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1. Introduction

The phase diagram of QCD received a lot of attention over the yeakgeWn, many central
questions are still open. In this talk we present results from recentagements of the Dyson-
Schwinger (DSE) approach to hot and dense QCD, see [1, 2]. Themudivation for using DSEs
is the possibility to apply them to the QCD degrees of freedom, i.e. quarkslaodsgy directly.
This is especially interesting for a better understanding of the deconfingrhase transition. In
effective field theories this has to be modelled by including a Polyakov-lotgngial, which we
are able to extract from the propagators at all temperatures and derBitissallows to study the
Polyakov loop at finite density. Additionally we obtain a related order paranfrete the dual
condensates.

1.1 Truncation scheme

In the left part of Fig. (1) we show the DSE for the quark propagatorrter to solve this
equation, it is necessary to specify a gluon propagator and a quark-géutex. For the vertex we
have little information in the medium, and rely on a phenomenological nertsdtz see [1]. The
gluon, on the other hand, can very well be described by a combinatiotiioéland DSE methods.
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Figure 1: The truncated Dyson-Schwinger equations for the quark) @eid gluon (right) propagators. The
yellow dot in the gluon DSE denotes the quenched propagator.

Our truncation for the gluon DSE is shown in the right part of Fig. (1). e thhe quenched
gluon, with full temperature dependence, from lattice QCD [3]. In ourdation the quenched
gluon subsumes the Yang-Mills self-energies in the gluon DSE, to which dehadquark loop
in order to account for unquenching. In [2] we have compared ogquenched gluon results to
lattice data at finite temperature, and found an excellent agreement. Iril)-ige (already show
the 2+ 1 flavour case. The quark flavours get mixed through the gluon, whizinével feature of
this truncation scheme.

2. The phase diagram for2 and 2+ 1 flavours

We now obtain the quark condensate from a solution of the coupled setadt @nd gluon
DSEs. In order to subtract the quadratic divergence present theriemploy the subtraction

Ns=(Py) (P)s, (2.1)

_m

ms
wherel, s denote light and strange quarks. In the left part of Fig. (2), we shewdbult au = 0,
where a comparison to lattice data is possible. In order to test for pararaptrdence we employ
two parameter sets, labelled A and B. For set A, we fix the parameters to thenpgs and decay
constant in the vacuum. For set B, we fit to the lattice results of the conéenBae difference
between the sets is rather small, and mainly a shiftin
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Figure 2: The left figure shows the condensateuat O for two parameter sets, compared to lattice results
from [4]. The right figure shows the resulting phase diagraniNt = 2 (upper lines) ant; = 2+ 1 (lower
lines). Here T is determined from the chiral susceptibility.

In the right part of Fig. (2), we show the resulting phase diagranNfo&= 2 andN; = 2+
1. There, and for all other results from now on, we use parameter .s€hé& deconfinement
line is obtained from the dual condensate [5]. We find the chiral restaratiol deconfinement
temperatures to be near-by. The critical end-point is found/at > 1. The effect of including the
strange quark is mainly a reductionf by about 50 MeV for all chemical potentials.

3. Polyakov-loop potential

Having the quark, gluon and ghost propagators at hand allows us &xEttte Polyakov-loop
potential, following the recent development in [6].
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Figure 3: The DSE for the background fieky.

To this end, we solve the DSE for a constant background Aglavhich is shown in Fig. (3).

This yields the derivative of the Polyakov-loop potentMl(A4). Upon integration we gain the

potentialV (A4), up to an integration constant.
The background field enters the propagators via a shift in the Matsabars,

Wh — wn+ 27T P, (3.1)

where¢ is an Eigenvalue oA,. There, we restrict ourselves to thé component. We can then
obtain an upper bound for the expectation value of the Polyakov loop,

_ 1+2cog¢m) S
=2
The results fol (A4) at 4 = 0 as a function ol and atT = 115 MeV as a function oft is shown

in Fig. (4). We find a minimum close to the confining valgle= 2/3 belowT.. Above T, the
minimum moves to smallgp, i.e. a larger Polyakov loop.

L[(Ad)] (L[Ad]). (3.2)



Critical Point and Deconfinement from Dyson-Schwinger Eigus Jan Luecker

T [MeV]

Figure 4: The Polyakov-loop potential fqu = 0 (left figure) andl = 115 MeV (right figure).
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Figure 5. The left figure shows the Polyakov loop for dlland 4. The right figure shows the resulting
phase diagram. Here we uNe = 2+ 1, and determin@, from the inflection point (cf. Fig. (2)).

We can then go forward, and extract the Polyakov loop of the backgrfield at allT andu.

The result is shown in the left part of Fig. (5). We clearly find a nearhjisksing value belovil;, a
rising behaviour around, and deconfinement above. The resulting phase transition line is shown
in the right part of Fig. (5) together with the phase transition from the qoarklensate and the
dual condensate. Clearly all three order parameters show a crosg®mnilar temperatures. At

the critical end-point all definitions of; agree.

To summarise, we presented a truncation for the quark and gluon DSER edptures the
expected properties of unquenched QCD. We find a critical end-poithyear-by phase transitions
from the quark condensate, the dual condensate and the Polyakofréoophe Polyakov-loop
potential.
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