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Heavy-ion collision experiments at high energies produce hot and démswgly-interacting
matter, and provide an opportunity to explore the phase diagraquaftum chromodynamics
(QCD) in the plane of temperatur€)and baryon chemical potentigt). Many model studies [1],
as well as recent lattice studies [2], indicate that at sufficiently largeob@ryglensities, there is a
line of first-order transitions in theu( T)-plane between a chirally-symmetric phase and a broken-
symmetry phase. As one moves along the phase boundary towards higiner smalleru, the
first-order transition becomes weaker — ending inaitical point (TCP) in the limit of vanishing
current quark mass or a rapid crossover for non-zero currearkquass [3]. For even smaller
values ofu, there is a line of second-order transitions. While the highnd smallg region
of the QCD phase diagram has been explored in recent experiment® fgavy-ion collision
experiments plan to explore the high baryon density regime, particularly ghenraround the
TCP [4].

It is important to stress here that heavy-ion experiments are essentialiguiblrium pro-
cesses. Itis challenging to extract the thermodynamic properties of-tadrion phase transition
from nuclear collision experiments due to the absence of global thermbibeigm. This is be-
cause nonequllibrium effects play an important role in the evolution of thédilte Therefore, an
understanding of the equilibrium phase diagram alone is not sufficiegé¢ass the properties of
the system. One also has to understand the kinetic processes which dnpleasie transition, and
the properties of the nonequilibrium structures that the system goes thtougach equilibrium.
In this context, both theritical dynamicsand thefar-from-equilibrium kineticsof the chiral tran-
sition have attracted much recent attention. In the study of critical dynamicstifieetemporal
behaviour in the vicinity of critical point), much interest has been focusgenh the signatures
of thecritical end poin{CEP) of QCD. In the present work, on the otherhand, we focus ofathe
from equllibrium kinetics, i.e. the evolution of the system after a quench &disordered phase to
an ordered phase with non-vansihing quark-anti-quark condensatiéds context, the relaxation
to equilibrium using Langevin equation has been attempted in Ref. [5], viherauthors studied
the early time dynamics of thepinodal decompositioand the effect of dissipation on the spinodal
instability. Further, the bubble nucleation kinetics in chiral transition was sluolfeBessa etal
[6]. A time-dependent Ginzburg Landaguation (TDGL) was derived in Ref. [7] starting from a
non-ideal, nonrelativistic hydrodynamics for coupled order parametdrs authors here clarified
the effect of viscosity in the ordering kinetics. Further, Randrup @idied the amplification of
the spinodal fluctuation within a fluid dynamical model for the nuclear collisitese, the study
was mostly focused on the evolution in the linearized regime which showedbanential growth
of the initial fluctuations.

Recently, we initiated a study of far-from equillibrium kinetics of chiral ghasansition
[9, 10]. Our approach has been are complementary to Refs. [5, §, QU study investigates
the late stagesof phase-separation kinetics in quark matter and the scaling propertigsen e
gent morphologies. The system is described by nonlinear evolution egsi@tiohis regime: the
exponential growth of initial fluctuations is saturated by the nonlinearity.

To model chiral symmetry breaking in QCD, we use the two-flavor Namba-ldasinio (NJL)
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model [11, 12]. The thermodynamic potential in terms of the “constituent" maissgiMen as[9]
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whereB = (kgT)~1. Here, we have taken vanishing current quark mass- 0), and introduce
M = —2Gps, With ps = (/) being the scalar density . The NJL model parameters the four
ferion couplingG and the three momentum cutdif are fixed such that the pion decay constant
and the phenomenological values for the quark condensates ardueedo In the present work,
we have set the three momentum ultra violet cuthe®$53.3 MeV and the four fermion coupling
G =5.02x 10°% MeV~2. With these values the constituent quark mass turns out i be312
MeV. With these parameters chiral symmetry is restore@ at 190MeV at zero density with a
second order phase transition. Similarly a first order transition takes glaezo temperature for
quark chemical potential ~ 3263MeV. In theT — u plane, the tricritical point lies dfcp, Ticp) =
(2826, 78) MeV where the first order line meets the second order transition line.

