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We employ the Dyson-Schwinger equations for quark and gluonpropagators in order to study

QCD with 2+1 flavours at finite temperature and density. In a suitable truncation for these equa-

tions, we determine the position of the critical end-point as well as the deconfinement temperature

at all chemical potentials. For the latter, the Polyakov-loop potential is obtained from the QCD

propagators. This is possible for the first time at finite chemical potential, with implications for

effective models.
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1. Introduction

The phase diagram of QCD received a lot of attention over the years. However, many central
questions are still open. In this talk we present results from recent developments of the Dyson-
Schwinger (DSE) approach to hot and dense QCD, see [1, 2]. The mainmotivation for using DSEs
is the possibility to apply them to the QCD degrees of freedom, i.e. quarks and gluons, directly.
This is especially interesting for a better understanding of the deconfinement phase transition. In
effective field theories this has to be modelled by including a Polyakov-loop potential, which we
are able to extract from the propagators at all temperatures and densities. This allows to study the
Polyakov loop at finite density. Additionally we obtain a related order parameter from the dual
condensates.

1.1 Truncation scheme

In the left part of Fig. (1) we show the DSE for the quark propagator. In order to solve this
equation, it is necessary to specify a gluon propagator and a quark-gluon vertex. For the vertex we
have little information in the medium, and rely on a phenomenological modelansatz, see [1]. The
gluon, on the other hand, can very well be described by a combination of lattice and DSE methods.
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Figure 1: The truncated Dyson-Schwinger equations for the quark (left) and gluon (right) propagators. The
yellow dot in the gluon DSE denotes the quenched propagator.

Our truncation for the gluon DSE is shown in the right part of Fig. (1). We use the quenched
gluon, with full temperature dependence, from lattice QCD [3]. In our truncation the quenched
gluon subsumes the Yang-Mills self-energies in the gluon DSE, to which we add the quark loop
in order to account for unquenching. In [2] we have compared our unquenched gluon results to
lattice data at finite temperature, and found an excellent agreement. In Fig. (1) we already show
the 2+1 flavour case. The quark flavours get mixed through the gluon, which isa novel feature of
this truncation scheme.

2. The phase diagram for2 and 2+1 flavours

We now obtain the quark condensate from a solution of the coupled set of quark and gluon
DSEs. In order to subtract the quadratic divergence present therein, we employ the subtraction

∆l ,s = 〈ψ̄ψ〉l −
ml

ms
〈ψ̄ψ〉s, (2.1)

wherel ,s denote light and strange quarks. In the left part of Fig. (2), we show the result atµ = 0,
where a comparison to lattice data is possible. In order to test for parameter dependence we employ
two parameter sets, labelled A and B. For set A, we fix the parameters to the pion mass and decay
constant in the vacuum. For set B, we fit to the lattice results of the condensate. The difference
between the sets is rather small, and mainly a shift inTc.
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Figure 2: The left figure shows the condensate atµ = 0 for two parameter sets, compared to lattice results
from [4]. The right figure shows the resulting phase diagram for Nf = 2 (upper lines) andNf = 2+1 (lower
lines). Here,Tc is determined from the chiral susceptibility.

In the right part of Fig. (2), we show the resulting phase diagram forNf = 2 andNf = 2+
1. There, and for all other results from now on, we use parameter set A. The deconfinement
line is obtained from the dual condensate [5]. We find the chiral restoration and deconfinement
temperatures to be near-by. The critical end-point is found atµ/T > 1. The effect of including the
strange quark is mainly a reduction ofTc, by about 50 MeV for all chemical potentials.

3. Polyakov-loop potential

Having the quark, gluon and ghost propagators at hand allows us to extract the Polyakov-loop
potential, following the recent development in [6].
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Figure 3: The DSE for the background field̄A4.

To this end, we solve the DSE for a constant background fieldĀ4, which is shown in Fig. (3).
This yields the derivative of the Polyakov-loop potential,V ′(Ā4). Upon integration we gain the
potentialV(Ā4), up to an integration constant.

The background field enters the propagators via a shift in the Matsubarasums,

ωn → ωn+2πTϕ , (3.1)

whereϕ is an Eigenvalue of̄A4. There, we restrict ourselves to theλ 3 component. We can then
obtain an upper bound for the expectation value of the Polyakov loop,

L[〈A4〉] =
1+2cos(ϕπ)

3
≥ 〈L[A4]〉. (3.2)

The results forV(Ā4) at µ = 0 as a function ofT and atT = 115 MeV as a function ofµ is shown
in Fig. (4). We find a minimum close to the confining valueϕ = 2/3 belowTc. Above Tc, the
minimum moves to smallerϕ , i.e. a larger Polyakov loop.
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Figure 4: The Polyakov-loop potential forµ = 0 (left figure) andT = 115 MeV (right figure).
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Figure 5: The left figure shows the Polyakov loop for allT and µ . The right figure shows the resulting
phase diagram. Here we useNf = 2+1, and determineTc from the inflection point (cf. Fig. (2)).

We can then go forward, and extract the Polyakov loop of the background field at allT andµ.
The result is shown in the left part of Fig. (5). We clearly find a nearly vanishing value belowTc, a
rising behaviour aroundTc and deconfinement above. The resulting phase transition line is shown
in the right part of Fig. (5) together with the phase transition from the quarkcondensate and the
dual condensate. Clearly all three order parameters show a crossover at similar temperatures. At
the critical end-point all definitions ofTc agree.

To summarise, we presented a truncation for the quark and gluon DSEs which captures the
expected properties of unquenched QCD. We find a critical end-point, and near-by phase transitions
from the quark condensate, the dual condensate and the Polyakov loopfrom the Polyakov-loop
potential.
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