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In many cases levels of proton-rich nuclei participating inrp processes have not been measured

and one has to rely on theory to estimate the reaction rates. However, the Isobaric Mass Multiplet

Equation (IMME) affords a reliable method of obtaining levels in the final T=1 nucleus of a (p,γ)

reaction in terms of experimental energies of the isobaric analog partners and a small coefficient c

(typically 150 - 300 keV) that can be calculated. The power ofthe IMME method, which is mainly

empirically based with a small theoretical component, to estimate energies of nuclei participating

in the rp process is emphasized by way of illustrating favorable cases where the method works

particularly well. We demonstrate the usefulness of the application of the IMME to three rp

reactions25Al(p,γ)26Si, 35Ar(p,γ)36K and 29P(p,γ)30S. Because of the semi-empirical nature of

the method, it should be stressed that its application depends on knowing energies of the analog

states of the nucleus in question. Alternatively, one has toresort to shell-model calculations with

reliable two-body interactions.
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1. Introduction

A process such as the rp (p,γ) reaction is generally dominated by resonant capture to excited
states above the particle-emission threshold and therefore depends critically on the nuclear proper-
ties of the levels involved. The Isobaric Mass Multiplet Equation (IMME) affords a reliable method
of obtaining levels in the (Tz = −1) nuclei for the (p,γ) reactions in terms of the isobaric analog
partners and a relatively small (typically 150 - 300 keV) IMME coefficientc that can be calculated
[1]. The (p,γ) rate depends on the proton-decay and gamma-decay widths that are often not mea-
sured experimentally. Values obtained from the nuclear shell model can be used if the experimental
levels can be matched with their theoretical counterparts.In this paper we use the sd-shell model
space with the charge-independent interactions USDA and USDB [2] supplemented by Coulomb
and charge-dependent interactions obtained in Ref. [3].

According to the IMME
B = a+bTz + cT 2

z , (1)

whereB is the binding energy of a state. For the three T=1 isobaric states one can then, with
Tz = (N −Z)/2, substituteTz = 1,0,−1 alternately, and by rearranging

Bp = 2Bo −Bn +2c (2)

for the proton-rich member, wherec can be expressed as

c = (Bn +Bp −2Bo)/2. (3)

As a specific example, for26Si one has

Bth(
26Si) = 2B(26Al)−B(26Mg)+2cth. (4)

2. The two-body interactions employed

In the paper of Ormand and Brown [3] they start with a known isoscalar Hamiltonian, e.g.
USD, and calculate the one-body transition densities (OBTD) and two-body transition densities
(TBTD) for a set of nuclei in a particular model space, e.g. the sd shell for USD. Next a semi-
empirical isospin non-conserving interaction (INC) with standards terms is composed and treated
as a perturbation. The various strengths of the terms are obtained from least-squares fits to data
(the data being coefficients of the Isobaric Mass Multiplet Equation (IMME)). The T=1 part of the
two-body NN interaction is written as a sum of isoscalar, isovector and isotensor parts with each
term a product of an isospin part and an interaction vk. Each vk is expanded as a sum of products of
a strength Sµ and an interaction Vµ(r) (Eq. 3.1 in [3]). The interaction terms postulated are V0, the
isoscalar part of the initial isoscalar two-body Hamiltonian which is known, the Coulomb potential
VC, and Vπ and Vρ meson exchange terms with Yukawa forms. The tensor components of the
interaction are then rewritten in the proton-neutron formalism and expressed i.t.o. the interactions
between protons and neutrons. One obtains a charge-asymmetric part of the NN interaction v(1)

= (v(pp) - v(nn)) and a charge-dependent part v(2) = (v(pp) + v(nn) - 2v(pn)) which break isospin
symmetry.
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Figure 1: c-coefficients from the isobaric mass multiplet equation (IMME: E = a+ bTz+ cT 2
z ) versus state

number (in order of increasing energy) in26Si based on experimental energies (closed circles) and energies
calculated from USDB (open circles).

The b and c coefficients of the Isobaric Mass Multiplet Equation (IMME) can be written in
terms of the isovector single-particle energiesε (1) = ε (p)

− ε (n) and the strength parameters Sµ .
Their values are then determined from a least-square fit between the theoretical and empirical b and
c coefficients in a particular model space. For the nuclei considered in [3], A=18-22 and A=34-39,
the 42b-coefficients were reproduced with an rms deviation of 27 keVand the 26c-coefficients
were reproduced with an rms deviation of 9 keV. There is considerable state-dependence in the
c-coefficients (ranging in values from 130 keV to 350 keV) thatis nicely reproduced by the calcu-
lations (see Fig. 9 in [3]).

