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1. Introduction

The models of the BSM physics based on the hypothesis that our universe is a four-dimensional
space-time hypersurface (3-brane) embedded in a fundamental multi-dimensional space have at-
tracted recently much interest, see, for example, [1] and references therein. The gravity happens
to play an important role in a (de) localization of matter fields on the brane [2] - [8], [9]. The
purpose of this work is to study how the introduction of gravity influences the spectrum of scalar
fluctuations.

In our talk we consider a model of the domain wall formation with finite thickness ("thick"
branes)in five-dimensional noncompact space-time by the scalar matter minimally coupled to grav-
ity [10], [11]. The scalar matter is taken to consist of two fields with O(2) symmetric self interac-
tion and with manifest O(2) symmetry breaking by terms quadratic in fields. The limit of turned
off gravity happens to be smooth for background fields and the solutions can be obtained using
the perturbation theory [12]. On the other hand it was argued in [5], [8], [9] that for one scalar
field, gravity induces singular repulsion towards the remote AdS horizon so that localized modes
on a brane may be absent and a massless Goldstone-type mode of translational symmetry breaking
disappears. The question of phenomenological importance that arises is whether this repulsion in-
fluences the mass of the light scalar produced by fluctuations of the second scalar field which can
be identified with Higgs-like boson observed at LHC. The mass can be obtained by the perturbation
theory. While the leading order is the same as in the model without gravity the next to leading order
happens to be nontrivial.

2. Formulation of the model

Consider the five-dimensional space supplied with a pseudo Riemann metric gAB, which is
reduced to ηAB in flat space and for the rectangular coordinate system,

XA = (xµ ,y), xµ = (x0,x1,x2,x3), (2.1)

It is assumed that the size of extra dimension y is large or infinite.
We define the dynamics of two scalar fields Φ(X) and H(X) with a minimal interaction to

gravity by the following action functional,

S[g,Φ,H] =
∫

d5X
√
|g|
(
−1

2
M3
∗R+Lmat(g,Φ,H)

)
, (2.2)

Lmat = Z
(

1
2
(∂AΦ∂

A
Φ+∂AH∂

AH)−V (Φ,H)

)
(2.3)

where R stands for a scalar curvature, |g| is the determinant of the metric tensor. M∗ denotes a five-
dimensional gravitational Planck scale. In the scalar matter action the normalization coefficient Z
has dimension of mass and is introduced to simplify the equations of motion.

In order to build a thick 3 + 1-dimensional brane we study such classical vacuum config-
urations which do not violate spontaneously 4-dimensional Poincare invariance. A background
solution for the metric is searched for in the gaussian frame,

ds2 = e−2ρ(y)
ηµνdxµdxν −dy2. (2.4)
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This kind of background metric suits well for interpretation of scalar fluctuation spectrum and
corresponding resonance effects (i.e. scattering states) [10].

ρ ′′ = Z
3M3
∗
(Φ′2 +H ′2), 2Z

3M3
∗
V (Φ,H) = ρ ′′−4(ρ ′)2, (2.5)

Φ′′−4ρ ′Φ′ = ∂V
∂Φ

, H ′′−4ρ ′H ′ = ∂V
∂H . (2.6)

One can prove [10], that only three of these equations are independent. In the limit of zero gravity
the equations on classical backgrounds smoothly reproduce the corresponding equations in the
model without gravity.

2.1 Minimal realization in φ 4 theory

Now let us restrict ourselves with studying the formation of a brane in the theory with a mini-
mal potential bounded from below and admitting kink solutions which connect two potential min-
ima. The effective action of scalar matter looks as follows,

Lmat =
3κ

2M2

(
∂AΦ∂

A
Φ+∂AH∂

AH +2M2
Φ

2 +2∆HH2− (Φ2 +H2)2−V0

)
, (2.7)

where the normalization of the scalar field lagrangian is chosen as Z = 3κM3
∗/M2 for simplification

of Eqs. of motion and of the gravitational perturbation expansion. To associate it to the weak
gravity limit we specify that κ ∼ M3/M3

∗ is a small parameter κ � 1 which characterizes the
interaction of gravity and matter fields. Let us fix M2 > ∆H then the absolute minima correspond
to Φmin =±M, Hmin = 0 and a constant shift of the potential energy must be set V0 = M4 in order
to determine properly the 5-dim cosmological constant Λc.

