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Scale setting in lattice QCD

1. Introduction

Presumably the most natural scale for low energy QCD is the mass of the proton, mp. It is
very well known. Alternatively, as a theorist, one might like the pseudo scalar decay constant in
the chiral limit, called f . It sets the scale for interactions of the very low energy description of
QCD. Indeed, let us consider for a little while just QCD in the chiral limit, in order to simplify the
discussion. In this limit, ratios of pairs of these scales or any other observables of dimension mass,
mi, are predictions of the theory, but not the scale itself. The latter, and only it, has to be taken from
experiment. In lattice QCD this manifests itself in the fact that dimensionless ratios,

Ri = mi/mp (1.1)

can be computed and have a continuum limit. Taking mp as a reference here is what we call scale
setting. Equivalently, a lattice computation determines dimensionless quantities Mi = mia, Mp =

mpa as a function of the bare coupling g0. The prediction for the physical, dimensionful quantity,
mi is then obtained by

mi = Rimp , Ri = lim
Mp→0

Mi
Mp

= lim
g0→0

Mi(g0)
Mp(g0)

. (1.2)

In lattice slang, scale setting usually refers to the equivalent point of view of determining the lattice
spacing a at a given g0 from the specific quantity mp,

ap(g0) =
Mp(g0)

mp
, (1.3)

with the purpose of then defining any other dimensionful quantity

mlat
i (g0) =

Mi(g0)
ap(g0)

. (1.4)

Clearly mlat
i (g0) has a continuum limit and at finite g0 (finite a) it has lattice artifacts (deviations

from this limit) which depend also on the choice of scale, mp.
In practice, we also approximate QCD by an effective theory where heavy quarks are removed

(one often says integrated out). How good an approximation this is also depends on the choice of
the scale as is apparent from the previous discussion.

1.1 Scale setting is important

Why is scale setting discussed in a plenary talk? Both in planning simulations and in the
analysis of the results, the scale (as explained above, whether I say the scale or the lattice spacing
is just the same) is usually very important. When quark masses are neglected, an error made in the
scale, systematic or statistical, propagates linearly into a hadron mass.

Now thinking about the real theory, the one with quark masses, the scale already enters deci-
sively into fixing the bare quark masses in the Lagarangian, namely in planning the simulations.
Usually we do this by adjusting the pseudo scalar meson masses to their physical values, since those
are most sensitive to quark masses. The scale is needed for that. It is very important to perform
simulations at or close to the right quark mass, or on a given desired trajectory running through the
physical point, in the parameter space given by the quark masses. For mass-degenerate u,d quarks,
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Scale setting in lattice QCD

a trajectory may be given by fixed (physical or bare PCAC) strange (and ultimately charm quark)
masses, or for example, by a fixed trace of the quark mass matrix, trmquark = const. In the past,
several collaborations missed the proper trajectory by more than what they would have liked to.

Furthermore, the scale enters where a momentum in a form factor is fixed or into the overall
size of the lattice. It is very useful to know the scale beforehand.

We should also draw lessons from recent years. In a few cases, challenging new computations
have been carried out, relying on the scale from earlier work. Later it turned out that there was
an inaccuracy in the scale, which significantly influenced the result. Examples are changes in the
decay constant fDs of the HPQCD collaboration due to a reanalysis of r1 [1, 2] and one that the
ALPHA collaboration made, namely a roughly 20% change in the two-flavour Λ-parameter after
we had computed r0/a rather than taking it from the literature [3].

All of this calls for care in the selection and computation of the scale.

1.2 What is a good scale?

Unfortunately, the proton mass is not easily determined with good precision in lattice QCD
computations due to a large noise/signal ratio in the proton correlation function, see Sect. 2.1. The
chiral scale f is related to experiments only through the chiral perturbation theory expansion. Con-
sequently it is not common to use these observables to set the scale. In general we should search
for a quantity which

(P1) is computable with a low numerical effort,

(P2) has a good statistical precision,

(P3) has small systematic uncertainties and

(P4) has a weak quark mass dependence.

The first two properties are self explanatory, but the others require some details. By a good sys-
tematic precision we mean first of all that the systematic error in the determination of the numbers
Mi = ami for given bare coupling and quark masses is small. For example such a systematic error
may come from finite size effects or the contamination by excited states. A second systematic
uncertainty is the discretisation error. This is not easily judged. We will comment on it as we go
along. Concerning the quark masses, it is of course useful to have a scale which depends weakly on
them as this makes the tuning of the quark masses rather independent from the scale and, when the
simulations are not at the physical point, the extrapolation/interpolation to it is easier. Note that the
sensitivity to quark masses also depends on the trajectory one chooses to reach the physical point.
For example, the mass of the Omega-baryon has a weak dependence on the light quark masses
when the strange quark mass is fixed, but not when one is on the trajectory trmquark = const. On
such a trajectory an appropriate average baryon mass has a weak quark-mass dependence, see e.g.
[4].

