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One of the main goals of heavy-ion collision experiments is to study the structure of the QCD

phase diagram. The QCD phase diagram is typically plotted astemperature (T) vs. baryon

chemical potential (µB). The statistical thermal model THERMUS compared to experimental

data provides chemical freeze-out parameters such as temperature, baryon chemical potential and

strangeness saturation factor (γs). However, the values of these parameters depend on models and

their underlying assumptions, such as the nature of the ensemble used, particle ratios vs. particle

yields, and the treatment of feed-down contributions to particle yields. In these proceedings, we

report on a systematic study of chemical freeze-out parameters using THERMUS, as a function of

collision centrality and collision energies (
√

sNN = 7.7−200 GeV). These studies are performed

with the string melting version of A Multi-Phase Transport (AMPT) model. A comparison is

presented of freeze-out parameters between grand-canonical vs. strangeness canonical ensembles,

particle yields vs. ratios, with and without feed-down contributions to the particle yields. The

main aim is to evaluate the sensitivity of the thermal model fits to various model assumptions.

This is an important study for understanding correspondingexperimental results from the beam

energy scan program at RHIC.

8th International Workshop on Critical Point and Onset of Deconfinement,
March 11 to 15, 2013
Napa, California, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
P
O
D
 
2
0
1
3
)
0
4
7

Energy and centrality dependence of chemical freeze-out parameters from models Lokesh Kumar

1. Introduction

One of the goals of heavy-ion collision experiments is to study the QCD phase diagram. The
QCD phase diagram is generally represented by temperature (T) versus baryon chemical potential
(µB). Study of hadron production plays an important role in understanding the dynamics of rel-
ativistic collisions. The statistical thermal model has been extremely successful in describing the
hadron multiplicities observed in these relativistic collisions. The statistical model or THERMUS
uses experimental yields (or ratios) as input and provides the corresponding chemical freeze-out
temperature and baryon chemical potential [1].

Recently, the STAR experiment has presented the centralitydependence of the freeze-out pa-
rameters using the Beam Energy Scan (BES) data. It is observed that at lower energies (

√
sNN ∼7.7

and 11.5 GeV), theT andµB vary with centrality [2]. Interestingly, for Grand-Canonical Ensemble
(GCE), the temperature seems to decrease while going from central to peripheral collisions. On the
other hand, the temperature increases while going from central to peripheral collisions when the
Strangeness-Canonical Ensemble (SCE) is used. The baryon chemical potential decreases towards
peripheral for both GCE and SCE.

In view of these observations, it is of interest to study the centrality and energy dependence of
freeze-out parameters using transport models such as A Multi-Phase Transport (AMPT) model [3].
For this study, the string-melting version of AMPT is used. The particle yields (dN/dy) at mid-
rapidity (|y| <0.5) are obtained forπ±,K±, p(p̄),Λ(Λ̄),K0

S, and Ξ(Ξ̄) particles at
√

sNN = 7.7,
11.5, 39, and 200 GeV. The errors on yields are assumed to be ofthe order of 10% for realistic
comparison with experimental results. The centrality classes used for this study are 0–5%, 5–10%,
10–20%, 20–30%, 30–40%, 40–50%, 50–60%, 60–70%, and 70–80%. The THERMUS model is
used for extracting chemical freeze-out parameters using both Grand-Canonical and Strangeness-
Canonical ensembles. The freeze-out parameters are extracted by using particle ratios as well as
yields as input to the THERMUS model.

2. Results and Discussions

Figure 1 shows the variation of chemical freeze-out temperature and baryon chemical potential
for different energies from 7.7 to 200 GeV and different centralities. Top panels represent results
obtained by using particle ratios from AMPT as inputs to the THERMUS model for GCE (left) and
SCE (right) while bottom panels represent results obtainedby using particle yields from AMPT
as input to THERMUS. BothT and µB show similar behavior as a function of centralities at all
energies. Both decrease from central to peripheral collisions for all the cases studied. This is
opposite to what was observed in the RHIC BES data, where for Strangeness-Canonical Ensemble,
the temperature increases from central to peripheral collisions.

The comparison of freeze-out parameters obtained by using different inputs such as particle
ratios and particle yield to THERMUS suggests that the temperature values are similar and lie
within 5% for these cases. However,µB values could differ by a maximum of 20% between the
two cases for SCE. When different ensembles (GCE vs. SCE) areused, the temperature values
again lie within 5% whereasµB differ by∼20% between GCE and SCE if yields are used as input
to THERMUS.
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Figure 1: Top panels: Temperature vs. baryon chemical potential using particle ratios from AMPT as inputs
to THERMUS model for GCE (left) and SCE (right). Bottom panels: Similar plots but obtained using
particle yields from AMPT as inputs to THERMUS. Results are shown for beam energies from 7.7 to 200
GeV and for different centralities.

3. Feed-down Effect

In THERMUS, there is an option to switch OFF or ON the decay channels. This option can
be used to test the effect of feed-down contribution on the extracted freeze-out parameters. We
consider the weak-decay feed-down contribution fromΛ(Λ̄) to p(p̄). For this purpose, Au+Au
200 GeV from AMPT string melting is used. TheΛ andΛ̄ are decayed respectively top and p̄.
The Grand-Canonical approach is used in THERMUS with input as the following particle ratios:
π−/π+,K−/K+, p̄/p, and p̄/π−. The feed-down contribution fromΛ to proton andΛ̄ to p̄ in
THERMUS with default settings for Au+Au 200 GeV are of the order of 24%. From AMPT, feed-
down fromΛ to proton is ∼13% while that fromΛ̄ to p̄ is ∼22%. We study three cases: case 1
(No feed-down contribution fromΛ(Λ̄) to p(p̄) in both AMPT and THERMUS), case 2 ( included
feed-down contribution fromΛ(Λ̄) to p(p̄) both in AMPT and THERMUS), and case 3 (feed-down
contribution is included in both AMPT and THERMUS but the contributions in THERMUS are
modified so that both AMPT and THERMUS have similar feed-downcontributions fromΛ(Λ̄) to
p(p̄)). Figure 2 shows the results for the three cases for temperature and baryon chemical potential
vs. Npart. Both T andµB show closer agreement for case 1 and case 3. TheµB values show large
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Figure 2: Top panels: Temperature (left) and baryon chemical potential (right) vs. Npart for three dif-
ferent cases in Au+Au 200 GeV using AMPT string melting. Bottom panels: Ratios of case1/case2 and
case1/case3. See text for details.

difference if the feed-down is not taken care of properly in THERMUS (such as in case 2).

4. Summary

We have presented the energy and centrality dependence of freeze-out parameters from the
AMPT model with a string melting scenario. Freeze-out parameters are extracted using THER-
MUS and compared for different ensembles (GCE vs. SCE) as well as for different inputs to
THERMUS (particle yields vs. particle ratios). TheT andµB decrease from central to peripheral
collisions for all these cases in contrast to what has been observed in STAR data, whereT increases
from central to peripheral collisions in SCE. For both GCE vs. SCE and particle yields vs. ratios
inputs,T values lie within 5% whileµB may differ by a maximum of 20%. The effect of weak
decay feed-down (fromΛ(Λ̄) to p(p̄)) on the extracted freeze-out parameters is also presented.
THERMUS can be tuned to adjust the feed-down contributions according to data (AMPT in this
case). The difference in feed-down contribution between data (AMPT in this case) and THERMUS
is reflected in the extractedµB values.
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