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We consider extended chiral group Ey and investigate whether soliton-skyrmion with di-
quark parameters can be formed within sympletic subgroup of Ex.We find that classically
stable, finite mass topological solitons exist in the extended chiral group E). In the case
of three colors, two flavors their status is described by the chiral group O(3); x O(3);.
The vacuum background gluon field defines also an asymptotic behavior of the shape
function F (R); the field should be chromomagnetic.
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1. Introduction

The extended chiral group E |1, 2| was introduced in the bosonisation approach [3, 4, 5|
to derive the effective action of diquark fields. The corresponding extended chiral trans-
formation depends both on pseudoscalar and diquark fields as parameters. While at the
classical level the chiral symmetry is broken by quark mass, the extended chiral (E)) sym-
metry is broken by quark mass and gluon fields. E -group is U(2N) for N internal degrees of
freedom, N = N.Ny . Non-anomalous (measure preserving) generators span the Lie algebra
of O(2N), anomalous generators belong to the coset U(2N)/O(2N). Anomalous generators
describe chiral rotations and transformations with diquark variables ("diquark" rotations),
non-anomalous part consists out of gauge transformations and combined chiral "diquark"
rotations. It was assumed that Ey -symmetry breaking due to quark masses and gluon
fields is soft in the sense that the action for bosonised diquark fields can be obtained by
integrating corresponding E) -anomaly. Colorless chiral fields after bosonisation give rise to
Goldstone particles - pseudoscalar mesons. At low energies bosonised diquark parameters
of Ex -transformations with quantum numbers of lightest J* = 0% ud -diquark was treated
as a Goldstone-like particle. The Ey -group in this case is SU(4), non-anomalous trans-
formations are just gauge transformations SU(3)U(1) and the diquark Goldstone degrees
of freedom belongs to CP* = SU(4)/SU(3)U(1). In the limit of vanishing gluon condensate
and current quark masses the ud-diquark introduced a la Goldstone becomes massless.

Understanding world of color solitons is important in an non-perturbative approach to
the low energy hadron physics. One of the problems is to include chiral anomalies [6, 7] in
the total (gauge plus chiral, or anomalous) color space and to study changes of gauge space.
In the gauge sector of SU(2) QCD theory, color solitons were reported by Faddeev-Niemi
[8, 9, 10] and Cho et al. [11, 12, 13]. In the quark chiral sector, the Skyrmion model
for constituent quarks (qualitons) was discussed by Kaplan [14, 15, 16|, and it was shown
[17, 18] that isolated color solitons (i.e. solitons on the background of vacuum gluon field)
can be classically stabilized by the chromomagnetic vacuum field in the cases of two colors,
one flavor and three colors, one flavor, their mass can be evaluated and intersoliton potential
displays confinement behavior. A possibility of existence of a colour chiral solitons with
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baryon number B = Np/N¢ was mentioned in the paper on colour bosonization [3], where
baryon number current B;, was derived

Np

o —1 Arr—1 —1 A —1 -1
By = S fuviotr [UDYU T UDU DU 36" (UD°UT U p°U)|

The aim of this talk is to discuss quark and diquark type topological color solitons,
existing in the extended chiral group E). We consider isolated solitons which are defined
as solitons in vacuum background field. We describe vacuum in a phenomenological way
[20] through condensates and assume that cubic gluon condensate is zero.

2. Colour chiral bosonization and effective action

Chiral bosonization [3, 4] is a prescription for introducing chiral field, and integration
of chiral anomaly is usually invoked, as a way to derive the chiral effective action.

Let us consider the Dirac lagrangian Ly(G,A) with background gluon field G, and
external colour field Ay in the group SU(N)xSU(N)

Ly =iy (5+6+y52) v =VD(G,A) v

A chiral field U is defined by the following transformation of Dirac fermions y¥ = 1 [(1— 1)U+
(1+79)y,U"U = 1. The quark Lagrangian Ly (G,A) remains invariant, if fields G,,A, are
transformed appropriately Ly (G,A) = yYD (GU,AU ) yY | where U -transformed fields are
given by

G +Al =U (Gu+A) U ' +UU ', G — Al =G, — A,
Repeated transformation with the chiral field U; gives (Gﬂ W = Gi{lU. These fields are not
symmetrical /antisymmetrical with respect to left-right exchange. However, they are gauge

transforms of vector and axial vector fields G,,A, with the gauge function x which is square

root of U
Gy =xGux ™" +x0ux AL = xAux 2P =U
Under a gauge transformation g the function y transforms as y' = gxg™' .