For later use I define a measure for the quark mass dependence,

Sm
Q =

Q|mπ=500 MeV−Q|mπ=130 MeV

Q|mπ=130 MeV
, (1.5)
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Scale setting in lattice QCD

where Q labels different scales, e.g. Q=mp, and we assume that we are on a trajectory with strange
and charm (bare, PCAC) mass fixed. Self-consistently, MeV come from the scale Q. Since there is
usually a rather linear dependence of scales on m2

π , one has Sm
Q ≈ 0.23 GeV2

Q|mπ=130 MeV

∂Q
∂m2

π

.
The statistical precision is determined both by the integrated autocorrelation time and by the

variance.1 These depend on the update algorithm and on the chosen estimators, respectively. E.g.
in the simplest case, using or not-using or stochastically-using translation invariance are different
estimators of a correlation function.

After this preparation, let me come to a discussion of a few scales which are in frequent
use or newly proposed. I differentiate between phenomenological scales and theory scales. The
former are related to physical observables through a minimum amount of theory, while the latter
are constructed to be well computable in lattice QCD but their values can (at present) only be
computed in lattice QCD using a phenomenological scale as an input. Thus a phenomenological
scale is needed in any case. The distinction between one category and the other is not sharp. For
example I place r0 [6] with the theory scales, although (vague) phenomenological considerations
led to the prediction r0 ≈ 0.49fm which is not far from our present knowledge.

2. Phenomenological scales

2.1 The mass of the Ω-baryon.

The relative errors RN/S of baryon correlation functions grow at large time, x0, as [7, 8]2

Rp
N/S

x0 large∼ Kp exp((mp− 3
2 mπ)x0)≈ exp(x0/0.27fm) ,

(2.1)
RΩ

N/S
x0 large∼ KΩ exp((mΩ− 3

2 mηs)x0)≈ exp(x0/0.31fm) ,

using m2
ηs
≈ 2m2

K−m2
π . The difference in the two formulae is one reason, why there is hardly a

computation where the scale is taken from the proton mass, but a few groups like to set it through
mΩ. The numerical values inserted for the masses are taken from the PDG and refer to the physical
point. Unfortunately it is not common any more to publish a plot of the effective mass to illustrate
the quality of the plateau. In Fig. 1 I show one using data from CLS ensemble N6, with a =

0.045fm,mπ = 340MeV on a 483× 96 lattice (for details on these ensembles see [9]), which has
a statistics of about 8000 MDU ≈ 40τexp. One observes smaller statistical errors compared to the
proton, but in fact the relation to the large time asymptotics, eq. (2.1), is not entirely obvious. The
plateaux for mΩ,mp appear to start around 0.8 fm ≈ 1.6r0 or so. Somewhat earlier plateaux (at
≈ 0.6fm) are visible in [10, 11], where correlation functions with different smeared interpolating
fields are considered which use gauge fixing.

A second advantage of mΩ is the weak dependence on the light quark mass, if the strange mass
is fixed. Reversely, it depends much more on the strange mass than other common choices.

1For the definition of variance and autocorrelation times for derived observables (such as masses extracted from a
correlation function, the primary observable) see [5].

2Note that the arguments of [7, 8] refer to the square root of the variance of the correlation functions; a x0-
dependence of the autocorrelation time is negleceted.
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Figure 1: Effective masses for mp [12], mΩ [13], V (≈ r0), V (≈ r1) [14] and fπ [9] on CLS ensemble N6
(see [9]). All effective “masses” have been scaled such that the errors in the graph reflect directly the errors
of the determined scales. They have been shifted vertically.

2.2 Pseudo scalar decay constants fπ , fK

Pseudo scalar decay constants have been popular with several collaborations. In particular
they have been used to perform the primary scale setting and then determine the values of the
theory scales r0,r1, t0,w0 in terms of these. A drawback of decay constants is that experimentally
they are determined from weak processes. The π→ `ν decay rate yields the product Vud fπ and the
decay rate K → `ν is given by Vus fK. Thus the precision we can achieve for fπ , fK is limited by
our knowledge of the CKM matrix elements Vud and Vus, where in particular one needs to assume a
dominance by the standard model processes and a correct determination of the matrix elements of
other processes from which Vud and Vus are derived.

