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1. Intoduction

To compare theoretical results with experimental data,ajten uses the concept of quark--
hadron duality, which establishes a bridge between quarttgjmions, a language of theoreticians,
and real measurements with hadrons performed by expemtistat The idea of quark-hadron
duality was formulated in the paper by Poggio, Quinn, andnldeig [1] as follows: Inclusive
hadronic cross sections, once they are appropriately geéraver an energy interval, must ap-
proximately coincide with the corresponding quantitiesiva& from the quark-gluon picture. To
check direct consequences of the theory without using masimptions, it is important to con-
nect measured quantities with the “simplest" theoretitgkcts. Some single-argument functions,
which include the AdleD-function [2], directly related to the experimentally mesed quantities
can play the role of these objects.

In this report, we concentrate on tBefunction, corresponding to the"e~ annihilation and
the t-decay into hadrons, the hadronic contribution to the aounsamagnetic moment of the
leptons, and the hadronic contribution to the electromtégmeupling. As can be seen from the
following formulas, these physical quantities and funasi@re expressed through the experimen-
tally measured functio®(s) = Imr(s)/m, the imaginary part of the vector current correldits),
integrated with some known function:

e the Adler function

2
D(Q%) = de d(QS QZ/dS ot Q)Z) (1.1)

e the hadronic contribution to the anomalous magnetic morokttie lepton (in the leading
order in electromagnetic coupling constant)

ahad — % (%)2 /OO%SKl (9R(S), (1.2)
0

where | = u, e, 1, and K|(s) is a known QED kernel function;

e the strong interaction contribution to the running of thefatructure constant &tz

7d R
poySmz) = - A vz [25 =y (13)
0

By definition, all these quantities and functions includerdrared region as part of the interval
of integration and, therefore, they cannot be directly Waled within perturbative QCD.

The approach that we use here to describe the quantitiesuactidns mentioned above is
based on the nonperturbative expansion method [3, 4]. litdke of QCD the method leads to a
new small expansion parameter. Even going into the infrezgibn of small momenta, where the
running coupling becomes large and the standard pertuebatipansion fails, the nonperturbative
expansion parameter remains small and the approach hdids va
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Figure 1: The Adler function for thee"e anni- Figure 2: The ‘light’ Adler function. The ex-

hilation into hadrons. The solid curve is the VPT ~ perimental curve (solid line) and the perturba-
result for five active quarks. The experimental tive result with power corrections (dotted line)
curve is taken from Ref. [12]. are taken from Ref. [6].

2. The Adler function

Let us remind that the cross-section for the process"ef annihilation into hadrons, or the
Drell ratio R(s), the normalized hadronic cross-section, is a physicallpsueed quantity defined
for the timelike momentum transfer, and at the low energyesbas a resonance structure which
is difficult to describe without model considerations. A¢tsame time, the AdleD-function is
determined by expression (1.1) in the Euclidean region ttier spacelike momentum transfer),
Q? = —¢? > 0, is a smooth function without traces of the resonance tsireic S. Adler observed
this many years ago [2] and, consequently, he suggested ti@nspacelike function which was
the first derivative of the functioR(s). The AdlerD-function is a really useful object (see Ref. [5]
for more details) and was studied in many papers [6, 7, 8, 911,012, 13, 14, 15, 16, 17, 18].

Figures 1 and 2 show th@?-behavior of the Adler function. Figure 1 shows tBefunction
corresponding to the process @fe~ annihilation into hadron$. The rich and precision experi-
mental data on the lepton decays into hadrons provide a unique opportuniteso®CD at low
energy scale and, in particular, for construction of Ehefunction. Figure 2 shows the ‘light’
Adler function corresponding to the non strange vector nbbaf T decay data [19, 20]. Figure 2
also shows the perturbative result with power correctialogtéd line), which was taken from Ref.
[6]. These figures demonstrate that indeed the Adler fundtioned out to be a smooth function
without traces of the resonance structure of the timeliketion R(s). One can see that theoretical
curves that have been found within the method based on tieigaal perturbation theory (VPT)
are in good agreement with the experimental ones down tathest energy scale.

Note that any finite order of the operator product expansada fo describe the infrared tail of
the D function (see dotted line in Fig. 2). Within the VPT approattie nonperturbative expansion
parametearemains small even going into the infrared region of smalimanta where the running
coupling becomes large and the approach holds valid.