The potential in Eq. (1) may be expanded as a Landau potential in thepadeneteM:
& & ao by, dog 8y

Q(M):Q(O)JréM +ZM +6M +0O(M®) = f(M), 2
correct up to logarithmic factors [12]. In the following, we consider thegamsion of (M) up to
theM®-term. This will be adequate to capture the salient features of the NJL moasé gliagram,
as we see shortly. The first two coefficients in Eq. (2) can be obtainedryparison with Eq. (1)
as

~ 6 A
__ 6 ~B(k—p) ~Bkt)
&(0) 7T2B/Odkkz{ln 1+e [ +inf1+e 1}
1 3N\ 6 (A 1 1
a:ze‘nz+nz/odkk[1+eﬁ<ku>+1+ea<k+u>]- )

We treat the higher coefficients as phenomenological parameters, wiiabtined by fitting
Q(M) in EQ. (2) to the integral expression fﬁ(M) in Eq. (1) [9]. There are two free parameters
in the microscopic theory( andT), so we consider th#®-Landau potential with parametels
andd. For stability, we requirel > 0.

The extrema of the potential in Eq. (2) are determined by the gap equdtigvi) = aM +
bM2 +dM> = 0. The corresponding solutions &k= 0, andM? = (—b++/b? —4ad)/(2d). The
phase diagram for the Landau potential is shown in Fig. 1. (A)Fs10, the transition is second-
order, analogous to avi*-potential — the stationary points aé= 0 (fora > 0) orM =0, +M,.
(for a < 0). Fora < 0, the preferred equilibrium state is the one with massive quarks. (B) For
b < 0, the solutions of the gap equation are as followsMi}= 0 for a > |b|2/(4d), (i) M = 0,
+M,, +M_ for |b|?/(4d) > a > 0, and (iii) M = 0, +M, for a < 0. A first-order transition
takes place at; = 3|b|?/(16d) with the order parameter jumping discontinuously frim= 0 to
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Figure 1. Phase diagram for the Landau free energy in in tiédA?),a/(dA%)]-plane. A line of first-order
transitions (I) meets a line of second-order transitioisaf the tricritical point (tcp), which is located at
a=b=0. The equations for | and Il are specified in the figure. Thdedddines denote the spinod&s
and S, whose equations are also provided. The typical forms olL#redau potential in various regions
are shown in the figure. The asterisk denotes the point whergquench the system ftwr< O (first-order
quench). The second-order quench studied here corresppbd&A?) = 1.269,a/(dA*%) = —0.225, and
is not shown in the figure for clarity.

M = +M, = £(3|b|/4d)¥/2. The tricritical point is located dkcp = 0, acp = 0. The dotted lines
in Fig 1 denote the spinodalg 8nd S, with equationsas, = 0 andas, = |b|?/(4d).

Next, let us study dynamical problems in the context of the above a heawpllision. If the
evolution is slow compared to the typical equilibration time, the order paramelgmfilk be in
local equilibrium. On the otherhand, if the expansion is fast enough, tdecbafiguration will not
be in thermal equllibrium and will lag in the sense that it will find itself in a more disced state
than the equllibrium configuration. We consider a system which is rendeesthodynamically
unstable by a rapid quench from the massless phase to the massive pRagselinThe unstable
massless state evolves via the emergence and growth of domains rich inféneegremassive phase
[14, 15]. Ther has been extensive study on such far from equllibdigmamics and domain growth
processs in the areas of condensed matter systems like magnets, allogs lifjuid crystals as
well as superconductors. However, equally fascinating problemssaiated with kinetics of
phase transitions associated in high energy physics and cosmology [16].

