. A way to cure this problem
without violating the solution of the hierarchy problem is to give a mass to the radion. It turns out
that this is equivalent to stabilizing the distance between the branes.

5. Stabilized Randall-Sundrum model

Mechanisms for stabilizing the Randall-Sundrum model were put forward inpapers [12, 13].
Both of them employ a five-dimensional scalar field to stabilize the inter-brane distance, but the
mechanism of paper [13] seems to be preferable because it is based on an exact solution for gravity
interacting with two branes and a scalar field in five-dimensional space-time. The physical de-
grees of models stabilized by this mechanism were isolated in paper [14]. They are tensor fields
bn

µ(x),n = 0,1, · · · with massesmn(m0 = 0) and wave functions in the space of extra dimension
ψn(y)), and scalar fieldsϕn(x),n= 1,2, · · · with massesµn and wave functions in the space of extra
dimensiongn(y). Their interaction with the SM fields is described by the Lagrangian

Sint =
κ̂
2

∫

y=L

(

ψ0(L)b0
µν(x)Tµν +

∞

∑
n=1

ψn(L)bn
µν(x)Tµν − 1

2

∞

∑
n=1

gn(L)ϕn(x)T
µ

µ ,

)

dx. (5.1)
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Tµν being the energy-momentum tensor of the SM fields.
The wave function of the zero modeψ0(L) again gives us relation (4.23) between the five-

and four-dimensional Planck masses. The coupling constants to matter of themassive tensor fields
remain essentially the same as in the unstabilized model, i.e. of the order of 1TeV−1. The couplings
of the scalar fields are also defined by their wave functions and are essentially of the same order.

The present-day results from the Tevatron [15] indicate that we do not see the resonances,
corresponding to these tensor and scalar modes. We can assume that we have not yet reached the
energies necessary for their production. In this case the interactions due to exchange of these tensor
and scalar modes can be very well approximated by contact interactions ofa very special form:

Le f f =
1.82

Λ2
πm2

1

Tµν ∆̃µν,ρσ Tρσ , (5.2)

∆̃µν,ρσ =
1
2

ηµρηνσ +
1
2

ηµσ ηνρ −
(

1
3
− δ

2

)

ηµνηρσ , (5.3)

wherem1 andΛπ are the mass and the coupling constant of the first tensor mode and the constant
δ describes the contribution of the scalar modes. For example, forM = 2TeV, k = 1TeV, kL = 35
and the mass of the first scalar mode of the order of 2 TeV these parametersturn out to beΛπ ≃
8TeV, m1 ≃ 3.83TeV, δ ≃ 0.7.

6. Models with more than one extra dimension

When one considers the Randall-Sundrum model, a natural question arises: is it possible to
construct such models with more than one extra dimension? The answer to this question essentially
depends on the extension of gravity theory to the multidimensional space-time. For example, for
the extension given by formula (2.1) it is impossible to construct brane worldmodels with more
than two extra dimensions, because in this extension we still have the Einstein gravity in multidi-
mensional space-time, and branes with more than two extra dimensions turn into black holes. A
solution for two branes in space-time with two extra dimenions with a metric corresponding to a
factorizeable geometry was found in [16].

A possible solution to the problem can be in passing to Lovelock gravity [17] inthe multidi-
mensional space-time instead of the Eistein one. The Lovelock Lagrangian for gravity theory in
d-dimensional space-time looks like:

16π Gd LL = ∑
0≤p≤(d+1)/2

αp λ 2(p−1)
L(p),

where
L(p) =

1
2p δ I1I2···I2p

J1J2···J2p
RJ1J2

I1I2
· · ·RJ2p−1J2p

I2p−1I2p
,

δ I1I2···I2p
J1J2···J2p

is a generalized Kronecker delta,αp is a dimensionless parameter andλ is a parameter
of the dimension of mass.

In particular, we have for the first three terms in the sum:

L(0) = 1, L(1) = R, L(2) = RPR
MNRMN

PR−4RMNRMN +R2.

11



P
o
S
(
Q
F
T
H
E
P
 
2
0
1
3
)
0
1
6

Testing extra dimensions I. Volobuev

Thus,L(0) is the cosmological constant,L(1) is the standard Lagrangian of the Einstein grav-
ity, and L(2) is the Gauss-Bonnet term, which is often used in multidimensional extensions of
gravity.

In paper [18] it was argued that passing to Lovelock gravity could allow one to construct brane
world models with more than two extra dimensions.

7. Processes with Kaluza-Klein gravitons

In this section we will study processes with Kaluza-Klein gravitons within the stabilized
Randall-Sundrum model. In the first approximation in the SM coupling constants the effective
interaction Lagrangian (5.2) includes a sum of various 4-particle effective operators (not only 4-
fermion, but also 2-fermion-2-boson and 4-boson), which are invariant with respect to the SM
gauge group and lead to a well defined phenomenology. Various processes due to this Lagrangian
were studies in paper [19].