The infinitesimal chiral transformation gs = 1+ %A acts in the following way
8Gy = [Au,A],6A, =Dy, 8y =AY, 8% =YysA,8U = — (UL +AU)

An important property of U -transformed fields GU,AU,WU,Wis that for them the chiral
transformation gs is a non-chiral gauge transformation

5G4 =D, (69)1.643 = [1.AL]. 5v% Ay, 67 = 3

It follows that the Yang-Mills Lagrangian Lyy (GY) = %gztrGHv(GU)“V is invariant under
chiral transformations .
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In order to find an effective action for the colour chiral field U we study functional
integrals

Zy (G,A,RS) = / DYDyexpi / dxLy (G,A) = expiW (G,A,RS)

Zy (GY,AY RS) = / DyDyexpi / dxLy (GY,AY) = expiW (GY,AYRS)

which are also specified by a Regularization Scheme RS . They play the role of quantities
Z and ZY in definition of an effective action W,;¢(U) . Thus, we obtain

Zy (G,A,RS)

We ) 7R =—iln———————~
11(G.U-RS) = =il "G AT ks)

The usual way to calculate effective chiral action is to find an infinitesimal change oyW,ss
(i.e.the anomaly) and integrate it up to U . We put U = exp® and introduce the anomaly
A(x,0)
181InZy (exp®)
A(x,0) = il 4 Sl St
0)=7""56

Then )
WY (@)= - / &' /0 dsA (x:50) O (x) — / d'xLY, (U) ~ Wy zw
where the Wess-Zumino-Witten term Wy zw describes topological properties of U.

Eliminating external colour axial fields, Ay, =0, we get the effective chiral Lagrangian
Lglff (U) arising from integration over fermions with Ny flavors

2
1
Lyr(U) = Nptrc{JjTODNUD“U*1 + [ [up,u~",UD, U]~ (UDU'UD'U)?

19272 |2

_|_

567 [UD'U . UD'U Gy +UGuuU ™) + G UG U ™)

where the kinetic term contains a constant fg which is an analogue of the pion decay
constant f2 .

Soliton for Ny = 1.

Effective chiral lagrangian has the structure Los(U) = Ly (U) + LY (U), Lin(U) - ki-
netic term with two derivatives, L*)(U) - contains terms with 4 derivatives and do not
depend on regularization scheme RS ; the dimensional constant fo2 may look different in
different RS , but in applications it should be taken from phenomenology. Derrick theorem
is fulfilled, and L.s; can lead to static stable soliton solutions.

Next steps:

1. Choice of the ansatz for the color chiral field U

2. Choice of the background gluon field

Step 1. Natural boundary condition for color chiral field U: U(x) — I, as |x| — 0. So
R? is compactified to S* and we have mapping U : 3 — SU(N,).

We are looking for topological solitons with nontrivial topological charge (winding
number). In the case of (3+1) -dimensional models this can be done only for two symmetry
groups [19] G| = diag[SO(3); ® SO(3)s|, G2 = diag[SO(2); ® SO(2)s]
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The fields invariant against transformations from G; are spherically-symmetric fields
of the hedgehog type, winding numbers Q = 1,2,... Those invariant under group G
are axisymmetric configurations with winding numbers Q > 2. For the Skyrme model
Eg—2(G2) < Eg—2(G1).

For the case Np =1 we are looking for the configuration with minimal energy, so we
choose the group G| = diag[SO(3); ®SO(3)s].

We consider the colour gauge group SU(2) with antihermitian generators T, = ;—‘; , where
T, are the Pauli matrices. Let us write the chiral field in the usual hedgehog way

Xa

T
U =expi (x‘;ea) F(R) =cosF +irsinF,rqyr, = P =1,rgT,=r,ry = R

Step 2. Colour configurations U are always associated with background colour field G,
because of necessity to maintain colour gauge invariance. In this respect, the case of colour
solitons is quite different from the case of flavor solitons, where there is no flavour gauge
invariance, and the external flavour gauge field can be eliminated from the chiral action.
The background colour field should be chosen according to the colour configurations U
under consideration. The gluonic vacuum ¥ is characterized by the condensate

& u ouvag, |~ 8 a quva
Co= (‘1‘0,47520”‘,0“ ‘P()) = TﬁG“VG” #0
that is by the non-zero vacuum expectation value of the Yang-Mills lagrangian for the full
quantum field O, represented by the background vacuum field G, in our approximation.
According to phenomenological descpription Cy = 0 , C, & 0.04GeV* [20], so Gy, is a chro-
momagnetic field in the real case of SU(3) gauge group. The vacuum field strength Gy in
the temporal gauge Gy =0 is constant up to a time independent gauge transformation.