Depending on the relation between quadratic couplings M2 and ∆H there are two types of
solutions of eqs. (2.6) inhomogeneous in y [11]. In the zero gravity limit the first solution dominates
when ∆H ≤M2/2,

Φ =±M tanh(My)+O(κM) , H(y) = 0. (2.8)

To the leading order in κ it generates the following conformal factor ,

ρ1 (y) =
2κ

3

{
lncosh(My)+

1
4

tanh2(My)
}
+O

(
κ

2) , (2.9)

which is chosen to be an even function of y in order to preserve the so-called τ symmetry. The spon-
taneous breaking of this symmetry is associated with fermion mass generation [11, 12]. The very
symmetry involves the intrinsic parity reflection of both fields and the reflection of fifth coordinate,

Φ(y)→−Φ(−y), H(y)→−H(−y).

Evidently the parity reflection leaves the bosonic action (2.7) invariant and holds as a symmetry for
the kink (2.8). In the presence of gravity induced by a background matter the τ symmetry survives
for even conformal factors.

The second kink profile arises only when M2/2 ≤ ∆H ≤ M2 (in the zero gravity limit), i.e.
2∆H = M2 +µ2, µ2 < M2,

Φ0(y) =±M tanh(βMy) , H0(y) =±
µ

cosh(βMy)
, β =

√
1− µ2

M2 , (2.10)
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and it breaks the τ symmetry. Therefrom one can find the conformal factor to the leading order in
κ in the following form,

ρ1 (y) =
κ

3

{(
3−β

2) lncosh(βMy)+
1
2

β
2 tanh2(βMy)

}
+O

(
κ

2) , (2.11)

which is as well symmetric against y→−y.
These two solutions correspond to different phases with critical point at ∆H = M2/2+O

(
κ

)
.

We are interested in the phase with broken τ-symmetry because the v.e.v. of the second field H can
be used for the fermion mass generation. Let us choose further on the positive signs of Φ(y),H(y)
at y→+∞ .

The next approximation to the solutions in the second phase can be obtained with the help of
the perturbation theory in the parameters κ expressing the strength of gravity and µ/M parameter-
izing the deviation from the critical point. To reduce the complexity of the analytic calculations it
is useful to introduce new dimensionless coordinate for the extra dimension τ = Mβy and use the
following perturbation expansions,

Φ(τ) = M ∑
∞
m,n=0 κm

(
µ

M

)2n
Φm,n(τ), Φn,0 ≡Φn, (2.12)

H(τ) = M ∑
∞
m,n=0 κm

(
µ

M

)2n+1
Hm,n(τ), Hn,0 ≡ Hn, (2.13)

ρ(τ) = κ ∑
∞
n,m=0 κn

(
µ

M

)2m
ρn+1,m(τ), ρn,0 ≡ ρn, (2.14)

∆H = ∆H,c(κ)+
1
2 µ2, ∆H,c(κ) =

1
2 M2

∑
∞
n=0 κm∆n

H , (2.15)

1
β 2 = ∑

∞
m,n=0 κm

(
µ

M

)2n(
1

β 2

)
m,n

; (2.16)

The use of the gaussian coordinates happen to be important for the well-behaved perturbation
expansions. The computation that we are not presenting here because of its complexity gives the
following leading order corrections,

∆H,c =
1
2
− 22

27
κ +O

(
κ

2
)
,

1
β 2

∣∣∣
µ=0

= 1+
4
3

κ +O
(

κ
2
)

(2.17)