Below we show the results of numerical studies of Drell-Yan processes, because they are most
sensitive to new physics. These analytical and numerical calculations, including the Monte-Carlo
simulation of the SM background in a Gedankenexperiment for the LHC, were carried out with the
help of the CompHEP package [20], realized on the basis of the package for symbolic calculations
FORM [22]. The Feynmann rules following from effective Lagrangian (5.2) were incorporated into
this programme, which allows one to use this code for event generation and then for data analysis
in a real experiment.

In figure 1 dilepton invariant mass distributions are plotted for different values of the cou-
pling parameter 0.91/Λ2

πm2
1 for the Tevatron. In figures 2,3 such distributions are plotted for

0.91/Λ2
πm2

1×TeV4 = 0.66 for the Tevatron and for 0.91/Λ2
πm2

1×TeV4 = 0.0014 for the LHC.

, TeV-µ+µM
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M

, 
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/T
e
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-110
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10

210

310

-µ+µ → pp

SM + KK grav sum
SM

Figure 1: Dilepton invariant mass distribution for
parameters0.91

Λ2
π m2

1
×TeV4=0.66 (dash-dotted line), 1.82

(dashed line), 4 (dotted line) for the Tevatron
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Figure 2: Dilepton invariant mass distribution for
95% CL parameter0.91

Λ2
π m2

1
×TeV4=0.66 for the Tevatron

(L = 10f b−1)
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The error bars in these figures are not usual error bars, but take into account both systematic
errors (detector resolution, QCD uncertainties, errors in electroweak parameters and luminosity)
and the statistical uncertainties of the dilepton invariant mass distribution and define the values of
the coupling parameter, for which the contact interaction cannot be observed at the Tevatron and
the LHC. For the largest luminosities, they are

Tevatron(10f b−1) :
0.91

Λ2
πm2

1

×TeV4 < 0.66, LHC(100f b−1) :
0.91

Λ2
πm2

1

×TeV4 < 0.0014. (7.1)

These constraints can be used to estimate the lowest value of parameterΛπ , for which the ef-
fects of the contact interaction cannot be resolved, from the demand thatthe width of the resonance
is less than its mass:Γ1 < m1/ξ , whereξ is a number,ξ > 1. Utilizing (7.1) and the expression
for the total graviton width [19], we find the following unobservability rangefor the parameterΛπ :

Tevatron : Λπ > 0.61·ξ 1/4TeV, LHC : Λπ > 2.82·ξ 1/4TeV, ξ > 1. (7.2)

Next we consider the case, where the mass of the first KK resonance is within or close to
the accessible energy range. Here the approximation of the interaction dueto the exchange of the
first KK resonance by a contact interaction fails, and we have to take it intoaccount exactly. The
contribution of all the KK modes above it can still be described by effectiveLagrangian (5.2) with
the coupling parameter 0.41/Λ2

πm2
1, remaining after dropping the contribution of the first resonance

to the sum.
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n
ts

/0
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−110
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410
−µ+µ →pp 

SM + KK grav sum

SM
SM uncertainty

Figure 3: Dilepton invariant mass distribution for
95% CL parameter0.91

Λ2
π m2

1
×TeV4=0.0014 for the LHC

(L = 100f b−1)
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Figure 4: Dilepton invariant mass distribution from
the SM (solid line) and from the SM plus sum of KK
modes including the first KK resonance withMres =

3.83 TeV, Γres = 0.08 TeV, Λπ = 8 TeV(dashed line )
for the LHC

To illustrate the modification of distributions due to the contributions of the towers of KK
gravitons we carried out the calculations for two sets of parameters chosen so that for one set the
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first KK resonance lies within the energy range of direct observation and for the other one beyond
it. The first set includes the already mentioned valuesm1 = 3.83 TeV, Λπ = 8 TeVand the width
of the first resonanceΓ1 = 0.08 TeV. In the context of the RS1 model such a resonance (figure 4)
lies close to the boundary of direct observation expected for the LHC. The mass of the first KK
resonance in the second set of parameters (m1 = 10 TeV, Λπ = 14 TeV, Γ1 = 0.5 TeV) is close to
the maximal collider energy and it is not directly observable.

