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1. Introduction

Pions are the lightest hadrons in nature. Their special status as the lightest members of an
octet of pseudoscalar (pseudo-)Goldstone bosons associated with the breaking of the SU(3)A part
of chiral symmetry makes them fascinating objects to study. In effective theories, pions appear as
elementary degrees of freedom. Naturally, these theories have nothing to say about the internal
structure of the pion. Within QCD, however, pions are formed as bound states of a quark and
an anti-quark interacting strongly with each other. Powerful constraints such as the axial Ward-
Takahashi identity guarantee the massless Goldstone boson nature of the pions in the chiral limit,
although the constituents remain massive. This fascinating interplay between dynamical mass gen-
eration on the quark level and the formation of massless bound states is particularly transparent
in functional approaches to QCD using Dyson-Schwinger, Bethe-Salpeter and Faddeev equations,
see e.g. [1 – 4] for reviews.

An important probe for the internal structure of hadrons is their response to electromagnetic
fields. Real and virtual photons serve to extract quantities such as form factors, polarizabilities and
distribution functions which in turn offer interesting insights into global as well as spatially resolved
electromagnetic properties of these hadrons. Virtual pions (the ’pion cloud’ [5]) play an important
role in this respect. At small momentum transfer, the incoming photons couple dominantly to the
virtual pion cloud of the bound state instead of the quark and antiquark constituents. An impressive
demonstration of this effect has been given in [6], where the electromagnetic form factors of the
nucleon have been determined in a three-body Faddeev approach. A similar picture has been found
for the axial and pseudoscalar form factors [7]. The inclusion of pion cloud effects into form factor
calculations within the functional approach is challenging, both conceptually and numerically. First
steps in this direction have been made in [8, 9], where pion cloud effects in the masses of light
mesons have been studied. In this proceedings contribution we report on our efforts to determine
meson form factors in this approach.

Another interesting place where virtual pions may play a role are tetraquark bound states. The
story of the tetraquark is tightly connected to the issue of the light scalars and especially to the
case of the σ meson. Back in the 70ies, Jaffe introduced a simple quark-bag model to describe
these states [10]. He showed that tetraquarks allow for a natural explanation for the inverted mass
spectra and the huge width found in the lightest 0+ meson nonet. Unfortunately this huge width
and the multitude of other particles with 0+ quantum numbers in the low mass region made a clear
experimental signal difficult to obtain. Even the existence as a bound state, described as a pole in
the S-matrix, was debated for decades. Only recently new experimental data coming from BES
[11] and KLOE [12] combined with the application of a modified Roy-equation [13, 14] technique
asserted the existence of the σ meson.

The mass of the σ / f0(500) was found to be mσ = 450+ i280MeV [13, 14] and the particle
has been promoted to a proper member of the PDG again [15]. While the existence of the f0(500)
seems beyond doubt, its interpretation in terms of its internal structure is still a matter of debate.
Several approaches, including effective theory and large Nc studies [16 – 21] as well as more recent
lattice calculations [22, 23], indicate a strong contribution from a qqq̄q̄-like operator.

In this contribution we report on our study of tetraquarks within an approach using a covari-
ant four-body equation, which we approximate by a diquark and meson constituent picture. These
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Figure 1: The Dyson-Schwinger equation for the fully dressed quark propagator.

are determined self-consistenly from the the underlying quark and gluon substructure employing a
model for the quark-gluon interaction known to reproduce hadron properties on a phenomenologi-
cal level [24].

2. Meson form factors

2.1 Dyson-Schwinger and Bethe-Salpeter equations beyond rainbow-ladder

The Dyson-Schwinger equation (DSE) for the quark propagator is given diagrammatically in
Fig. 1. On the left-hand side we find the fully dressed inverse quark propagator S−1(p)= i/pA(p2)+

B(p2). The first term on the right-hand side denotes its bare counterpart S−1
0 (p) = i/p+m, and the

self-energy includes again the fully dressed quark propagator as well as the gluon propagator and
a bare and a dressed quark-gluon vertex.