We consider the simplest case of a chromomagnetic vacuum background field , when it

is an Abelian-type field which is a product a coordinate vector field Vi and a SU(2) color

vector n

1 T,
= Vin® Vi = —=Viux; = — = €umX1 VB, G = gG}{ =
k K, Vi 3 kX1 3 kimX1 k=& ko

where n is a constant unit vector in the colour space, Vv, is a constant unit vector in
coordinate space, V,,B = %Emllek is the vacuum chromomagnetism and B is related to the
condensate Cq = 2%32 . In the vacuum all directions n* and v; are equivalent, so that it is
necessary to average over them at the end.

We are now able to right down the Effective colour static Lagrangian

2 -2
sin“ F
Legs U,Gr) = ~Np 22 (3P + 275

2
2 ) N sin® F
)+ §ngzR2 sin® F] + 96ﬂ2[<(8RF)2+2 e ) +

16 . 2 sin? F\ Np .
- B R sin* F + §ngzR2 ((8RF)2 +3 =2 ) sin? F]— 727r2g232 sin> F
Np [2sin’F , sin*Fo2 5,

242 [RZ (ORF)+ g+ gg Brsin'F
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The static energy or mass
M= —4x / dRR’L, ;7 (U,Gy)

must be finite. Near the origin R = 0 soliton soliton function F(R) behaves in the same
manner as in the Skyrme model F(R) ~ kw —bR
The asymptotic behavior of F(R) at large R is determined by the gluon condensate C,

C
F— (fOR)*% exp (—7; ;R2> ,R— o0

3. Group structure of £ y-transformations

In order to consider quark-antiquark and quark-quark composites on equal footings
one should introduce eight-component spinors W constructed from ordinary Dirac spinors
¥ We consider the Dirac operator D for massless quarks ¢ with background vector V;, and
axial vector Ay fields and look for impact of transformations, which mixes particles and
antiparticles and introduce fields @ with diquark quantum numbers

8q=—0q—0Cq 8¢ =—a'q —10'Cq
on the quark lagrangian L = %(q'Dq —q"'D'q" +q" CPqg+ qdq").

The extended chiral group Ey is the group of all gauge and chiral transformations
leaving quark lagrangian invariant, if external fields are transformed accordingly. In absence
of external fields, Ex is the group of global color and flavor transformations leaving free

quark lagrangian invariant. The basic Dirac spinor W is 8-component: ¥ = ( _qT )
q

and the Dirac lagrangian L can be rewritten as L = %‘PTﬁ ¥ with F represented in the

~ [c® -DT ~
F=| .~ —.  |=-F,
D &C
where D = iy (QN +Vu +y5au) is the Dirac operator with external fields, ”7” means
transposition and ® = y* ((1)5“ + %—qb“) contains external vector diquark fields, ® = y®* .

block form

To avoid difficulties with the Majorana spinors in finding a counterpart of F in the
Fuclidean path integral over W, one should take special care keeping in mind that what
is necessary for chiral actions is only to calculate detF. To this end we use the hermitian

~ D ® R R ~ ~
operator G = D ,D.=C7'D"C, with detG = detF and required positivity properties.
Cc
Thus, having in mind the chiral anomaly and related effective action, one should study
transformations of operator G induced by quark transformation 6%

S¥=—Q¥.G — G =exp (—E+7%0) Gexp (E+19)
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where antihermitian matrices Q,%,® are given by

Q=pn(a+yy)+pa(a”—ry)+
P12 (& +1%0)C+par (=" +30")C
E=pna+pne’+pné+pu&*, @=pix—pox’+pno—pro

We introduced notation: pg, is a 2 x 2 block matrix with elements (pap).; = GacOpa-