, TeV-µ+µM
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e

V1
, 

d
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d  
s
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m
σ

1

-610

-510

-410

-310

-210

-110

1

10

-µ+µ →pp 

KK grav sum
KK grav first res

Figure 5: The normalized dilepton invariant mass
distribution from the first KK resonance plus the
sum of KK tower states starting from the second
mode (solid line) and from the first KK resonance
only (dashed line) forMres = 3.83 TeV, Γres =

0.08TeV, Λπ = 8 TeV for the LHC
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d
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-µ+µ →pp 

KK grav sum
KK grav first res

Figure 6: The normalized dilepton invariant mass
distribution from the sum of KK tower states starting
from the first mode (solid line) and from the first KK
resonance only (dashed line) forMres= 10TeV, Γres=

0.5 TeV, Λπ = 14TeV for the LHC

In figure 5 and figure 6 one can see that the contribution of the KK tower increases the produc-
tion cross-section more than three times for invariant masses below the first KK resonance mass.
The situation is quite different for invariant masses above the first resonance mass, where, on a
par with the resonance peak, there appears a dip due to the destructive interference between the
contribution of the first KK resonance and the contribution of the rest of the KK tower. The local
minimum is atMmin ≈ 1.5m1. The cross-section growth after this minimum is strongly suppressed
by the parton structure functions, which leads to an extra hump in the distribution in the invari-
ant mass. However, figure 6 shows that an experimental observation ofthis hump against the SM
background is rather unlikely.

Similar interference effects take place, when one considers KK towers ofthe SM fields.

8. Universal Extra Dimensions and processes with the excitations of the SM gauge
bosons

If the SM gauge bosons can propagate in the bulk, there also arise KK towers of their excita-
tions, which may produce similar effects. First we consider the simpler case of theW boson and
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its KK tower. The coupling constants of its excitations and their masses essentially depend on the
fundamental parameters of a stabilized brane-world model, which is also truefor the excitations
of other particles to be discussed below. In particular, in paper [19] the masses of the graviton
excitations were explicitly calculated in terms of the fundamental parameters, which turned out to
be a rather complicated task.

Under these assumptions we will study the processespp→ tb̄+ X at the LHC. It occurs
due to the weak processud̄ → tb̄, which is mediated by theW boson and its KK tower. In our
approximation the amplitude of the process can be represented by the diagrams

u

d̄

W b̄

t
+

u

d̄

W′ b̄

t
+

u

d̄

CW

•
b̄

t

The contact term CW is, in fact, Fermi’s interaction with the coupling constantg2
1/(2M2

W′_sum).
Explicit calculations in UED models with flat extra dimension and in certain stabilizedbrane-
world models show that this mass is just a little larger than that ofW′. Here we will take the value
MW′_sum= 1.4MW′ , previously used in [21], as the effective mass of the KK tower aboveW′ and
will apply the same relation to the excitations of the other gauge bosons.
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Figure 7: Distribution in the invariant mass oftb̄
pair for MW′ = 2TeV for the LHC. Dash-dotted line
corresponds to the SM, solid line corresponds to the
sum SM + W’, dashed line corresponds to the sum
SM + W’+ KK.
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Figure 8: Top quarkpt distribution forMW′ = 2TeV
for the LHC. Dash-dotted line corresponds to the SM,
solid line corresponds to the sum SM + W’, dashed
line corresponds to the sum SM + W’+ KK.

The cross-sections of this process can be obtained by calculating the corresponding partonic
cross-sections and integrating them with the parton distribution functions, and in so doing we
neglect the light quark masses. The results of these calculations are presented in figures 7 and
8 and show that the interference with the contribution of the rest of the KK tower changes the
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curves significantly.

Here we will also consider processes with the excitations of the neutral SM gauge bosons.
Examples of processes mediated byZ′, γ ′ and the corresponding KK towers are thett̄ production
process and the Drell-Yan processpp→ µ+µ− +X. The effective Lagrangians for the KK towers
of γ andZ have the same form as the one for theW boson with the weak charged currentJ+µ

replaced by the electromagnetic current and the weak neutral current respectively. In this case the
processuū→ µ+µ− is described in our approximation by the following diagrams:

u

ū

γ µ+

µ−
+

u

ū

Z µ+

µ−
+

u

ū

γ ′ µ+

µ−
+

u

ū

Z′ µ+

µ−
+

u

ū

Cγ
•

µ+

µ−
+

u

ū

CZ

•
µ+

µ−

The diagrams for the process oftt̄-production can be obtained by replacing theµ+µ− pair by
tt̄ pair.
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Figure 9: Distribution in the invariant mass oftt̄ pair
for Mγ ′ = 2TeV, MZ′ = 2.3TeV for the LHC. Dash-
dotted line corresponds to the SM, solid line corre-
sponds to the sum SM + A’+ Z’, dashed line corre-
sponds to the sum SM + A’+ Z’ + KK.
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Figure 10: Top quark pt distribution for Mγ ′ =

2TeV, MZ′ = 2.3TeV for the LHC. Dash-dotted line
corresponds to the SM, solid line corresponds to the
sum SM + A’+ Z’, dashed line corresponds to the sum
SM + A’+ Z’ + KK.