On the other hand, a clear advantage is the small and almost x0-independent variance of the
pseudoscalar correlators, leading to long plateaux, see Fig. 1. I will come back to the importance
of long plateaux in the conclusions.

2.2.1 Autocorrelations

I would like to emphasise a further feature of the error analysis of the decay constants. We
have learnt in recent years that one has to be careful concerning the contribution of slow modes
of the Markov matrix to the autocorrelation function ρO(tMC) of an observable O. Such modes
contribute as one (or several) slowly decaying exponentials Aexp(−tMC/τexp). Pseudo scalar cor-
relators, at least those computed with a noisy estimator for the source-timeslice spatial average of
the correlation function, show a rather small amplitude A of these potentially dangerous terms. I
show an example for the aforementioned N6 ensemble in Fig. 2. This ensemble has a relatively
long exponential autocorrelation time τexp ≈ 200 and thus even a small amplitude of A ∼ 1/20
leads to a contribution of order 10 in the integrated autocorrelation time. Still this is a small≈ 50%
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Scale setting in lattice QCD

part of τint. Most of the relevant (and accessible) part of the autocorrelation function is dominated
by shorter time scales of the MC process.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  50  100 150 200 250 300

ρ

tMC [MDU]

Figure 2: Normalised (ρ(0) = 1) autocorrela-
tion function of fπ on CLS ensemble N6 [9].
We show the estimate of a contribution of a
tail, following the analysis of [15].

Note that the discussion of autocorrelation is-
sues in QCD simulations is only semi-quantitative,
in particular our estimates of the tails according to
[15]. However, this is hardly avoidable given our
still limited abilities to generate long MC ensem-
bles. A consideration of a possible tail and some
estimate of the influence of a tail is important ex-
actly because statistics is not large enough to just
sum up ρ(tMC) to sufficiently large tMC.

Despite these problems, my message here is
that autocorrelations are a minor problem for the de-
cay constants, as long as one is not in the disastrous
region of parameters, which as far as we know starts
rather close to a ≈ 0.045 fm [15 – 17] for periodic
boundary conditions.

2.3 A scale from the vector correlator

Over the years an impressive phenomenological knowledge about the vectormeson spectral
function has been built up, largely due to the efforts to provide a precise number for the hadronic
vacuum polarisation contribution to the magnetic moment of the muon, gµ [18]. David Bernecker
and Harvey Meyer recently proposed to build on this knowledge and predict the isovector Euclidean
time-slice correlator CV(x0) from phenomenology [19]. The scale τ1 defined through [19, 20]

−x0
d

dx0
log CV(x0)

∣∣∣
x0=τ1

= 3.25 (2.2)

can then be evaluated from phenomenology to be ≈ 0.73 fm in Nf = 2 QCD. Note that the “hidden
strangeness” contributions are removed from the experimental value in order to arrive at a predic-
tion more closely related to Nf = 2 QCD. Such a step is obviously not done/possible when one
fixes the scale through mΩ or fπ . The particular choice of 3.25 on the right hand side is a compro-
mise between a large enough x0 in d

dx0
logCV(x0) beyond the perturbatively dominated regime with

d
dx0

log CV(x0)∼ 1/x0 and to have a good statistical precision. Also finite size effecs grow with x0.
An advantage of τ1 compared to hadron masses is that it is defined directly at finite x0. But

the necessary phenomenology is not entirely straightforward. In particular, one has to separate the
different isospin contributions in the experimental e+e−→ hadrons cross section in order to obtain
the isovector spectral function or one has to use the full electromagnetic current which requires
quark-line disconnected contibutions. The method is presently being developed and tested [20].

3. Theory scales

Already the phenomenology needed for τ1 is somewhat involved. We now turn to scales
defined in terms of the static quark potential. Even though a prediction of r0 ≈ 0.49 fm based
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on potential models for bb̄ , cc̄ spectra [6] has been rather successful, the connection of the phe-
nomenological potentials to the static potential V (r) has never become truely quantitative. I there-
fore consider both r1 and r0 as theory scales.

3.1 r0, r1

Their definition is [6]

r2F(r)
∣∣
r=rc

= c , r0 ≡ r1.65 . (3.1)

The original motivation for the definition of rc was an improvement over the string tension, which
was used extensively as a reference scale in the pure gauge theory. The string tension requires a
double limit of large time extent of a Wilson loop at fixed r and then the limit of large r. The scales
rc “only” require large time extent to extract the ground state potential.

