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1. Introduction

The talk given was mostly based on the article [1] covering, however, a wider range of subjects.
A large number of observed hadron resonances can be viewed as radial excitations of some

lighter hadrons due to identical quantum numbers. The form of spectrum of radial excitations is
determined by the confinement forces in Quantum Chromodynamics (QCD). Thus the study of
radial excitations seems to be indispensable to the understanding of the confinement dynamics.

The quark confinement and the radial excitations arise naturally in the hadron string models
where the string serves as an approximation for the gluon flux-tube with nearly massless quarks
at the ends [2, 3]. This relativistic approach is well accommodated for the description of light
mesons representing ultrarelativistic systems. Here the string serves as an approximation for the
gluon flux-tube with nearly massless quarks at the ends. The semiclassical quantization of a thin
flux-tube typically gives a linearly rising spectrum for masses squared:

m2
k = a(k+b), k = 0,1,2, . . . , (1.1)

where the slope a is proportional to the string tension. Since the latter is governed by the gluo-
dynamics, the slope a is expected to be unaffected by the quantum numbers of meson resonances.
The known spectrum of light mesons seems to agree with the behavior (1.1).

The following observations were crucial for us and laid the foundation of our models:

• The usual models based on the QCD string possess an apt basic feature: the linear Regge
recurrence, m2

J ∼ J (J denotes the hadron spin), emerges already on the classical level of
rotating string. However, the radial modes appear after quantization;

• A careful analysis of existing data shows that a stronger statement than the recurrence (1.1)
can be made: The light non-strange mesons cluster near certain equidistant values of energy
squared with repeating structure of the clusters [4].

In this work we put forward a new dynamical approach to the description of the radial hadron
excitations in which the spectrum of radially excited states is realized on the classical level. The
approach is based on a realization of the assumption that the gluon vacuum has the periodic struc-
ture.

In some sense, an example of such approach is given by the five-dimensional soft-wall holo-
graphic model. We wish to construct models staying within the four-dimensional framework.

2. Scalar theory with non-degenerate vacua

Consider the following effective field theory for a real scalar field in four dimensions,

L =
1
2

∂µφ∂ µφ +
µ4

2λ

[
cos

(
λ
µ2 φ2 −2πb

)
− cos(2πb)

]
, (2.1)

where µ has the dimension of mass and the parameters λ and b are dimensionless. The periodicity
of the interaction term in (2.1) imposes a restriction on the value of parameter b: the interval
0 ≤ b < 1 covers all nontrivial cases.
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At b= 0 the Lagrangian (2.1) resembles the sine-Gordon model [5]. The model (2.1), however,
is quite different since the nonlinear power of φ in the cosine destroys the translational invariance
(modulo a general factor) φ → φ+2πk, k = 0,±1,±2, . . . . The vacua are therefore non-equivalent,
although they have equal minimal energy.

The potential in (2.1) is minimized on the constant field configurations

⟨φ⟩k =

√
2πµ2

λ
(k+b), k = 0,1,2, . . . . (2.2)

Considering small perturbations around the vacua φ = ⟨φ⟩k + σ(x) one can easily receive the
spectrum of excitations which has the Regge-like form (1.1):

M2
σ ,k = 2λ ⟨φ⟩2

k = 4πµ2(k+b). (2.3)

Thus the model has an infinite number of unconnected vacua with different excitation energies
given by the relation (2.3).

It is worth mentioning that a simple semiclassical quantization of the gluon string with mass-
less quarks confined by the linear potential leads to the relation [6]: M2

k = 4πτk+ const, where τ
denotes the string tension. The mass parameter µ2 has thus an analogy with the string tension.

The seeming similarity of the Lagrangian (2.1) with the sine-Gordon model poses a question,
whether there exist soliton-like solutions in the two-dimensional case. In fact, the most close ana-
logue to the sine-Gordon model is provided by the following modification of the Lagrangian (2.1),

L̃ =
1
2

∂µφ∂ µφ +
µ6

λ 2φ2

[
cos

(
λ
µ2 φ2

)
−1

]
. (2.4)

The minima of effective potentials in (2.4) and in (2.1) at b = 0 coincide. The equation of motion
for the field φ in the Lagrangian (2.4) has a soliton-like solution, which in the static case takes the
form

φ =±2

√
µ2

λ
arctane2µ(x−x0). (2.5)

The expression in (2.5) represents nothing but the square root of the static one-soliton solution in
the sine-Gordon model [5]. The solution (2.5), however, is not a genuine soliton. The solution (2.5)
describes a usual kink, which connects two neighbouring vacua, and in four dimensions it becomes
a domain wall. The same situation takes place in the model (2.1), where the kinks exist but cannot
be found analytically.