The coarsening system is inhomogeneous, and we account for this lbgiigca surface
tension term in the Landau free energy:

_ a2y Pwves dve K (Bm)’
oM _/d?[zM Mt gMe 5 (Bm)]. “)
It is customary to model the kinetics by the TDGL equation, which models thelargred
(relaxational) dynamics of an order-parameter field to the minimum of the pdtenEg. (4),i.e.
the system is damped towards the equllibrium configuration. The resultihgtiewoequation is a
first order time derivative for the order parameter field. We have stutlieedrdering dynamics of

such a TDGL model in Ref. [9].
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However, a microscopic derivation of the kinetic equation in a relativistic fleddry using,
e.g., theclosed-time-path Green'’s functig@ TPGF) formalism results in a second-order stochastic
equation. Such a derivation has been done for scalar field theorie&§179]. A second-order
TDGL equation has also been derived for the NJL model by Fu et al. y2iblg the CTPGF
method. More recently, a Langevin equation with an inertial term has beemdédor the chiral
order parameter field in a sigma model by Nahrgang et al. using an infifiencgonal method
[21]. This model has been used to discuss the relaxational dynamics ofdbeparameter near
the critical point [22, 23]. Such a second order time derivative term, ctalte’intertial term’, is
usually neglected in comparison to the damping term which is first order tehtsoieative of the
order parameter field. Given this background, it is relevant to investtgateffect of an inertial
term on the ordering kinetics of the chiral transition. More generally, it is im@md to study the
effect of an inertial term in domain growth problems. In spite of the intenseeisitén this area,
this question has received almost no attention [14, 15]. We will addressshis in the context of
chiral transitions in the present work [10].

Thus, we consider a system whose evolution is described by the TDGatieqwith an
inertial term: 5 oM 5o M

FrAAUR R i VICy
wherey is the dissipation coefficient. Heré(T,t) is the noise term satisfying the fluctuation-
dissipation relationkg = 1):

+0(T,1), (5)

(6(F.1))

0,
(6(".t)8(r".t")) = 2yT3(r"

yTo(r —rs (t' —t"). (6)

We use the natural scales of order parameter, space and time to intrathecsidnless variables:

M = MoM/, Mo: \/\a]/|b\,
=&, &=\/K/J,
=1t, 1=1//|4,

t
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=

Dropping the primes, we obtain the dimensionless TDGL equation:

2
‘ZtI\ZAer(i;\t/l:—sgr(a)M—sgr(b)Ms—/\M5+D2M+9(?,t), (8)

wherey = y/+/|al, sgnx) = x/|x|, andA = |a|d/|b]? > 0. The dimensionless noise satisfies

<9(F/,t’)e(r7/,t”)> = 2e5(1' — )& (t' —t"),
____YTib]
€= a]5-9/2Kd/2’ ©)
whered is the spatial dimensionality.
Our results in this letter are presented in dimensionless units of space and tnuhtain
these in physical units, one has to multiply by the appropriate dimensionatitipgé and 7.
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For this, we need to estimate the strength of the interfacial en€rg¥he surface tension can
be calculated ag = /K(|a|*?/|b|) [ dZdMs/d2)?, whereMs(2) is the static kink solution of
Eq. (8) with 8 = 0. For quark matterg is poorly known and varies from 10-100 MeV/frat
small temperatures [24]. On the other hand, recent estimates usingveffiexidels [25] like the
NJL model and the Polyakov loop-quark-meson model suggest a lower fax surface tension:
0 ~5—20 MeV. We takeg ~ 10 MeV/fn?.. ForT = 10 MeV andu = 32175 MeV, we then
estimate = \/K/|a] ~ 0.56 fm andt = 1/,/|a] ~ 5.1 fm [9]. Let us first study the early time
behavior of the deterministic version of Eq. (8)£€ 0). We linearize it around an extremum point
M by replacingVi(f,t) = M + @(T,t). In Fourier space, the linearized equation becomes
L. J - o o
pTe (p(k,t)+yE o(k,t)+ (—a+k)ekt) =0, (10)

wherea = —f”(M). We havea > 0 whenM is a local maximum, and < 0 whenM is a local
minimum. Equation (10) is a homogeneous second-order differential equatid one can write
the general solution as

o(k.t) = A 04 ppeh Kt

R _ 2 _ k2
As(i) = YEVY ;4(0' . (11)

HereA; andA; are constants. In the absence of dissipatjos 0), we have
Ne=+Va—ke. (12)

First, consider the case > 0. There is an instability for short wavelengths< \/a) with
/\+(R) > 0. Thus, there is an exponential growth of fluctuations about a local maxiofithe
free energy. This is valid even in the limit of no dissipation. Bot 0, there is no instability and
fluctuations are exponentially damped. The damping is relaxation&ffer (y* — 4|a|)/4, and
oscillatory fork? > (y? —4|a|) /4. In the limit of no dissipation, the dynamics is purely oscillatory.