Let me discuss a few properties. The force is given by the derivative of the potential. When
a proper lattice derivative is used and the (light-quark and gluon) action is O(a) improved, the
force is O(a) improved. This property follows [21] from the automatic O(a) improvement of static
quark actions [22]. In fact, different static actions with a (moderate!) smearing of the gauge field
in the static action can be used [23, 24]. In practise, apart from unsmeared links, corresponding to
the Eichten-Hill action for the static quarks, mostly the HYP2 action [24] has been adopted. The
reason is as follows. The relative errors of Wilson loops grow as

RW
N/S

T large∼ KW(r) exp
(
[

e1g2
0+...
a + ε(r)]T

)
, (3.2)

where the mass scale in the exponent diverges in the continuum limit while ε(r) is finite. The
divergent term is the self energy of the static quark or, in a different language, the perimeter term
in the Wilson loop. The coefficient e1 depends on the static quark action and the HYP2 variant has
been constructed such that it is rather small. One should keep in mind that different static actions
mean different discretisation effects and hence different values for r0,r1 at finite lattice spacing.

The divergence in the exponent of eq. (3.2) will eventually become a serious problem when
the continuum limit is approached more and more, but at present lattice spacings, the generalised
eigenvalue method [25, 26] combined with smearing of the spatial parallel transporter still allows
for sub-percent precision [27]. As shown in Fig. 1 this method achieves a very early plateau in
V (r). On the other hand, the MILC collaboration adopted r1 as their standard [28] since at smaller
r the excited state corrections to the ground state decay much faster with T , allowing for smaller
T and associated smaller errors, see Fig. 1. Of course, smaller r/a comes with the price of gener-
ically larger a2 effects. To a certain extent, kinematical a2 effects can be suppressed by a good
definition of the discretised force [6] or by a phenomenological subtraction of a2 effects from the
potential [28].

Contributions of slow modes to the autocorrelation function of r0,r1 are less relevant than for
fπ , fK, simply due to the relatively large variance of the Wilson loops.

3.2 Scales derived from the gradient flow

3.2.1 Gradient flow and definition of t0,w0.

The gradient flow is discussed at this conference by Martin Lüscher [29]. Here we only need
the Yang-Mills flow. In continuum notation, one introduces a gauge field Bµ(x, t) which depends

7
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Scale setting in lattice QCD

in addition to the space-time coordinates x on a flow time t and coincides with the quantum gauge
field Aµ(x) at t = 0. At positive flow-time, Bµ is defined through the flow equation [30]

d
dt Bµ(x, t) = DνGνµ(x, t) =−

δSYM[B]
δBµ(x, t)

, Bµ(x,0) = Aµ(x) (3.3)

where Dν is the covariant derivative in terms of the gauge field Bµ and Gµν = [Dµ ,Dν ]. As a
solution of eq. (3.3), Bµ is just a functional of the (true, quantum) gauge field. At lowest order in
the weak coupling expansion, the flow equation becomes the heat equation with solution

Bµ(x, t) =
∫

d4y (4πt)−2e−(x−y)2/(4t) Aµ(y)+O(g2
0) . (3.4)

We see that the gauge field has been smoothed over a radius of
√

8t. For t > 0, correlation functions
of this smooth field are finite at any Euclidean distance [31], in particular

E (t) = t2〈E(x, t)〉 , E(x, t)≡−1
2 tr Gµν(x, t)Gµν(x, t) (3.5)

needs no renormalisation beyond the one of gauge coupling and quark masses. Thus, for example
in Nf = 2 QCD, f (t/r2

0,m
2
πr2

0) = E (t) is a finite function. The proof of finiteness to all orders
of perturbation theory uses a formulation in terms of a 5-dimensional theory, adding the extra
dimension t (with dimension length2) and a boundary t = 0 [31]. This 5-d formulation is also
essential to perform a Symanzik analysis of cutoff effects [32] which I turn to in the following
section.

First I define the scales [30, 33]

t0 : E (t0) = 0.3 , (3.6)

w0 : w2
0E
′(w2

0) = 0.3 , (3.7)

where E ′(t) = d
dt E (t). These are truly theory scales; we need to determine their values in terms of

a phenomenological scale by a lattice QCD computation, performing the continuum limit.
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a≈0.065 fm
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perturbative

Figure 3: Nf = 2+ 1 results for E (t) from the BMW
collaboration. Graph from [33].