3. Abelian Higgs model with periodic potential

Consider now a U(1) gauge model of the Nielsen-Olesen type [7] in which the Higgs potential
is taken from the scalar model (2.1). The Lagrangian reads

L = Dµφ(Dµφ)∗+
µ4

2λ

[
cos

(
2λ
µ2 φφ∗−2πb

)
− cos(2πb)

]
− 1

4
Fµν Fµν , (3.1)

where
φ =

φ1 + iφ2√
2

, Dµφ = ∂µφ − ieAµφ, Fµν = ∂µAν −∂νAµ . (3.2)
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The scalar field φ acquires non-zero vacuum expectation values (2.2). Pointing these values along
the φ1, we will have an infinite set of massive fields φ1 and massless fields φ2 which represent
the Goldstone modes, one for each vacuum in the absence of the gauge field Aµ . The Goldstone
modes are transformed into the longitudinal degrees of freedom of the gauge field due to the Higgs
mechanism. This can be easily demonstrated by the standard change of the field variables,

Vµ = Aµ −
∂µη(x)
e⟨φ⟩k

, φ =
⟨φ⟩k +σ(x)

2
exp

(
iη(x)
⟨φ⟩k

)
. (3.3)

In terms of the variables (3.3) the quadratic part of the Lagrangian (3.1) is cast into the canonical
form:

L
(2)

σ ,V =
1
2

∂µσ∂ µσ − 1
2

M2
σ σ 2 − 1

4
Fµν Fµν +

1
2

M2
VVµV µ + const, (3.4)

where M2
σ is given by (2.3) and the masses of gauge field over different vacua become

M2
V,k = e2⟨φ⟩2

k , k = 0,1,2 . . . . (3.5)

The relations (2.3) and (3.5) demonstrate that the infinite towers of massive vector and scalar par-
ticles emerge.

Let us seek for the Nielsen–Olesen vortex solutions. The equations of motion for the La-
grangian (3.1) are:

DµDµφ = µ2φ sin
(

2λ
µ2 φφ∗−2πb

)
, (3.6)

∂ νFµν = ie(φ∗∂µφ −φ∂µφ∗)+2e2Aµφφ∗. (3.7)

We will consider the static case, with the gauge choice A0 = 0. Following the paper [7] we look for
a cylindrically symmetric solution, with axis along the z-direction. The corresponding ansatz is [7]

A⃗(⃗r) =
r⃗× e⃗z

r
A(r), φ (⃗r) = χ(r)einθ , (3.8)

where e⃗z denotes a unit vector along the z-direction and n is an integer. In addition, it is assumed
that Aθ = A(r) and Ar = Az = 0. The flux is given by Φ(r) = 2πrA(r), so that the magnetic field is

B(r) =
Φ′(r)
2πr

=
(rA(r))′

r
, (3.9)

where the prime stays for the derivative with respect to r. Inserting this ansatz to the equations of
motion we arrive at

(rχ ′)′

r
−
[(n

r
− eA

)2
+µ2 sin

(
2λ
µ2 χ2 −2πb

)]
χ = 0, (3.10)

(
(rA)′

r

)′

−2χ2
(

Ae2 − ne
r

)
= 0. (3.11)

The exact solution of this system cannot be obtained analytically. We are going to find a solution
with asymptotic behavior on the spacial infinity of the type χ ≃ const. Treating χ as a constant we
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get from the equation (3.11), with C a constant of integration and Kν the modified Bessel function
of the second kind,

Ak(r) =
n
er

+
C
e

K1 (e⟨φ⟩kr) =
n
er

+
C
e

√
π

2e⟨φ⟩kr
e−e⟨φ⟩kr + . . . . (3.12)

Then the magnetic field is

Bk =−C⟨φ⟩krK0 (e⟨φ⟩kr) =−C

√
π⟨φ⟩k

2er
e−e⟨φ⟩kr + . . . . (3.13)

Here the dots mean the lower order terms at r → ∞. Substituting the asymptotics (3.12) for Ak(r)
into the equation (3.10) we obtain the approximate solution χk ≃ ⟨φ⟩k/

√
2, which defines the

characteristic length Λ (meaning the penetration length of the magnetic field in the condensed
matter physics), Λk = (eχk)

−1.
In contrast to the Nielsen–Olesen theory [7], here one formally has an infinite number of

characteristic lengths, however, the real physical penetration length is determined by the largest
one corresponding to k = 0.