We study the phase transition kinetics for two different quench possibilkiest, we consider
deep quenches through b ¢ 0) froma > 0 (with M = 0) to a < 0, where the free energy has
a double-well structure. Let us note here that we are quenching fawtibe line of second
order transitions. The chirally-symmetric phase is now unstable, and evoltee stable massive
phase via spinodal decomposition. In our simulations of this case, we lsagekq. (8) with
a<0,b>0,A =0.14, corresponding tou, T) = (231.6 MeV, 85 MeV) [9]. The appropriate form
of the evolution equation is

°M oM

e 7 M3 5 2
S HY g =M=MPAMP - IPM 16 (7). (13)

We solve Eq. (13) numerically using a simple Euler-discretization scheme withl wédiacity
OM/0t|i—o = 0. The initial state of the system is preparedv§$,0) = 0+ dM(T,0), wheredM is
uniformly distributed in |-0.25, +0.25]. This mimics the physical situation where small amplitude
fluctuations are always present. Even if we start with a uniform initial stla¢emal noise rapidly
generates random fluctuations.
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Our numerical simulations are performed ath=a 3 lattice of sizeN® (N = 256), with periodic
boundary conditions in all directions. The discretization mesh sizeAxare 1.0 andAt = 0.1,
obtained from the linear stability analysis of Eq. (13) [26, 27]. We reqilat the Euler scheme
must respect the stability properties of the homogeneous solutions of q.Ttde thermal noise
o(r,t) is mimicked by uniformly-distributed random numbers betwgeA,, Ay]. In studies of
phase-transition kinetics, it is known that statistical results are unchaviygttier we use Gaussian
noise or uniformly-distributed noise [26, 32]. The appropriate noise andgliituour simulation is

(28]
3¢
Ao = \/ (ax)dat’ (14)

The results reported here corresponcete: 0.008, i.e.,A, = 0.5. All statistical quantities are
obtained as averages over 10 independent runs.

t=20 t=100

Figure 2: Domain growth fory = 0.0,1.0 after a quench through the second-order line (Il) in FigThe
snapshots show regions with~ +M_, (marked red)M ~ 0 (marked yellow), an1 ~ —M_ (marked blue)
att = 20,100.

In Fig. 2, we show the ordering dynamics of Eq. (13) from a disordani¢id| state. To study
the effect of inertia, we chose= 0.0 (upper frames) and 1.0 (lower frames). The system rapidly
evolves into domains of the massive phase Wwith~ M. (marked red) andM ~ —M. (marked
blue). The snapshots show the evolution at20,100. Fory = 0, the dissipative term is absent,
and we observed a rapid growth of domains (see the pattesa2@). After the initial rapid growth,
domain walls get fuzzier, and domains become less distinctive due to the osgithatoavior of
the system. We have also studied the time-dependence of the order-paratustat a few spatial
points in they = 0 case. We observe the occurrence of flips frisM. — M, on extended
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time-scales. In spite of these, the domain morphology continues to coarseEsa®scillations are
cooperative. Foy = 1, the dissipative term is dominant and the ordering dynamics is analogous to
that for the overdamped case [9].

C(r,b)

Figure 3: Plot of the scaled correlation functio(r,t) vs. r/L, for y = 0,0.4,1.0 att = 20. The length
scaleL(t) isa defined as the distance over which the correlation fonatecays to half its maximum value
[C(r,t) =1 atr = 0]. The solid line denotes the OJK function in Eq. (17).

o y=00
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"
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Figure 4: Time-dependence of domain side(t) vs. t, for the evolution depicted in Fig. 2. There is a
crossover at; ~ y~! from an early-time inertial growthi[t) ~ t(Int)%/?] to a late-time Cahn-Allen (CA)
growth [L(t) ~ t%/2].