Figure 3 shows the shape of E (t)
computed by the BMW collaboration in
Nf = 2+1 QCD. In the considered range it
is roughly linear in t. I emphasise that this
is a numerical observation and it is approx-
imate. We have no theoretical reason for
this behaviour. The strong t-dependence of
the dimensionless combination E (t) moti-
vated the definition of t0 by eq. (3.6) [30].
Later, the BMW collaboration observed
that, varying the lattice spacing set by mΩ,
there are roughly parallel but somewhat
displaced curves. This numerical observa-
tion motivated the definition of w0 in terms
of the slope, eq. (3.7) leading to reduced

lattice spacing effects compared to t0. One should bear in mind that parallel lines in Fig. 3 turn
to crossing ones, when the scale is set in a different way which has non-negligible O(a2) cutoff
effects relative to mΩ. We turn to a discussion of cutoff effects specific to the gradient flow.
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3.2.2 Cutoff effects

I start with some heuristics. Expressing quantities as integrals in momentum space, those
dominated by small momenta have smaller cutoff effects than those dominated by large momenta,
at least as long as no accidental cancellations take place. Fourier transforming eq. (3.4) yields a
gaussian damping of large momenta and at lowest order of perturbation theory, in the continuum,
we obtain

E (t) ∼ g2
0 t2
∫

∞

0
p3 e−2t p2

dp+O(g4
0) , (3.8)

tE ′(t) ∼ g2
0t2
∫

∞

0
p3 (1− t p2)e−2t p2

dp+O(g4
0) . (3.9)

The integrand of eq. (3.8) is peaked around p ≈ t−1/2 while in eq. (3.9) it has two peaks below
and above that region whose integrals cancel. The essential observation is the damping of large
momenta which renders E finite and supresses cutoff effects.

However, we note that t0 ≈ (0.15fm)2 in QCD. Thus with a lattice spacing of a≈ 0.1fm, the
dominating momenta have ap≈ 0.7. There, lattice momenta p̂2

µ = (2/a)2 sin2(apµ/2) differ from
continuum ones by a few percent. In fact, for the standard discretisation (Wilson flow and plaquette
discretisation for E(x, t)) one obtains

Elat(t)
E (t) = 8(t/a2)2

π
2
{

e−4t/a2
I0(4t/a2)

}4
= 1+ k1

a2

t + . . . (3.10)

with k1≈ 0.13 and small higher order terms for, say, a2/t ≤ 1/2. Similarly, |tE ′lat(t)/E (t)| ≈ 0.12 a2

t
in the same range, where we normalise to |E (t)| since E ′ vanishes in the continuum limit at this
order in the coupling. Obviously such lowest order perturbation theory estimates are just indicative.

While these are no particularly large cutoff effects, one may be interested in reducing them by
Symanzik improvement and indeed, the Symanzik flow has been used in [33, 34]. “Symanzik flow”
refers to the flow equation, continuous in t, but with the gradient on the rhs of the equation taken
as the gradient of the tree-level Symanzik improved gauge action, while “Wilson flow” refers to
the gradient of the Wilson plaquette action. Since the flow equation is a classical equation, without
any explicit coupling constant, it is O(a2) improved by using the tree level Symanzik improved
action. However, this is not at all sufficient for full O(a2) improvement. For full improvement, the
following ingredients would be necessary:

• Symanzik flow, i.e., improvement of the (classical) flow equation.

• Improvement (classical) for the discretisation of E(x, t) .

• Improvement (with g2
0 dependent coefficients) at the t = 0 boundary.

• Improvement (with g2
0 dependent coefficients) of the 4-d action.

This discussion uses the 5-d path integral (with Lagrange multiplier fields) [31, 32] and improve-
ment of a theory with boundaries as previously developed for the Schrödinger functional. While
the first two requirements are "easily" done by switching to the Symanzik flow and the Symanzik
action density for E(x, t), there are many terms for the other two. For example at the boundary one
can have t-derivatives. With a dimension four field O , the term a2 ∫ d4x d

dt O(x, t)
∣∣
t=0 is dimension-

less and has to be considered as a term in the improved action. Systematic, non-perturbative, O(a2)

9
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improvement seems out of reach! I discuss this here because after all the Symanzik flow is used in
practical computations.

Let me indicate the degree of improvement of the flow by (flow,discr), where flow is either
“Sym” for the Symanzik flow or “Wils” the Wilson flow and discr is “plaq” for the plaquette
discretisation of E(x, t) or “clov” for the symmetric definition [30] formed from the clover Gµν .
Boundary terms have so far not been considered. I therefore do not include them in my notation.
Furthermore, the degree of improvement of the 4-d action is indicated separately.

Incomplete improvement may be worse than no improvement. An example has been seen
by A. Ramos in the leading order perturbative computation of E (x, t) in a Schrödinger functional
setting, with (Wils,clov) once evaluated with the tree level improved 4-d action and once with the
Wilson action. Improving just the 4-d gauge action leads to a factor ≈ 2 increase of the cutoff
effects in this case at leading order in the coupling.