3. Fluctuation equations

Let us consider small localized deviations of the fields from the background values and find
the action squared in these fluctuations. The fluctuations of the metric hAB (X) and of the scalar
fields φ (X) and χ (X) against the background solutions of EoM are introduced in the following
way,

gAB (X)dxAdxB = e−2ρ(y)
ηµνdxµdxν −dy2 + e−2ρ(y)hAB (X)dxAdxB; (3.1)

Φ(X) = Φ(y)+φ (X) ; H (X) = H (y)+χ (X) . (3.2)

Since 4dim Poincare symmetry is not broken, we select the corresponding 4dim part of the
metric hµν and employ the notation for gravi-vectors h5µ ≡ vµ and gravi-scalars e−2ρh55 ≡ S. The
major simplification can be achieved by separation of different spin components of the field hµν
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and vµ . It can be accomplished by description of ten components of 4-dim metric in terms of the
traceless-transverse tensor, vector and scalar components [5, 13],

hµν = bµν +Fµ,ν +Fν ,µ +E,µν +ηµνψ, vµ = v⊥µ +∂µη , (3.3)

b,µµν = b = 0 = F ,µ
µ = v⊥,µµ . (3.4)

After this separation in the action is performed the scalar sector that we are interested in decouples
from the fields with higher spins up to quadratic orders in fluctuations.

Still there are redundant degrees of freedom because the action (2.2) is invariant under dif-
feomorphisms. Infinitesimal diffeomorphisms correspond to the Lie derivative along an arbitrary
vector field ζ̃ A(X), defining the coordinate transformation X→X =X+ ζ̃ (X). The further analysis
of the scalar spectrum is conveniently performed in the following gauge invariant variables:

η̌ = E ′−2η +
e2ρ

ρ ′
ψ, φ̌ = φ +

Φ′

2ρ ′
ψ, χ̌ = χ +

H ′

2ρ ′
ψ, Š = S− 1

ρ ′
ψ
′+

ρ ′′

(ρ ′)2 ψ. (3.5)

The scalar part of the lagrangian quadratic in fluctuations takes the form:

√
|g|L(2),scal =

1
2

Ze−2ρ

{
φ̌,µ φ̌

,µ + χ̌,µ χ̌
,µ − e−2ρ

[
(φ̌ ′)2 +(χ̌ ′)2

+

(
φ̌

χ̌

)T

∂
2V

(
φ̌

χ̌

)
+

1
2

V (Φ,H)Š2 + Š
(

Φ
′
φ̌
′+H ′χ̌ ′− ∂V

∂Φ
φ̌ − ∂V

∂H
χ̌

)]}

+
3
4

M3
∗e
−4ρ�η̌

(
−ρ
′Š+

2Z
3M3
∗
(Φ′φ̌ +H ′χ̌)

)
, (3.6)

where ∂ 2V is a matrix of second derivatives of the background solutions.
From the last line it follows that the scalar field η̌ is a gauge invariant Lagrange multiplier and

therefore it generates the gauge invariant constraint,

ρ
′Š =

2Z
3M3
∗
(Φ′φ̌ +H ′χ̌). (3.7)

Thus after resolving this constraint only two independent scalar fields remain. To normalize kinetic
terms the fields should be redefined ψ̌ = Ωψ̂ , χ̌ = Ωχ̂ , where Ω = Z−1/2eρ . Then the scalar action
is reduced to the following form,

√
|g|L(2),scal =

1
2

(
∂µ φ̂∂

µ
φ̂ +∂µ χ̂∂

µ
χ̂− e−2ρ

(
φ̂

χ̂

)T (
−∂

2
y +2ρ

′
∂y +M̂

)(
φ̂

χ̂

))
, (3.8)

M̂ = ∂
2V +M̂NP−ρ

′′+3(ρ ′)2, M̂NP =
2Z

3M3
∗
(−∂y +4ρ

′)

[
1
ρ ′

(
(Φ′)2 Φ′H ′

Φ′H ′ (H ′)2

)]
, (3.9)