The cross-sections of these processes can be obtained in the same way,as those with the
excitations of theW boson. The distributions in the invariant mass of thett̄ pair and in the transverse
momentum of the top quark are shown in figures 9 and 10 forM′

γ = 2TeV, M′
Z = 2.3TeV and in

figures 11 and 12 forM′
γ = 3TeV, M′

Z = 3.4TeV.
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Figure 11: Distribution in the invariant mass oftt̄
pair for Mγ ′ = 3TeV, MZ′ = 3.4TeV for the LHC.
Dash-dotted line corresponds to the SM, solid line cor-
responds to the sum SM + A’ + Z’, dashed line corre-
sponds to the sum SM + A’+ Z’ + KK.
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Figure 12: Top quark pt distribution for Mγ ′ =

3TeV, MZ′ = 3.4TeV for the LHC. Dash-dotted line
corresponds to the SM, solid line corresponds to the
sum SM + A’ + Z’, dashed line corresponds to the sum
SM + A’+ Z’ + KK.

The distributions in the invariant mass of theµ+µ− pair and in the transverse momentum of
the muon are shown in figures 13 and 14 forM′

γ = 2TeV, M′
Z = 2.3TeV.
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Figure 13: Dilepton invariant mass distribution for
Mγ ′ = 2TeV, MZ′ = 2.3TeV for the LHC. Dash-
dotted line corresponds to the SM, solid line corre-
sponds to the sum SM + A’+ Z’, dashed line corre-
sponds to the sum SM + A’+ Z’+ KK.
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Figure 14: Dilepton pt distribution for Mγ ′ =

2TeV, MZ′ = 2.3TeV for the LHC. Dash-dotted line
corresponds to the SM, solid line corresponds to the
sum SM + A’+ Z’, dashed line corresponds to the sum
SM + A’+ Z’+ KK.
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We have to note here, that the case of theZ′ boson andγ ′ turns out to be more complicated,
because in theories with extra dimensions the KK gravitongr′ and its tower also contribute to all
the processes mediated by the neutral vector boson. (To be precise, there is one more tower that
contributes to all these processes, namely that of the scalar radion. But the contribution of the scalar
modes is suppressed by the factor(mq/M)2, mq being the mass of a first generation quark andM
being the fundamental energy scale of the order of several TeV [19].For this reason the contribution
of the scalar modes is negligible and we discard it completely.) The contribution of the processes
with the first graviton excitation and its KK tower toµ+µ− pair production is described by the
following diagrams, which are not summed coherently:

u

ū

gr′ µ+

µ−
+

u

ū

Cgr

•
µ+

µ−

g

g

gr′ µ+

µ−
+

g

g

Cgr

•
µ+

µ−

The results of the calculations with the inclusion of these diagrams of the distributions in the
invariant mass of theµ+µ− pair and in the transverse momentum of the muon are shown in figures
15 and 16 forM′

γ = 2TeV, M′
Z = 2.3TeV andMgr′ = 3.83TeV.
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Figure 15: Dilepton invariant mass distribution for
Mγ ′ = 2TeV, MZ′ = 2.3TeVandMgr′ = 3.83TeV for
the LHC. Dash-dotted line corresponds to the SM,
solid line corresponds to the sum SM + A’+ Z’ + gr’ +
KK.
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Figure 16: Dilepton pt distribution for Mγ ′ =

2TeV, MZ′ = 2.3TeV and Mgr′ = 3.83TeV for the
LHC. Dash-dotted line corresponds to the SM, solid
line corresponds to the sum SM + A’+ Z’ + gr’ + KK.
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9. Conclusion

Theories with extra dimensions have a long history marked by alternating periods of oblivion
and keen interest. The latest developments in this field abolished the old restrictions on the size of
the extra dimensions, and now their predictions can be confronted with the experiment.

Since in higher-dimensional Einstein gravity it is impossible to find braneworld solutions with
more that two extra dimensions, we believe that nowadays the most consistentmodel with extra
dimensions is the stabilized Randall-Sundrum model. If its fundamental parameters lie in theTeV
energy range for the observer on the negative tension brane, the effects due to the massive modes
can be observed in collider experiments. If the masses of the KK gravitons and of the excitations
of the SM fields are beyond the energy range of direct observation, theinteractions due to KK
towers can be well approximated by contact interactions of the type of Lagrangian (5.2) or of
Fermi’s four-fermion Lagrangian, the Tevatron data demanding the coupling constantΛπ to be
larger than 610GeV. If these masses are in the energy range of direct observation, the effective
contact interaction induced by the infinite towers of the massive gravitons orof the KK excitations
of the SM particles should also be taken into account to correctly look for KKresonances and to
model the distribution tails. An observation of the interference between the first KK graviton or
SM particle resonance and the rest of its KK tower should be considered as a strong argument in
favor of the extra dimensions hypothesis.
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