The system is characterized by a single length stél¢ as the pattern morphology does
not change in time apart from a scale factor. The morphology is quantifatitedied using the
correlation function15]:

C(Ft) = s/dﬁ [<M(ﬁ,t)M(ﬁz+r,t)> . <M(ﬁ,t>> <M(ﬁ+r,t)>} . (15)

Here,V denotes the volume of the system, and the angular brackets denote ayeamerninde-
pendent runs. The evolution morphologies are isotropic, so we compusphieeically-averaged
correlation functiorC(r,t) with r = |[F|. The existence of the characteristic scale resultsdy-a
namical scalingof the correlation function:

C(r,t) = g[r/L{)]. (16)
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We have confirmed numerically (not shown here) that the correlatiortiunscat different
times obey dynamical scaling for differepvalues. In Fig. 3, we plot the scaled correlation func-
tion,C(r,t) vs.r /L, for y=0,0.4,1.0 att = 20. The length scale(t) is defined as the distance over
which the correlation function decays to half its maximum valb@,t) = 1 atr = 0]. Notice that
the scaling functions are numerically indistinguishable showing that the ewnloitwphologies
are the same for different values pf The solid line denotes the Ohta-Jasnow-Kawasaki (OJK)
function [29, 30]:

Joik(X) = %sin‘1 (e‘x2/2> , (17)

which characterizes ordering dynamics for Mé-potential in the overdamped limit, i.e., without
inertial terms. Clearly, our numerical data is well-described by the OJKifamc
In Fig. 4, we plotL(t) vs. t on a log-log scale for several valuesyofAs usualL(t) shows a
power-law behaviorl[(t) ~ t¥], but there is a distinct crossover in the expongisy is varied.
This can be understood by considering the deterministic verélea @) of Eqg. (13), which
leads to the domain growth equation as[10]

d’L  dL o

e e
whereo /L is identified as the curvature for a domain of sizeAt short times{ < t¢), the growth
law is fixed by the inertial term as [31]

(18)

L(t) ~ vat [In(v/at)] /2. (19)
The long-time (> t¢) kinetics is determined by the dissipative term as
1/2
uw~(?> , (20)

which is the usual Cahn-Allen (CA) growth law [15]. The crossover timdescad. ~ y~1. In
Fig. 4, we have plotted straight lines corresponding .t ~ t andL(t) ~ t¥/2, the two limiting
behaviors of the growth law.

Next, we consider shallow quenches through | to the point marked byrés&steFig. 1. This
case is studied using Eq. (8) wigr> 0,b < 0,A = 0.14, which is equivalent tou, T) = (321.75
MeV, 10 MeV) [9]. The corresponding kinetic equation is

2
ao.,TI\Z/Ier%—I\:I:—M+M3—)\M5+D2M+6(?,t). (21)

The initial state with massless quarld & 0) is now a metastable state of the potential, and
phase separation proceeds via nucleation and growth of dropléts-ot-M.. Therefore, the
thermal noised (T, t) must be sufficiently large to enable the system to escape from the metastable
state on a reasonable time-scale: a suitable valug f00.14 is¢€ = 0.6. However, the asymptotic
behavior of domain growth in both the unstable and metastable cases is ingdngttie noise term
[32].
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Figure5: Analogous to Fig. 2 but for a shallow quench through the firsier line (1) in Fig. 1 . Notice that
the metastable patchdd (~ 0, marked yellow) at = 20 are absent at later times.

In Fig. 5, we show the ordering kinetics of Eq. (21) foe 0.25,0.5. Typically, the evolution
of the system begins with the nucleation of droplets in the early stages: trdgiger than a
critical sizeR; (supercritical) grow, whereas those wiRh R; (subcritical) shrink. In the present
simulation, the critical radius of the bubbi® ~ 8 dimensionless units. If we convert this into
physical unitsR; ~ 4.5 fm.