For phenomenological purposes, a commonly used approximation scheme for the coupled
system of the quark DSE and Bethe-Salpeter equation (BSE) is the rainbow-ladder approach. In
the quark DSE this approximation amounts to the simple choice of Γ(p,q)µ = γµ Γ(k) for the quark-
gluon vertex, where p and q are the ingoing and outgoing quark momenta and k is the momentum
of the gluon. This approximation ignores further tensor structures of the full vertex as well as the
dependence of the dressing function on the quark momenta. The remaining dressing Γ(k) can then
be combined with the dressing Z(k) of the Landau-gauge gluon propagator,

Dµν(k) =
(

δµν −
kµkν

k2

)
Z(k2)

k2 , (2.1)

into a single effective coupling for the quark-gluon interaction. The most important property of this
approximation is that it readily allows for the construction of a corresponding interaction kernel in
the Bethe-Salpeter equation of mesons, thus satisfying the axial-vector Ward-Takahashi identity
(axWTI). This is mandatory to obtain the pion in the chiral limit as both, a Goldstone boson and a
bound state of a massive quark-antiquark pair.

Although there is much phenomenological success in describing mass spectroscopy of light
hadrons, decay constants [25 – 27] and dynamical properties like meson form factors [28] with
good agreement to experiment [29], the rainbow-ladder scheme is not sufficient when it comes
to the inclusion of unquenching effects like pion-cloud contributions. In the tower of coupled
Dyson-Schwinger equations, such contributions appear already in the DSE for the quark-gluon
vertex, see [9] for details. When these contributions are taken into account explicitly, the resulting
quark-gluon interaction can be split into a pure Yang-Mills part (present already in the quenched
approximation) and a separate part denoting the effects of the back-reaction of pions onto the quark
propagator. The DSE is then given diagrammatically in Fig. 2 [9]. The corresponding equation is
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=
−1

+ −
π−1 YM

Figure 2: Dyson-Schwinger equation for quark propagator with explicit diagram for the pion back-reaction.

given by

S−1(p) = Z2 S−1
0 (p)+g2CF(Z2)

2
∫ d4k

(2π)4 γµ S(k)γν

(
δµν −

qµqν

q2

)
Z(q2)ΓY M(q2)

q2

−3
2

∫ d4k
(2π)4

[
Z2 γ5 S(k)Γπ

(
p+ k

2
;k− p

)
+Z2 γ5 S(k)Γπ

(
p+ k

2
; p− k

)]
Dπ(q2)

2
,

(2.2)

with the momentum routing q = p−k and the pion propagator Dπ(q2) = 1/(q2+M2
π). The product

Z(k2)ΓY M(k2) stands for the Yang-Mills part of the quark-gluon interaction, which we approxi-
mate in the spirit of the rainbow-ladder approach. The Maris-Tandy model [27] that parametrizes
Z(k2)ΓY M(k2) is given by:

Z(k2)ΓY M(k2) =
4π

g2

(
π

w6 Dk4 exp(−k2/w2)+
2πγm [1− exp(−q2/4m2

t )]

log(τ +(1+ k2/∆2
QCD))

)
, (2.3)

with mt = 0.5GeV , τ = e2−1, γm = 12/(33−2N f ) and ∆QCD = 0.234GeV . In the pion part of the
interaction, Γπ(p;P) is the full pion wave function which we approximate by its leading amplitude
in the chiral limit [25]:

Γ
j
π(p;P) = τ

j
γ5

Bχ(p2)

fπ

. (2.4)

Here, Bχ(p2) is the scalar dressing function of the quark propagator in the chiral limit. The re-
placement of the leading physical pion amplitude by this chiral-limit approximation is correct on
the few-percent level. Note that we use this approximation only for the internal pion which medi-
ates the interaction.

The Bethe-Salpeter equation for meson bound states is shown diagrammatically in Fig. 3. The
corresponding equation reads:

Γ
(µ)
tu (p;P) =

∫ d4k
(2π)4

(
KY M

tu;rs(p,k;P)+K pion
tu;rs(p,k;P)

)[
S(k+)Γ

(µ)(k;P)S(k−)
]

sr
, (2.5)

π
+

π
=

π
π

Figure 3: Bethe-Salpeter equation for quark anti-quark bound state with explicit diagram for the pion back-
reaction.
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with the kernels KY M
tu;rs and K pion

tu;rs given by:

KY M
tu;rs(p,k;P) =

g2Z(q2)ΓY M(q2)(Z2)
2

q2

(
δµν −

qµqν

k2

)[
λ a

2
γµ

]
ts

[
λ a

2
γν

]
ru
, (2.6)

K pion
tu;rs(p,k;P) =

1
4
[Γ j

π ]ru

(
p+ k−P

2
; p− k

)
[Z2τ

j
γ5]ts Dπ(q2)

+
1
4
[Γ j

π ]ru

(
p+ k−P

2
;k− p

)
[Z2 τ

j
γ5]ts Dπ(q2) (2.7)

+
1
4
[Γ j

π ]ru

(
p+ k+P

2
; p− k

)
[Z2 τ

j
γ5]ts Dπ(q2)

+
1
4
[Γ j

π ]ru

(
p+ k+P

2
;k− p

)
[Z2 τ

j
γ5]ts Dπ(q2) .