I note that in Martin Lüscher’s original pure gauge theory demonstration the difference of
(Wils,clov) and (Wils,plaq) amounted to ≈ 6% in t0/r2

0 at a = 0.1fm. This is the same magnitude
as the estimate eq. (3.10).

Given the difficulties in systematically also removing a2 terms, I think it is worth to consider
to define a scale t1 simply at somewhat larger flow time. In particular,

E (t1) = 2/3 (3.11)

seems a good choice. At t1 the kinematical cutoff effects eq. (3.10) are about a factor two sup-
pressed (and better approximated by just k1a2/t) and the same would be the case for an analogous
w1. Obviously, t1 will, however, be more sensitive to finite volume effects, which needs to be
investigated.

3.2.3 Precision

A tremendous advantage of t0 and w0 is the high statistical precision. The variance of these
quantities is very small and I note that due to the finiteness of correlation functions at all distances,
it also remains finite in the continuum limit. On the other hand, at finite t the autocorrelations are
very much enhanced, see [35, 34, 16]. Despite this, the variance is so small that with a run of length
tMC/τint(t0)≈ tMC/τexp = 20 one achieves a precision of

√
t0/a at the level of around one per mille

on a lattice of 33×6fm4. On larger lattices self averaging improves the precision further.
A second advantage of these scales is that E (t) is obtained as a straight expectation value.

One does not need to extract the large time decay of some correlation function as it is the case for
masses or r0,r1. Since the integration of the flow equation can be done with very high numerical
precision, there is no systematic error – apart from the unavoidable discretisation and finite volume
effects.

And finally, there is a weak quark mass dependence. The small quark mass expansion of ex-
pectation values of “local” fields, at fixed t, can be computed in chiral perturbation theory [29].
The NNLO formula for E (t) has been worked out by O. Bär and M. Golterman [36], with the in-
teresting result that at and including order m2

π there are no non-analytic terms. This is in qualitative
agreement with the very linear mass-dependence seen in the chiral extrapolations, for example,
Fig. 4, below.

10



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
1
5

Scale setting in lattice QCD

Wilson, Nf = 2 tmQCD, Nf = 2 Nf > 2
r0[fm] from r0[fm] from Nf r0[fm] r1[fm] from

0.503(10) fK [14] 0.448(15) fK [38]d 2+1 0.466(4)a 0.313(2) div. [39]
0.491( 6)c fK [9] 2+1 0.321(5) ϒ [1]
0.485( 9)c fπ [9] 0.420(20) fπ [40] 2+1 0.470(4) 0.311(2) fπ [41, 42]
0.501(15)b mp [43] 0.465(16) mp [44] 2+1 0.492(10)b mΩ [11]
0.471(17) mΩ [13] 2+1 0.480(11) 0.323(9) mΩ [10]

2+1+1 0.311(3) fπ [45]
a with r0/r1 and r1/a from [46] c preliminary, at this conference
b no continuum extrapolation d computed from table 4 of [38]

Table 1: Values for r0,r1. Column “from” shows the phenomenological scale used. All results except for
those marked with b have been obtained by a continuum extrapolation.

4. Status

I now want to give an impression how well we know the various scales at present. I will rather
uncritically cite numbers from the literature and I would like to apologise that it is impossible to
do justice to all computations. I tried to take into account the more recent numbers from the larger
simulations.

4.1 mΩ and mp

The masses of the Omega and the proton are experimentally known, so the relevant question is
what kind of precision we are able to achieve in lattice computations. I neglect here the issue of the
systematic uncertainty in quark mass extra/interpolations, even though this is rather relevant. I just
note that precisions quoted for mΩ (usually after the extrapolation to the physical point) are ≈ 0.5
% [11], ≈ 1 % [10], ≈ 1% [37], ≈ 5 % [13]. Obviously, such numbers depend on the statistics.
Nowadays it is typically around 1000 to 10000 molecular dynamics units. But they also depend
on the starting value of a fit to a plateau, with an associated systematic error which is not so easily
quantified.

4.2 r0 and r1

In large scale simulations, r1/a has been determined by MILC, HPQCD, RBC/UKQCD and
HOTQCD; it has been converted to physical units for Nf = 2+1 using a variety of phenomenology
scales, see Table 1. Also modern determinations of r0 are listed in that table.

There is still a considerable spread, most notably in the Nf = 2 theory for r0 between the
ALPHA and ETM collaborations. As the numbers refer mostly to the continuum limit they should
agree. In Sect. 5 I return to the worrysome difference seen in Table 1.