The INC Hamiltonian is then added to the isoscalar Hamiltonian, originally USD in the sd
shell. In our case we use USDA and USDB for the charge-independent parts of the two-body
interaction. These composite interactions are called USDA-cdpn and USDB-cdpn in NuShellX
[4], implying that they are charge-dependent and that calculations are done in the pn formalism.

3. 26Si as the final nucleus

Because many levels in26Si have uncertainties in terms of energy, spin and parity, a procedure
often adopted is to make assignments in26Si based on known levels in the mirror nucleus26Mg.
We have also made use of experimental information on the levels of excited states in26Si from Ref.
[5]. Using the newsd-shell interactions USDA and USDB [2], as well as the older USD interaction
[6], assignments between theory and experiment of corresponding levels in26Mg levels have been
confirmed, and new ones suggested [7]. It has also been shown previously that the new interactions
reproduce most observables in the sd shell reliably, and in some cases better than USD [8].

In Fig. (1) values ofc from experiment and theory are compared for states in26Si ordered
according to increasing experimental energy. The experimental values are obtained for states where
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Figure 2: Adopted experimental excitation energies in26Si [5] versus predicted energiesEth based on
experimental binding energies of26Mg and26Al and the theoreticalc-coefficient (from USDB-cdpn) (Eq.
(5)). Dashed lines indicate the uncertainJπ assignments from [5]. The crosses correspond to predicted
energies without experimental counterparts.

all three members of the multiplet are known. In general a good correspondence can be seen, the
largest deviations being less than 30 keV. There is considerable state dependence withc values
ranging from 300 keV (for the 0+ ground state) down to 180 keV. This IMME method was used
in [9] for the T=1 states of the odd-odd nuclei with mass 28, 32and 36. The agreement with
experiment [Fig. (1)] for our even-even case appears to be better than obtained in [9] for the odd-
odd cases.

Fig. (2) shows the excitation energies for26Si obtained from Eq. (2) on the right compared to
experiment on the left. The calculated values can then be used as a guide to the correct spin/parity
assignments for measured levels in26Si. Where no levels in26Si are known, levels can be predicted.
Two such levels are indicated by crosses in Fig. (2). The three levels that are just above the proton-
decay separation energy of 5.51 MeV and of potential importance for the capture reaction at low
temperatures are indicated by the arrows in Fig. (2).

The well-established experimental energies and energies based on the IMME are used as input
for the (r,p) rate calculations. The results for26Si have been given in Ref. [1].
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Figure 3: Experimental energies of the isobaric T=1 triplets for A=36. The energies of36Ar are relative to
the lowest 2+ T=1 state at 6.611 MeV. Negative parity states are connectedby dashed lines. The solid lines
connect positive parity states considered to be analogs on the basis of our IMME predictions. The proton
separation energy in36K is shown by the horizontal line on the left-hand side. The data are from Endt [11]
except for those above the proton separation energy in36K for which we use the newer values from Wrede
et al. [10]. The cross on the 2.282 MeV 5− state in36K indicates that this level was associated with the
2+3 state by Wrede et al. We associate the 2+

3 level with the higher state at 2.446 MeV. The levels labeled
36K IMME are based on Eq. 2 with experimental binding energies of 36Cl and36Ar and with the theoretical
c-coefficient (Eq. (3)). The crosses correspond to predictedenergies without experimental counterparts.

4. 36K as the final nucleus

Fig. (3) shows the experimental excitation energies of the T=1 analog states for A=36. A
number of levels of36K measured recently by Wrede et al [10] above the proton separation are
included, and all other excitation energies are from Ref. [11]. The cross on the 2.282 MeV 5−

state in36K indicates that this level was associated with the 2+
3 state by Wrede et al. Our reasons

for associating the 2+3 level with the higher state at 2.446 MeV state are discussed in detail in Ref.
[12], but are based on comparison with the IMME. The levels labeled36K IMME are based on Eq.
(2) with the experimental binding energies of36Cl and36Ar and the theoreticalc-coefficient (Eq.
(3)). The crosses correspond to predicted energies withoutexperimental counterparts.

In the present case there are two negative parity states, 3− and 5−, as shown in Fig. (3),
close to some of the important resonances, and their contributions should be taken into account. In
view of the correspondence between mirror states for A = 36 itwould be reasonable to substitute
experimental values of the spectroscopic factors and lifetimes from the mirror nucleus36Cl in cases
where a calculation is not feasible. In this way the contributions from these negative parity levels
can be taken into account approximately.

In Fig. (4) the reaction rates leading to36K are shown. It should be noted that the contribution
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Figure 4: The total rp reaction rate versus temperature T9 (GigaK) (top panel) and the contribution of each
of the final states (lower panel) with usdb-cdpn.Γγ was calculated for36K levels.

of the negative parity state 3− is significant and cannot be neglected, even if it has to be based on
measured spectroscopic factors and gamma widths of the mirror nucleus36Cl.