M̂NP is a correction to the mass operator that generally speaking can change the spectrum of the
scalar fluctuations non-perturbatively.
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Let us perform the mass spectrum expansion,(
φ̂(X)

χ̂(X)

)
= eρ

∑
m

Ψ
(m)(x)

(
φ (m)(y)
χ(m)(y)

)
, ∂µ∂

µ
Ψ

(m) =−m2
Ψ

(m), (3.10)

where the factor exp(ρ) is introduced to eliminate first derivatives in the equations. We obtain the
following equations, (

−∂
2
y +M̂ −ρ

′′+(ρ ′)2
)(

φ (m)

χ(m)

)
= e2ρm2

(
φ (m)

χ(m)

)
, (3.11)

These coupled channel equations of second order in derivative contain the spectral parameter m2 as
a coupling constant of a part of potential (a non-derivative piece). For m2 > 0 the mass term in the
potential makes it unbounded below. Thus any eigenfunction of the spectral problem (3.11) is at
best a resonance state though it could be quasi-localized in a finite volume around a local minimum
of the potential. In [10] the probability for quantum tunneling of quasi-localized light resonances
with masses m�M was estimated as ∼ exp{− 3

κ
ln 2M

m } which for phenomenologically acceptable
values of κ ∼ 10−15 and M/m& 30 means an enormous suppression.

4. Scalar fluctuation spectrum in the φ 4 model

In the phase with unbroken τ-symmetry when 〈H〉= 0 eqs. of motion (2.6) entail ∂ 2V/∂Φ∂H =

0 and the two scalar sectors decouple. In this case the equation on φ (m) (3.11) can be written using
eqs. (2.5)-(2.6) in the following factorized form,(

−∂y +
ρ ′′

ρ ′
− Φ′′

Φ′
+2ρ

′
)(

∂y +
ρ ′′

ρ ′
− Φ′′

Φ′
+2ρ

′
)

φ
(m) = e2ρm2

φ
(m), (4.1)

Because ρ ′|y=0 = 0 the potential in the φ -channel contains singular barrier [9]. As a con-
sequence in the presence of gravity there is no (normalizable) Goldstone zero-mode related to
spontaneous breaking of translational symmetry. The cause is evident: the corresponding brane
fluctuation represents, in fact, a gauge transformation and does not appear in the invariant part of
the spectrum.

On the other hand the equation for the χ-channel,[
−∂

2
τ +

1
β 2M2 e−2ρ

(
−2∆H +2Φ

2
)
+4(ρ ′)2−2ρ

′′
]
χm =

m2

M2β 2 e2ρ
χ
(m), (4.2)

does not gain nonperturbative correction and in the limit κ → 0 coincides with the corresponding
equation in the model without gravity.

For the minimal model in the phase with unbroken τ-symmetry the χ-channel contains zero-
mode that remains massless when next order in κ corrections are taken into account [12]. In
the phase with broken τ-symmetry this state gains mass and nonzero φ component that can be
computed using the perturbation theory in the parameter µ/M controlling the deviation from the
critical point.

χ
(m) =

∞

∑
n,k

κ
n
(

µ

M

)k
χn,k, φ

(m) =
∞

∑
n,k

κ
n
(

µ

M

)k+1
φn,k, m2 = M2

∞

∑
n,k

κ
n
(

µ

M

)k
(m2)n,k. (4.3)
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The computation that we do not present here because of its complexity gives the same leading
order of mass as in the model without gravity

(m2)0,1 = 2, (4.4)

However the next leading order of mass happen to be

(m2)0,2 =−128
√

3arctanh

√
3

3
+146+

4
3

ln2 · (1+ ln2)− π2

9
≈+0.4817, (4.5)

whereas similar computation for the model without gravity gives,

(m2)NG
0,2 =−130442

121275
≈−1.0756. (4.6)

Thus we have revealed the unambiguous puzzle of discontinuity in the scalar fluctuation mass
spectrum between a theory without gravity since the very beginning and a theory with minimal
gravity interaction in the zero gravity limit.
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