The original Nielsen–Olesen’s idea was to identify the vortex-line solution with the Nambu
dual string. The quantization of the latter had to give rise to the excited hadron spectrum. We
deal with a quite different situation: the spectrum of excitation emerges on the classical level and
each state can be accompanied by a vortex. This approach avoids all notorious problems with
quantization of hadron strings. The existence of vortices might be speculatively interpreted as a
footprint of real QCD string. However, most likely these solutions are just artefacts of the model.

4. Discussions

From the phenomenological point of view, the model under consideration predicts a linear
Regge-like spectrum for radially excited scalar and vector states. In the general situation the slopes
are different in contrast to the hadron string models where the universal slope is determined by the
gluodynamics.

The existing experimental data on the light non-strange mesons seems to agree with the ap-
proximate universality of slopes of radial meson trajectories within the experimental errors [8]. We
can easily incorporate this universality by setting a condition e2 = 2λ .

However, this entails a complete degeneracy of the scalar and vector states. If we associate
the scalar field φ with the scalar isoscalar particles ( f0-mesons) and the vector field with the vector
isoscalar states (ω-mesons) this prediction is not far from the reality, see Fig. 1.

On the other hand we can keep the universal slope but remove the degeneracy. Consider
a model where the real scalar field interacts with the massive gauge field. That corresponds to
adding the vector part

Lv =−1
4

FµνFµν +
1
2
(m2

v + e2φ2)AµAµ (4.1)

to the Lagrangian of the scalar model.
The models discussed above should be viewed as effective models for QCD in the large-Nc

limit (because the number of resonances is infinite and the zero-width approximation is implied).
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Figure 1: The spectrum of f0 and ω mesons. The vertical size displays the experimental uncertainty. Other
states f0 reported by the Particle Data [9] are assumed to belong to the ss̄-trajectory. The state ω(2290) is
identified with the ω(2330)-meson.

They are complementary to the usual effective field theories for the strong interactions (the
sigma-models, chiral perturbation theory, etc). The standard effective models are low-energy ones,
i.e. they are usually defined below the characteristic scale of the spontaneous chiral symmetry
breaking (CSB) – about 1 GeV – and their input parameters are supposed to arise from integration
of the degrees of freedom above this scale. In our case, the situation is opposite – by assumption,
the input parameters (first of all the bare masses) originate from integration of the low-energy
degrees of freedom below 1 GeV.

A phenomenological support for such a viewpoint comes from the observation that the linear
ansatz (1.1) for the radial meson spectrum is a reasonable approximation for the excited states,
while the ground ones below 1 GeV deviate substantially from the linear trajectory. This is seen,
for example, in Fig. 1. The deviation is the most pronounced in the pseudoscalar channel [8].

QCD in the large-Nc limit represents a theory of an infinite number of narrow and stable
non-interacting mesons and glueballs [10], which should appear in the classical effective action.
It implies that we should introduce glueballs in our theory. In fact, we already have them for it
looks rather natural to interpret the field φ and its periodic potential as an effective model for the
non-perturbative gluon vacuum in QCD.

It seems to be reasonable, that all quarkonia in the sector of light quarks get masses mainly
through interaction with the vacuum field φ . Then the simplest Lagrangian for a scalar quarkonium
f is as follows from the equation

L̃s =
1
2

∂µ f ∂ µ f − 1
2
(m2

s +g2
s φ2) f 2 +

1
2

∂µφ∂ µφ +
µ4

2λ

[
cos

(
λ
µ2 φ2 −2πb

)
− cos(2πb)

]
, (4.2)

From the Lagrangian (4.2) one can see that:

• the spectrum of the scalar glueballs has the Regge-like form;

• the bare mass ms must depend on quantum numbers in order to provide different intercepts
for the radial meson trajectories [8];

• the approximate universality of slopes entails universality of couplings g2
s ≃ e2 ≃ 2λ .
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Finally we comment on the issue of renormalizability. The interaction in the Lagrangian (2.1)
is non-renormalizable in four dimensions. Nevertheless, the effective field theories are often con-
sidered as approximations valid in the tree level only, and we imply no further accuracy.

5. Conclusion

In this work we proposed a new Lagrangian description for the radially excited mesons. The
main assumption of our scheme is that the non-perturbative vacuum of QCD has periodic structure
in energy scale.

We have built the models in which the Regge-like form of the spectrum of the radially excited
states appears on the classical level. We have found that there is the Nielsen–Olesen vortex solu-
tion in each vacuum in the theory with Abelian gauge group. The existence of vortices might be
speculatively interpreted as a footprint of real QCD string.

The case of non-Abelian gauge group as well as the calculation of the first quantum correction
in the scalar model and some other subjects are discussed in the article [1].
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