Here, Γ(µ)(p;P) is the Bethe-Salpeter vertex function of a quark-antiquark bound state. The Latin
indexes (t,u,r,s) of the kernels refer to their Dirac structure. It has been shown explicitly in [8]
that this interaction kernel satisfies the axWTI.

2.2 Coupling the meson bound state to an external field

A systematic procedure to couple bound states to external gauge fields was given by [30] and
applied to the diquark-quark model of baryons in Ref. [31] and to the three-body Faddeev equation
in Refs. [6, 32]. In short, the evolution of the two-body quark system is given by the amputated
version of the scattering matrix T . This function can be obtained by solving a Dyson equation:

T =−iK− iKG0T , (2.8)

where G0 is the disconnected product of two full quark propagators and −iK is the two-quark
interaction kernel. When the two-quark system forms a bound state, the scattering matrix develops
a pole at P2 =−M2, and can be defined as:

T ≈ ΓΓ̄

P2 +M2 . (2.9)

Substituting (2.9) in (2.8) and keeping only the singular term, we arrive at the Bethe-Salpeter
equation for the two-quark bound state:

Γ =−iKG0Γ . (2.10)

Then a systematic coupling to the external gauge field gives for T (2):

T µ = T (iK−1KµK−1 +Gµ

0 )T . (2.11)

The bound-state electromagnetic current Jµ can be expressed at the pole by:

T µ ≈ Γ f

P2
f +M2

f
Jµ Γ̄i

P2
i +M2

i
. (2.12)

Substituting this in (2.11) and using (2.10), we get:

Jµ = Γ f (−iG0KµG0 +Gµ

0 )Γi . (2.13)
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= − −Fπ

Mµ

Fπ

Γµγ
π ππ π π π

Figure 4: The pion form factor. All internal vertexes and propagators are dressed.

So far, in rainbow-ladder approximation the first term Kµ

RL = K(2),µ
RL = 0 because the gluon does not

couple to a photon. Including the pion back-coupling, however, the gauged kernel does contribute,
since the photon can couple to the exchanged pion. This fact generates two additional diagrams
for the pion form factor, which are given in Fig. 4. Here Mµ is an ansatz for the pion-quark-quark-
photon-vertex, which can be built along the corresponding one for the diquark-quark-quark-photon
vertex derived in [31]. It reads:

Mµ = qq
(4(p−q)−Q)µ

4(p−q) ·Q−Q2 (Γ((p−q)−Q/2)−Γ(p−q))

+qex
(4(p−q)−Q)µ

4(p−q) ·Q−Q2 (Γ((p−q)+Q/2)−Γ(p−q)) .
(2.14)

In comparison to rainbow-ladder, the calculation becomes more complicated. For example, the
second diagram involves the pion form factor itself, so that will lead to the necessity to perform a
self-consistent, iterative calculation which is also complicated by the two-loop integration.

Up to now we have performed only a part of the calculation, namely the first diagram in Fig. 4.
The resulting pion form factor with pion back-coupling is shown in Fig. 5. Although the general

0 1 2 3

Q
2

0

0.5

1

F
pi

on
(Q

2 )

F
pion

 - RL

Q
2
 F

pion
 - RL

F
pion

 - with pion cloud(first diag)

Q
2
 F

pion
 - with pion cloud(first diag)

Figure 5: The comparison of pion form factors within rainbow-ladder truncation and with pion back-
coupling included.
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behavior of the form factor is already satisfying, we observe sizable deviations from one at zero
momentum transfer. This violation of current conservation stems from the omission of the pion
exchange as well as the seagull diagram in Fig. 4 and may indicate the size of corrections to be
expected from these contributions. We are currently in the process of completing the calculation of
the two remaining diagrams. In the future we expect to be able to extend the framework to other
light- and heavy-meson channels as well as into the baryon sector.