The droplets grow very rapidly and fuse to form bi-continuous domairctsires, a charac-
teristic of late-stage domain growth. The effect of dissipation on nucleatidngeowth can be
understood by comparing the evolution patterns at diffeyarglues. The system takes more time
to nucleate for extremg-values (i.e.y — 0 andy — o). To understand this behavior, we follow
Hanggi's discussion [33] dkramer’s escape problerfior a barrier. Hanggi studies the crossover
time fromM = 0 (the metastable state) b = M, (the stable state) in the homogeneous version
of Eq. (21). This crossover time is proportional to the nucleation tifrie our domain growth
problem. We designate, as the natural vibration frequency about the barrier locafibn)( For
moderate to large dissipatiop & wy), the nucleation time

-1
[V2 | 5 Y
tnw( 4+m[,—2> , (22)

10
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so thatt, ~ y asy — . For small dissipationy< wy), we have

1
tn ~ y, (23)
so thatt, — « asy — 0.
64l 00f ° v= ggg
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Figure 6: Time-dependence of the domain siz€t) vs. t, for nucleation and growth with different
values. There is no growth in the early stages when droptetbeing nucleated. The asymptotic growth is
consistent with the CA growth law(t) ~ t1/2. The inset shows thg-dependence of the nucleation tittae
for the onset of domain growth.

In Fig. 6, we plot the domain sizé.(t) vs. t] on a log-log scale: the growth process begins
once the nucleation of droplets is over. The onset time for domain growth msittieation time,,
which is shown in the inset of Fig. 6 for different valuegoNotice that, — o asy — 0 ory — oo,
as expected. The intermediate and asymptotic growth regimes are similar to &sosiveld for
spinodal decomposition, i.e., a crossover froth) ~ t(Int)Y/2 to L(t) ~ t¥2. In Fig. 6, we have
focused on thg-dependence df, rather than the asymptotic growth laws.

In summary, we have studied the kinetics of chiral phase transitions in QG&eguent to
sudden changes in system parameters. To understand the kinetics, if@shobtain the phase
diagram. In terms of the quark degrees of freedom, the phase diagrdtaisenl in the(u, T)-
plane using the Nambu-Jona-Lasinio (NJL) model [9]. An equivaleatsegrained description is
obtained from amM®-Landau free energy.

The chiral kinetics is modeled via the nonlinear TDGL equation with dissipatidmaise,
and we consider both the overdamped [9] and inertial cases [10]. W gtienches through the
first-order (I) or second-order (ll) transition lines in Fig. 1. For ecieges through Il and deep
guenches through I, the massless phase is spontaneously unstahlelees e the massive phase
via spinodal decomposition. For shallow quenches through I, the maggiase is metastable
and the chiral transition proceeds via the nucleation and growth of drayléie massive phase.
The merger of these droplets results in late-stage domain growth similar to thtaefanstable
case. In all cases, the asymptotic growth process exhibits dynamicalgs@aiohthe growth law is
L(t) ~t¥2. The inertial term gives a pre-asymptotic regime of faster growth Wth~ t(Int)/2,
and the crossover time t&/2-growth scales a ~ y~ 1, wherey is the dissipation constant.

In the context of heavy-ion collisions, given the uncertain values of démeal quantities for
quark matter (e.g., surface tension, dissipation), it is not clear whethsystem equilibrates com-
pletely within the life-time of the fireball. If the system is almost equilibrated, theufea of the
coarsening morphology are similar for quenches through both first-eswhd-order lines in the

11
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phase diagram. However, if the equilibration time-scale is much larger tharrebalfilife-time,
the morphology is very different for guenches through the first-dideywith the system evolving
through nucleation of droplets. The signatures of such a quench thfagorder transition are
experimentally relevant because they imply the existence of a critical ent(@&R) in the QCD
phase diagram. As a matter of fact, experimental studies of such signatayelse more conve-
nient than directly searching for the CEP via critical fluctuations. To dagelatter approach has
not provided conclusive evidence of the existence of a CEP, presyohadto the smallness of the
critical region.
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