5. 30S as the final nucleus

Our normal procedure is to use Eq. (2) to predict energies andconfirm spin assignments in
30S. However, based on the recent data for30S we found several inconsistencies when using the
proposed experimentalT = 1 assignments for levels above five MeV in30P. Thus, forA = 30 we
start with an investigation of the(Jπ ,T ) assignments for levels in30P.

In Table I a summary is given of theT = 1 triplets forA = 30. Experimental energies for30Si
and30P are are taken from the Nuclear Data Sheets (NDS) [14] unlessotherwise indicated. The
levels are numbered byn according to their well-established ordering in30Si. The levels for a given
Jπ value are numbered byk. The30P energies andJπ for the states below 5 MeV, as well as the
3+ (n = 8, k = 2) level at 5219 keV are taken from Lotay et al. [15]. The energies andJπ values
for other states above 5 MeV are taken from Almaraz-Calderonet al. [16]. Above 6 MeV there are
many states in30S whoseJπ values are uncertain. The states between 6 and 7 MeV given in Table
I are those expected from the well-known levels in30Si.

Having made several reassignments for levels in30P [17], thec coefficients for 13 positive-
parity levels in Table I are shown in Fig. 5. There is good agreement between experiment and theory
except for the 0+ n = 10 state. The energy of this state in30P needs to be confirmed experimentally.
As in Ref. [3] there is significant state dependence withc values from experiment ranging from
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n Jπ k 30P 30Si 30P - 677 keV 30S 30S

exp exp exp exp USDB-cdpn

1 0+ 1 677 0 0 0 0
2 2+ 1 2937 2235 2260 2210 2244
3 2+ 2 4182 3498 3505 3404 3485
4 1+ 1 4502 3769 3825 3677 3976
5 0+ 2 4468 3788 3791 3668 3871
6 2+ 3 5576 4810 4899 4809 4805
7 3+ 1 5509 (2,3) 4830 4832 4688 4825
8 3+ 2 6006 (3+) 5231 5329 (3+) 5219 5111
9 4+ 1 5934 (3+) 5279 5257 (3+) 5132 5278
10 0+ 3 6050(10) (a) 5372 [5373(10)] (a) 5218 5487
11 3− 1 6093 5487 5414 5312
12 2+ 4 6268 (2-) 5614 5593 5382 5867
13 4+ 2 6597 5951 5921 5836 5860
14 4− 1 7049 6503 6372 (6225) *
15 2+ 5 6537 6497
16 2− 1 7223 (2−) 6641 6546 (2−) (6435) *
17 0+ 4 7207 (0+) 6642 6530 6326 6725
18 1− 1 7178 (1−) 6744 6501 (1−) (6242) *
19 3+ 3 6865 6940
20 2+ 6 6915 (2+) 7024
21 5+ 1 6999 6996

Table 1: Energy levels of theT = 1 isobaric analog states inA = 30, and experimental and theoretical c
coefficients of the IMME in keV. Excitation energies are given in keV. Error margins are given only when
they exceed a few keV. The multiplicity of the statesk is determined by USDB-cdpn, and the state numbern
is in order of increasing energy for30Si, where possible. Ref. [13] is indicated by (a). The other references
for the experimental data are discussed in the text. The negative-parity levels indicated by * have energies
in 30S estimated from IMME systematics.

about 170 keV to 276 keV. Results for both USDA-cdpn and USDB-cdpn shown in Fig. 5 give
some indication of the theoretical uncertainties.

Fig. (6) shows the results for the resonance-capture rate obtained using USDB-cdpn. The
three dominant resonances are 3+(1), 2+(3) and 2+(4). The importance of the 3+(1) and 2+(3)
states was noted in Ref. [18].

6. Conclusions

We have demonstrated the application of the IMME method to three rp (p,γ) reactions. In the
case of26Si as the final nucleus, we have correlated levels predicted by the IMME with measured
levels with uncertain spin/parity assignments in order to make more definite assigments. For36K
most energy levels in the resonance region have been measured, but comparison with the IMME
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Figure 5: c-coefficients from the isobaric mass multiplet equation (IMME: E = a+ bTz + cT 2
z ) for states

in 30S (in order of increasing experimental energy, as in Table I). The coefficients are experimental (closed
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lead us to make some reassignments for some important levels. We also emphasize, in this case,
the importance of taking into account the contribution of negative parity states approximately by
using lifetimes and spectroscopic factors of the mirror nucleus. In the case of30S attempts to apply
the IMME indicated many inconsistent assignments for the intermediate T=1 nucleus30P. New
assignments for30P were checked against the IMME, using recent energy values for 30S, and a
good correspondence was achieved. The rp reaction rates were calculated for all three reactions
using the energies obtained from the IMME as inputs, in addition to the established experimental
values.
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