3. Tetraquarks

3.1 Bethe-Salpeter equation for the tetraquark

Bound states can be characterized as poles in the appropriate n-point Green function. The
amplitude and the mass of a bound state are found by solving a Bethe-Salpeter equation [34]. The
general structure of a multi-particle Bethe-Salpeter equation and especially the tetraquark BSE can
be found in [35, 36]. They have the common structure:

Ψ = KG0Ψ. (3.1)

Ψ denotes the amplitude of the tetraquark bound-state, K is the four-body interaction kernel and G0

represents a product of four fully-dressed quarks. The multiplication is defined in a functional sense
and assumes implicit integration of all intermediate momenta and Dirac, color and flavor indices.
Following the successful strategy in the baryon sector [37], we drop all 3PI and 4PI contributions.
The resulting truncated kernel is a sum of the three remaining pair interactions [36]:

K = ∑
aa′

Kaa′ and Kaa′ = Ka +Ka′−KaKa′ . (3.2)

The subscripts a and a′ denote qq̄, qq and q̄q̄ pairs, respectively. In principle Eq. (3.1) can now
be solved with the same techniques used for the nucleon [38]. This is, however, a numerically
demanding undertaking and therefore a reduction to a two-body system is employed.

The construction of an appropriate 2-body system involves the pair-interacting scattering T-
matrix

Taa′ = Ta +Ta′+TaTa′ (3.3)

which is closely related to the interaction kernels via Dyson’s equation:

Taa′ = Kaa′(1+Taa′) and Ta = Ka(1+Ta), (3.4)

Figure 6: Tetraquark BSE in the meson-meson/antidiquark-diquark picture. The hatched amplitudes involve
diquark quantities; the remaining ones are of mesonic nature. Single (double, dashed) lines are dressed quark
(diquark, meson) propagators.
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where we drop the first two terms in Eq. (3.3). It is important to note that the two-body scattering
matrix Ta contains a pole of either a meson or diquark:

Ta =−ΓaDaΓ̄a, (3.5)

where Γ is the meson or diquark amplitude and D the corresponding propagator. These pole con-
tributions are assumed to be dominant. The key idea in the construction of a two-body equation is
now the substitution of the interaction kernels with the T-matrices in a pole approximation. This
ensures the BSE to be expressed in previously calculated degrees of freedom: mesons, diquarks
and quarks.

Putting everything together, the BSE in Eq. (3.1) reduces from a four-body equation, featuring
quarks with gluons as exchange particles, to an effective two-body equation. The constituents are
now mesons and diquarks interacting via quark exchange, see Fig. 6. We take into account only
the mesons and diquarks with lowest mass, expecting the higher-mass state contributions to be
subleading. It is interesting to note that our approach does not permit a pure diquark-antidiquark
state. Combining both equations in Fig. 6 renders diquark-antidiquark contributions to appear
internally only. Thus, one may view the resulting tetraquark bound state as a meson molecule with
diquark-antidiquark admixture to its kernel.

3.2 Results and Discussion

Our result [39] for the mass of the up/down 0++ tetraquark state as a function of the pseudo-
scalar-meson mass is shown in the left panel of Fig. 7, together with a calculation that only includes
the meson-molecule component of the tetraquark. The line represents a fit to the data including a
constant, a square root and a linear term. Besides favoring a ππ-molecule picture over a sublead-
ing diquark-antidiquark component, the main result of our investigation is the value for the u/d
tetraquark at the physical point with mPS = mπ :

mu/d
T (0++) = 403MeV. (3.6)

4

Mesons only
Full

Fit

𝑚 [𝐺𝑒𝑉]Quark𝑚 [𝐺𝑒𝑉]PS

𝑚 [𝐺𝑒𝑉]Tetraquark

Mesons only
Full

Linear f t

𝑚 [𝐺𝑒𝑉]Tetraquark

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.6 0.80.40.2
0

1

2

3

4

5

6

0

1

2

3

4

5

6

FIG. 2: Mass of the up/ down 0++ tetraquark state as a function of the pseudoscalar-meson mass (left panel) and the quark
mass (right panel).

seen from the comparison with the linear f t included
in the plot. The reason for this behavior is even more
clear from the right panel of Fig. 2, where we plot the
tetraquark massasafunctionof thequark mass. Theline
representsa f t to thedata includinga constant, a square
root and a linear term. Apart from the constant term
this is the typical behavior of a Goldstone boson. The
tetraquark thus grossly inherits the mass behavior of its
dominating pion-molecule constituents, with deviations
generated from their interactions via quark exchange.