We have o™ = —o,y 7 = —x, 67 = =&, 0" = . The quark baryon number is b =
%(Pll —pn) = %ﬁy

Transformations with £ do not change the quark path integral, while transformations
with ® induce chiral anomalies. The Lie algebras with £+ 150 and & 4+ ® are isomor-
phic. For N, colors and Ny flavors, generators &+ @ are in algebra of U (2N), N = N.Ny.
Non-anomalous generators ¢ are in algebra of SU (N) and include color SU (N,); the left-
right group Grr = SU (N), x SU (N)g has @,y as generators, while (E+0),, = pnia+
P00 + prn® — pry®* is in algebra of symplectic group Sp(2N), because (E+®)STP ipr +
ip2(E+0), =0.

In Ex non-anomalous generators E are in algebra of the orthogonal group O (2N)
and include in addition to block diagonal generators a also non-diagonal generators &,
which arise from non-commutativity of anomalous generators Opr = p11x — P22x”™ and
Oyp = p12® — P21 ®*. Anomalous generators @, of the symplectic group Sp(2N) belong
to the coset Sp(2N) /SU (N). We see that there are two distinguished subgroups Grz and
Sp(2N) of Ex with the same block diagonal non-anomalous generators Z° = pjja + pno*
and different anomalous parts ®;z and ©y,, which do not require introduction of addi-
tional non-anomalous generators . In the case of entire group EJ, anomalous generators
® include both x and @ and belong to the coset SU (2N) /O (2N).

Effective chiral lagrangian for field U

The chiral field is U = exp®. The calculation of effective lagrangian by integration
of anomaly follows the standard bosonization procedure. After eliminating external color
axial fields, Ay =0, we get the chiral action for 2N internal degrees of freedom W (U) =
Werr (U) — W, with an effective lagrangian L,¢¢ (U):

1 1

~1 -172 ~1 —1y2
T 2[UDVU ,UD,U'|"—(UD U 'UD'U ™)

2
Leff (U) = trc’f{J:TwD‘uUD“Uil +

1

+ 19272

(WD*U=",UD*U (G + UGy U™ ")+ Gy UGHU )},

Dp = au + [G[J7*] ) Gu = pllGlJ + P22 (_GZ;) +P12&3+P21q)

The kinetic term depends on a phenomenological parameter f2.
The structure of Lys(U) = Lyin(U) + L@ (U) is the same as in the previous case.
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4. Solitons in the symplectic group

By next step we must find the ansatz for the color chiral field U and then consider
the choice of the background gluon field. We shall restrict ourselves to the case of scalar
diquark as a natural partner in the formation of the nucleon. We are looking for the fields
invariant against transformations from Gy, which are spherically-symmetric fields of the
hedgehog type with winding number Q = 1.

Let us consider the symplectic group Sp (2N) with « in SU (N), N = N.Ny. The chiral
field Uy, is a mapping from 53 to Oy =pr0—p_®° with © = o’. For the whole group
(with both o and ) such mappings belong to 3 =Z . Excluding o we get:

(a)Two or three colors, one flavor: ® = 4,@,,a = 1,3,4,6,8 , no spherical solitons;

(b) Two colors, two flavors: ® = Ap@, , A, are nine traceless symmetrical matrices
0, X T and o X Tij‘a [=0,1,3 ; no spherical solitons;

(c) Three colors, two flavors; non-anomalous part g, is given by 12x12 matrix with
o in SU (6) built on SU (3) matrices A, and flavor Pauli matrices 7, while anomalous
part Oy, together with Ey, span Sp(12) algebra. Symmetric matrix @ contains fields with
diquark quantum numbers associated with both symmetrical matrices A5 x ‘L',f and both
antisymmetrical ones A2 X Tp. Antisymmetric matrices

M = (A2, —As, A7) = (0k); (Ok);j = —itw

These are the generators of a 3 -representation, which is equivalent to the spin one
representation of an SU(2) group

In color O(3) algebra we combine with unit coordinate vector ri,rry = 1 into 7 = Oyry.
We retain only those parameters @, which enter with generators of O(3), introduce the
shape function Fy, (R) and write the spherically-symmetric ansatz made out of fields O, ¥}
with diquark quantum numbers for the color chiral field as