For Nf > 2 all determinations performing a continuum extrapolation are compatible with

r0 = 0.472(5) fm , r1 = 0.312(3) fm . (4.1)

I refrain from performing a weighted average of the numbers in Table 1 for the following reasons.
Systematic errors, e.g., due to chiral extrapolations, may be relevant. More importantly, these
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Figure 4: Mass dependence of the flow scales. We consider the functions t0(y), w0(y) with the dimensionless
measure y= t0m2

π for the quark mass and normalised at the point y= 0.08. Filled symbols are for Nf = 2 CLS
lattices with a= 0.045fm . . .0.07fm [35] and open symbols are preliminary results by QCDSF for Nf = 2+1
along a trajectory trmquark=constant [47]. As a reference the dotted line correspond approximately to the
behaviour r2

0.

numbers are entirely dependent on a single set of simulations / action, the MILC configurations
with rooted staggered fermions. There is only a weak (due to the much larger error) cross check by
the RBC/UKQCD result r0 = 0.480(11) fm, r1 = 0.323(9) fm [10].

4.3 t0 and w0

Clearly, the newcomers t0 and w0 are most interesting. I discuss them in some more detail.
In Fig. 4 I show the mass dependence for Nf = 2 and with open symbols the dependence in the
2+1 theory along a trajectory with constant trace of the mass matrix. The results are normalised
at an intermediate mass point defined by the variable y = t0m2

π , where t0 is the mass-dependent
quantity. The figures show first of all excellent scaling of the quark mass dependence of the Nf = 2
results with an O(a) improved action. Second a remarkably linear dependence is seen and third the
comparison to the dotted line referring to r2

0(y)/r2
0(0.08) indicates that t0 has a somewhat stronger

quark mass dependence than r2
0 while w2

0 has a significantly stronger one. As expected (see e.g.

Nf
√

t0 [fm] w0 [fm] from

0 0.1638(10) 0.1670(10) r0 = 0.49fm [35, 30]
2 0.1539(12) 0.1760(13) fK [35, 9]
3 0.153 (7) 0.179 (6) mp[47]
3 0.1465(25) 0.1755(18) mΩ [33]
4 0.1420(8) 0.1715(9) fπ [45]
4 0.1712(6) fπ [34]

0.14 0.15 0.16 0.17 0.18
      t

0

1/2
 [fm]                                               w

0
 [fm]  

Table 2: Scales from the gradient flow. Note that these depend in principle on the phenomenological scale
they are determined from.
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[36], the mass dependence along the trajectory trmquark=constant is quite a bit weaker. Rough
estimates of the slopes are reported in Table 3 and t0,w0 in physical units in Table 2.

I have explained earlier that discretisation errors are a relevant, but also a subtle subject. Gen-
eral statements are difficult because discretisation errors are only meaningful after the scale has
been set, or equivalently for dimensionless ratios. The same is true for the Nf-dependence.

Nf Sm
t0 Sm

w2
0

Ref. Nf Sa
t0/Q Sa

w2
0/Q Q flow Ref.

0 -1% -3% r2
0 Wils [30]

2 -12% -20% [35] 2 -8% -19% r2
0 Wils [35]

2+1 -18% [33] 2+1 -19% ≈ 0 m−2
Ω

Sym [33]
2+1+1 -13% [34] 2+1+1 ≈ 0 f−2

π Sym [34]
2+1+1 7% ≈ 0 f−2

π Wils [48, 49]

Table 3: Slopes with respect to the mass, Sm
R , eq. (1.5) and with respect to the lattice spacing, Sa

R =

[R]a=0.1fm/[R]a=0−1. Note that [49] states that the Wilson flow is used.

4.4 Comparison of scales and Nf-dependence.

In Fig. 5, taken from [35] I show the approach to the limit a→ 0 of ratios of the scales t0,w2
0,r

2
0.

Here t0/r2
0 has the smallest discretisation effects, while in [33], BMW reports small a-effects for

w0 mΩ, compare for the slopes Sa in Table 3. Whether t0 or w0 have smaller cutoff effects depends
on the details of the discretisation and/or the reference scale. General statements are not possible.

The Figure also shows a comparison with results for different Nf. Here [33, 30, 34, 10, 41,
42, 39] enter, see [35]. The ratios demonstrate that the Nf = 0 and the Nf = 2 theories differ quite
strongly for these purely gluonic infrared-dominated, non-perturbative, observables. The effects
of the heavier quarks, strange and charm, appear to be less pronounced, but still noticeable. Of
course, for a very heavy quark, decoupling is expected in such ratios. The charm quark may be
heavy enough for decoupling to apply semi-quantitatively.
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Figure 5: Continuum extrapolation and flavour number dependence of ratios of scales. Taken from [35].
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Figure 6: Continuum limit of fπ r0 interpolated to (mπ ∗ r0)
2 = 0.64 (left) and to (mπ ∗ r0)

2 = 1.128 (right)
for Nf = 2.