Oneof themain resultsof our present work isthevalue
for theup/ down tetraquark at thephysical point, i.e. the
left-most points in thecurvesof Fig. 2, wheremP S = mπ .
We obtain:

mu/ d
Tetraquark(0++) = 403MeV , (19)

with an estimated numerical error of ten percent. This
value is only somewhat lower than the real part of the
massof theσ/ f 0(600), mσ ≈ 450+i280MeV determined
recently fromexperiment usingRoy equations[1, 4]. Our
value for the mass of the scalar tetraquark should also
be compared with the corresponding one for an ordi-
nary quark-antiquark scalar bound statewhich may mix
with the tetraquark components. In our rainbow-ladder
approximation such a state has a mass of mqq̄(0++) =
665MeV. It is well known that corrections beyond
rainbow-ladder increase this value into the 1 GeV range
[20, 21], whereas the pion mass is protected. Since our
tetraquark is dominated by its meson-molecule nature,
we therefore expect it to be stable against corrections
beyond rainbow-ladder, whileat thesametimethemass
splittingbetween thetetraquark and thequark-antiquark
scalar will increase. Consequently, our results suggest to
identify thephysical lowest-lyingscalar stateto bedomi-
nated by astrongtetraquark component, which is in turn
dominated by pion molecule contributions. Our result
provides a ready and natural explanation for the large
decay width of theσ/ f 0(600).

In thestrangequark region at about mQuark = 80MeV
wealso observean all-strangetetraquark bound stateat
roughlyms

Tetraquark(0++) = 1.2GeV. Certainly thisstate
will mix with itspuress̄ counterpart aswell as thelowest
lying scalar glueball state making an identif cation with
e.g. the f 0(1500) or the f 0(1710) not possible without
further studies.

It is furthermore interesting to speculate about the
existence of an all-charm tetraquark state. Because of
its f avor-structure in our meson-diquark picture, such
a state would be a mixture between a meson and an
axialvector-diquark component. Sincealready thescalar-
diquark contribution is very small, we expect the axi-
alvector component to be completely suppressed due to
its larger mass. This leaves only the dominant meson-
molecule part. In Fig. 2 the largest pseudoscalar-meson
mass corresponds to a quark mass in the charm region.
We therefore read of the mass of an all-charm scalar
tetraquark state to be at

mc
Tetraquark(0++) = 5.3± (0.5) GeV , (20)

where the error is a guess based on our numerical and
systematicuncertainties. Thismass isconsiderably lower
than the 6.2 GeV obtained in simple model calculations
[23, 24]. It is also much lower than the ηc threshold.
Potential decay channels into D mesons and pairs of
light mesons necessarily involve internal gluon lines.
Theresultingdecay width may thereforeberather small.
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Figure 7: Mass of the 0++ tetraquark as a function of the pseudoscalar-meson mass (left) and the quark
mass [39]. The large red circle highlights a potential all-charm tetraquark.
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This value is somewhat lower than the mass deduced from the Roy-equation [13, 14] but other
bound states that can mix with the scalar tetraquark are not included in our work. The behavior of
the tetraquark mass in dependence of the quark mass shows some interesting features: Except for
the chiral mass region, the fit resembles the typical behavior of a Goldstone boson. This can be
readily understood from the strongly dominating meson-meson component to the tetraquark bound
state. Furthermore, the large decay constant and the low mass of the σ is in accordance with our
picture of a ππ-molecule dominated tetraquark.

It is furthermore interesting to speculate about the existence of an all-charm tetraquark state.
In Fig. 7 the largest pseudoscalar-meson mass corresponds to a quark mass in the charm region.
We therefore read off the mass of an all-charm scalar tetraquark state to be at

mc
T (0

++) = 5.3GeV. (3.7)

This mass is considerably lower than the 6.2 GeV which were obtained in simpler model calcula-
tions [40, 41]. It is also much lower than the ηc threshold. Potential decay channels into D mesons
and pairs of light mesons necessarily involve internal gluon lines. This could result in rather small
decay widths. Further results for tetraquarks with different quantum numbers are in progress.

Acknowledgements
This work was supported by the Helmholtz International Center for FAIR within the LOEWE
program of the State of Hesse, by the Helmholtz-Zentrum GSI, by BMBF under contract 06GI7121,
by the Austrian Science Fund FWF under Erwin-Schrödinger-Stipendium No. J3039, and by the
DFG transregio TR16.

References

[1] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12 (2003) 297.

[2] C. S. Fischer, J. Phys. G 32 (2006) R253.

[3] P. Maris and P. C. Tandy, Nucl. Phys. Proc. Suppl. 161 (2006) 136.