@Sp = P+i1'20k19k - p—iTZOkﬁl:,k = iTZT’f‘F:‘-IH T’ = pl COSX _ p2 Sin%
Usp = expOy, = 1 +imynPsinF + 72 (cos F — 1), R? = xix;,
assuming that x is constant. Isospin matrices Iy = (p371, T2, p373) commute with Oy,

Choice of background gluon field

A single color soliton is defined as a soliton in the background of the vacuum chromo-
magnetic field Gjj =V, N, which depend on constant color unit SU(3) - vector N, N°N¢ = 1.
Soliton in a particular color domain is correlated with its background field. This correlation
disappears, when we average over different color domains and important phenomenological
parameter - gluon condensate forms. Consider D,U = d,, + (G, U]. Doubled gluon field

Gk = p11Gr+ P22 (—GZ) , Gy = VkN, N= AaNg, NN, =1

U = exp® and O contains only antisymmetric matrices A4. Thus, we should take
N = N* antisymmetric, otherwise symmetric N5 would take ® out of O(3) algebra. Note,
that (N4)? = NA. We see that tr(N*)? = 0. It follows that cubic gluon condensate is zero.
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In order to preserve the form of U we have to restrict Ey, to a common subgroup O (3) of
SU(3)xSU(3)" . As we see, this is possible for vacuum background field G¢ = V,N, N =
ANy, trN3 = 0 in the gauge G¢ =0

Then Gy = P11Gr + P22 (—GZ) = (pn +p22)Vk]V, where N = O,N;,N> =N.

In the vacuum all directions n* and v; are equivalent, so that it is necessary to average
over them at the end.

The effective color chiral static Lagrangian L.ss (U) for diquark solitons take the fol-
lowing form after averaging:

1 : 2 1 . 4 1 4 F
Lesr(U) = —Zfog,{zF 2 +2(5 + §7t2CgR2) sin® F + (et §7t2CgR2) sin* 51

1 nosintdoo1
48%2{(F T )—i—ﬁnCR(F +sin® F(cos F — 1))} +

1 14 si 2% i 2%
7967‘52(21: -8

— R(F?+24 -
2 727[ CoR*(F? +24sin* 2)}

1 , F
Eﬂ“CzR“(sm F + 4sin? E))
From finitness of mass functional M(F) = — [d3xL.ss we get the behavior of solitonic
. . . F(R) .
shape function at origin —~ — 7k, k -integer.
Topological charge , (U) for a soliton U in the left-right subgroup of Ey is related to
the quark baryon number b= p3/ N,

(V) = 5
x 2 24n2N
and coincides with the baryon number of soliton U.

/ d>xe;ptr{psUD;UTUD;UTUD U™}

Finiteness of soliton mass follows from the static effective lagrangian L.rs and asymp-
totic behavior of the shape function F (R) at large R.

Asymptotics of F (R) is defined by the kinetic term. The kinetic term averaged over
directions N*¥ and v, of background vacuum field G¥ = VNV, = — €11 ViR / % in O(3)
color and coordinate spaces takes the following form

1 2 1 4 1 F
K:4NFf§,{2F’2+2< +97L'2CR2>sm F+(53 +97TZCR2)sm 71

where Cq is the gluon condensate. Thus, leading asymptotic behavior at large R of the
shape function F (R) is governed by the similar equation as in the case of color Ny =1
quark soliton. We get the result

F— (foR)fgexp (—731-\/ C;R2> ,R— oo

which guarantees that the mass M = —4x [ dRR?Ly,, is finite for positive condensate Cy, ie.

for chromomagnetic vacuum field.
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5. Conclusions

We have shown that classically stable, finite mass topological solitons exist in the
extended chiral group Ex. In the case of three colors, two flavors their status is described
by the chiral group O(3); x O(3)z. The vacuum background gluon field defines also an
asymptotic behavior of the shape function F (R); the field should be chromomagnetic. This
pattern based on establishing mapping from S to anomalous part ® of Ex and using
properties of vacuum background field can be followed in more complicated cases. This
expansion of the world of color solitons is not accompanied by the widening of pure QCD
gauge space: it is still SU(3) and no additional gauge degrees & were still required to
accommodate solitons. However, these degrees & are likely to appear, if vacuum is to be
described by set of condensates. Diquark type solitons may be essential in discussion of
baryon asymmetry, baryon number nonconservation and "electroweak baryons".
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