A similar Nf-dependence is present for the ratio r1/r0: It is about 0.66 for Nf = 2+1 [42, 10],
for Nf = 2 it has not directly been computed but from [27, 50] one can read off r1/r0 ≈ 0.67 and
finally for Nf = 0 the results of [21] and others imply r1/r0 = 0.73.

At least part of the theory scales in physical units have to depend significantly on the number of
flavours since an Nf-dependence is present in the ratios. Note that in Table 2 the phenomenological
reference scale(s) are mostly the light pseudo scalar decay constants, our best phenomenological
scales at present. So mostly we are looking at a common reference scale.

5. Open questions

The considered theory scales are not listed in the particle data book. We have to determine
them without prior knowledge. They therefore also constitute a good cross-check of our calcula-
tions as we should agree on their values, at least given the same Nf and experimental input scales.
Unfortuantely for Nf = 2 the agreement on r0 is not very good.

I therefore briefly discuss the differences in the determinations by the ALPHA and ETM col-
laborations. Comparing r0 at the physical point, as is done in Table 1, the origin of differences
may be due to various sources, where, barring the possibility of actual mistakes, two particular
ones come to mind. The first is the chiral extrapolation and the second is finite size effects. In
order to see whether prior to any extrapolation, the two computations/discretisations do agree, G.
Herdoiza performed an interpolation of dimensionless combinations r0 fπ to two different reference
pion masses, defined by m2

πr2
0 = 0.640,1.128. S. Lottini and B. Leder added the ALPHA collab-

oration points with a proper correlated error analysis. The surprising outcome, Fig. 6, is that the
data actually agree reasonably well at intermediate lattice spacings, but the standard continuum
extrapolations cross and lead to a few sigma difference at a = 0 at the smaller pion mass. My
attempt to understand this in terms of the finite a chiral perturbation theory formulae for tmQCD of
Oliver Bär [51] failed. In fact the formulae suggest larger cutoff effects than the data show, when
m2

π+−m2
π0 from [52] is inserted. Maybe this suggests that the mass-splitting is actually smaller. In

any case, the differences remain unexplained at present. As a speculation I add that there would be
very good agreement if one just took the ETMC data at larger lattice spacings together with a very
flat continuum extrapolation.

More work on this issue seems warranted. At least the analysis should be repeated with r0→√
t0 in order to remove the possibility that there is something wrong with a determination of r0.
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The present status provokes the questions: How well do we control our computations? Is our
data ready for a continuum extrapolation?

6. Conclusions

This talk was scheduled at a time of transition. The all-time favorite r0,r1 are being replaced
by scales derived from the gradient flow. The advantages of the latter are predominantly:

• There is an excellent statistical precision. Just 20 independent configurations lead to around
per mille precision in the lattice spacing (of course, the error is rather uncertain with only
20) when the lattice volume is reasonably large.

• Systematic errors due to excited state contributions are entirely absent in E (t) and conse-
quently, as remarked in the question session at the conference, it is easy to compute t0,w0.
There are no pitfalls in determining such scales.

In my opinion the second point is very important. The possible danger of a misidentified plateau
is not immediately evident in Fig. 1. But for the example of the potential at large distances, where
string breaking occurs, it has been seen that one has to be very careful in the selection of the right
correlation function to find the correct ground state energy. More trivially, one may easily select
a plateau value which is a sigma or two away from the true one because the errors at larger time
mask the continuing variation of the effective mass. Only with plateaux as long as they are seen in
the pseudo scalar sector one feels really safe.

The numbers listed in Table 2 do largely come from a preliminary analysis for this conference.
They should better be reviewed again in one or two years time.

I think that it may be an improvement to define a scale at lower momenta; t1, eq. (3.11) seems
promising. It will be less sensitive to the details of the definition of the flow equation (concerning
a2 terms). Furthermore, a bit of reflection on the reported size of mass- and Nf-dependence leads to
the conclusion that both of these will be rather small for t1. These advantages should be weighed
in comparison to an expected increase in finite size effects which remain to be evaluated.

Finally I hope that the community will not leave the problem of Sect. 5 behind, but will solve
it soon. Interesting physics results have been obtained with the scale from fπ and r0; some of them
are certainly affected.
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