[4] G. Eichmann, I. C. Cloet, R. Alkofer, A. Krassnigg and C. D. Roberts, Phys. Rev. C 79 (2009)
012202.

[5] A. W. Thomas, S. Theberge and G. A. Miller, Phys. Rev. D 24 (1981) 216.

[6] G. Eichmann, Phys. Rev. D 84 (2011) 014014.

[7] G. Eichmann and C. S. Fischer, Eur. Phys. J. A 48 (2012) 9.

[8] C. S. Fischer, D. Nickel and J. Wambach, Phys. Rev. D 76 (2007) 094009;
C. S. Fischer, D. Nickel and R. Williams, Eur. Phys. J. C 60 (2009) 47.

[9] C. S. Fischer and R. Williams, Phys. Rev. D 78 (2008) 074006.

[10] R.L. Jaffe, Phys.Rev. D15 (1977) 281.

[11] M. Ablikim et al. [BES Collaboration], Phys. Lett. B 598 (2004) 149.

[12] A. Aloisio et al., Phys. Lett. B 537 (2002) 21.

[13] I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96 (2006) 132001.

9



P
o
S
(
B
o
r
m
i
o
 
2
0
1
3
)
0
6
5

Pions as virtual constituents of light bound states Christian Fischer

[14] R. Garcia-Martin, R. Kaminski, J. R. Pelaez and J. Ruiz de Elvira, Phys. Rev. Lett. 107 (2011)
072001.

[15] K. Nakamura et al. [Particle Data Group Collaboration], J. Phys. G 37 (2010) 075021.

[16] E. Santopinto and G. Galata, Phys. Rev. C 75 (2007) 045206.

[17] N. N. Achasov and V. N. Ivanchenko, Nucl. Phys. B 315 (1989) 465.

[18] D. Black, A. H. Fariborz, F. Sannino and J. Schechter, Phys. Rev. D 59 (1999) 074026.

[19] F. Giacosa, Phys. Rev. D 74 (2006) 014028; Phys. Rev. D 75 (2007) 054007.

[20] E. Klempt and A. Zaitsev, Phys. Rept. 454 (2007) 1.

[21] D. Ebert, R. N. Faustov and V. O. Galkin, Eur. Phys. J. C 60 (2009) 273.

[22] N. Mathur et al., Phys. Rev. D 76 (2007) 114505.

[23] S. Prelovsek, Acta Phys. Polon. Supp. 3 (2010) 975.

[24] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12 (2003) 297;
P. Maris and P. C. Tandy, Nucl. Phys. Proc. Suppl. 161 (2006) 136.

[25] P. Maris, C. D. Roberts and P. C. Tandy, Phys. Lett. B 420 (1998) 267.

[26] P. Maris and C. D. Roberts, Phys. Rev. C 56 (1997) 3369.

[27] P. Maris and P. C. Tandy, Phys. Rev. C 60 (1999) 055214.

[28] P. Maris and P. C. Tandy, Phys. Rev. C 62, 055204 (2000).

[29] J. Volmer et al. [The Jefferson Lab Fπ Collaboration], Phys. Rev. Lett. 86, 1713 (2001).

[30] A. N. Kvinikhidze and B. Blankleider, Phys. Rev. C 60 (1999) 044003.

[31] M. Oettel, M. Pichowsky and L. von Smekal, Eur. Phys. J. A 8 (2000) 251.

[32] G. Eichmann and C. S. Fischer, Phys. Rev. D 87 (2013) 036006.

[33] R. L. Jaffe, Nucl. Phys. Proc. Suppl. 142 (2005) 343; A. Selem and F. Wilczek, hep-ph/0602128.

[34] E. Salpeter, H. Bethe, Phys.Rev. 84 , (1951) 1232.

[35] K. Huang, H. A. Weldon, Phys.Rev. D11 257 (1975) 275.

[36] A. Khvedelidze, A. Kvinikhidze, Theor.Math.Phys. 90 (1992) 62.

[37] G. Eichmann, R. Alkofer, A. Krassnigg and D. Nicmorus, Phys. Rev. Lett. 104 (2010) 201601.

[38] G. Eichmann, Phys. Rev. D 84 (2011) 014014.

[39] W. Heupel, G. Eichmann, C.S. Fischer, Phys. Lett. B 718 (2012) 545.

[40] Y. Iwasaki, Prog. Theor. Phys. 54 (1975) 492.

[41] R. J. Lloyd and J. P. Vary, Phys. Rev. D 70 (2004) 014009.

10