Iwe grateful to F. Jegerlehner who supply us with the cornedipg data.
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3. Method and numerical results

Let us briefly recall the essential features of the methothvileause here to describe the func-
tions connected witlR(s) mentioned in the Introduction. The method we use to consaude-
scription of theR-related quantities is the VPT [3, 4]. Within this approaehgquantity under
consideration is represented in the form of the so-calleatifig or variational series. A certain
variational procedure is combined with the possibility afoulating corrections to the principal
contribution, which allows the possibility of probing thalidity of the leading contribution and
the region of applicability of the results obtained. The \&&fies is different from the conventional
perturbative expansion and can be used to go beyond the eeegiting regime. This allows one
to deal with considerably lower energies than in the casesdfigation theory. It is important to
note, that the VPT approach maintains the required analypioperties of the Adler function. As
can be seen from Eq. (1.1), the functibiiQ?) is the analytic function in the comple®?-plane
with the cut along the negative real azidNext, by using the VPT approach it was formulated the
model [23]. This model also incorporates the summation @fshold singularities [24] and takes
into account the nonperturbative character of the lightkjmaasses (see Refs. [22, 25] for more
details). Note that as the normalization point we use a vafutbe RY -ratio of the hadronic to
leptonic - decay widths obtained by the ALEPH collaboration [19].

For the hadronic contribution to the lepton anomalous mégneoment in the leading order
in the electromagnetic coupling constant we obtain theeglu

al?d= (702+16) x 1019, al29= (1.64:£0.07) x 1012, aM*!=3.28x 10°°. (3.1)

For comparison, we list the some recent vallﬁsd (6949+4.3) x 10719 [26], af*d= (1.678+
0.014) x 10712 [27], a®d= (3.375+0.037) x 10°° [28].

Our calculation for the hadronic correction to the electagmetic fine structure constant at the
Z-boson scale glveSar(]S) (M2) = (27994 4.0) x 10~* which is close to value extracted from data:

Aa'D(M32) = (2757 +0.8) x 104 [29].

4. R-D self-duality

Let us turn to the hadronic correction to the muon. The exgiwes(1.2) can be rewritten in
terms of theD-function as follows [30]

1

ahad— /d_x —x)(2— x)D<X—2mﬁ>. (4.1)

X 1—-X
0

It should be emphasized that expressions (1.2) and (4.1¢@rwalent due to the analytic
properties of the correlatdt (g?). If one uses a method that does not maintain the requiredprop
ties, these expressions will no longer be equivalent anidwly different results. This situation
is similar to that which occurs in the analysis of the inclesi-decay [31]. Within VPT this trans-
formation is justified [32], and one can use equally well@itexpression (1.2) or expression (4.1).

2The method based on the analytic perturbation theory in QTID4lso preserves the correct analytical properties
and leads to very close results [22].
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Now we investigate the question: What can we say about theemion between kernels in
(1.2) and (4.1) when these expressions are equivalent?slretnrite these expressions in a more
general form:

Qv = /d—SSM(s)R(s) for the Minkowskian (timelike) region (4.2)
0
7 dt . . .
Qe = /T E(t)D(t) for the Euclidean (spacelike) region 4.3)
0
TheR-D self-duality meansQu = Qg. The answer to the question is the connection between
the kernels .
_ E(t)
s =s 0/ Ui (4.4)

According to this expressiomM (s) is an analytic function in the complex plane with a cut along
the negative real axis. The inverse relation reads

t+ie
E(t) :—2—; d—ZZM(—z). (4.5)
t—ie

Applying this result to the hadronic correction to the muangetR — D self-duality expressions:

Pl = 2/C'—Sl\/l (4.6)
s
0
2 7 dt
had b
/t E(t 4.7)
0
2 n? 2 1 ’72 +’7 2
where M(s)=n <l—?>+(l+n) (1+? In(14+n)— ? n<inn,

2
2| v pgn| Ve

5. Summary

We have analyzed various physical quantities and functimmerated by R(s) based on the
nonperturbative VPT-method (Adler functions, hadronintdbutions to anomalous magnetic mo-
ments of leptons and so on). It was shown that the method sllsrnto describe these quantities
well down to a low energy scale. We investigate the reasonaf good agreement, and as a result
we formulate the criterion which we called as the R-D selfldy The quantities considered sat-
isfy this criterion, and they can be described in terms ofttiker function, which is well described
within this method.

This work was supported in part by the BelRFBR-JINR grant Rt2D-002 and the RFBR
grant No. 11-01-00182.
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