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1. Introduction

In the past few years, the Yang—Mills gradient flow turned out to be ar¢fieally attractive
and powerful tool for non-perturbative studies of QCD. A key featfrthe flow is certainly the fact
that local fields constructed at positive flow time renormalize in a simple waygVer complicated
they may be[[1 fJ3]. Correlation functions of such fields calculated in latticB @@refore have a
well-defined continuum limit and thus provide interesting probes of the tgaVgroperties of the
theory.

Apart from a brief recap of some basic facts and equations, the suhjeicbt be reviewed in
this talk. Instead the focus is on applications of the gradient flow which hatver just barely been
considered so far. The computation of the chiral condensate via thk demasity at positive flow
times is one of them, and its discussion here partly serves as an introductiorotbeintgoncepts
such as the small flow-time expansion of local fields. There are potentiaillynteresting uses of
the latter in studies of QCD at non-zero temperatures and in computationstobeleak transition
matrix elements, for example.

Another topic covered is the application of the gradient flow in the contex¢rmdrmaliza-
tion and the continuum limit. While the flow itself is not a renormalization group toansition,
non-perturbative renormalization can be based on observablesitatgpfiew times. Calculations
of the scale evolution of couplings and fields, using step scaling, as wsjistsmatic construc-
tions of coarse-grid actions through a matching procedure are likely fit fsoon the use of such
observables, since their expectation values can often be accuratelytesimgth a modest effort.

2. The Yang—Mills gradient flow in QCD

2.1 Flow equations
The Yang-Mills gradient floviB, (t,x), t > 0, of SU(3) gauge potentials is defined by the flow
equation

0By =DyGyy, (2.1)

Guv = duBy — dvBy + [By, By, Dy = 0y + By, -], (2.2)

and the initial conditiorB;,(0,x) = A, (x), whereA,(x) denotes the fundamental gauge field inte-
grated over in the QCD functional integral. Since the flow equation is offidsr in the derivatives
with respect to the flow timg the gauge potentiaB, (t,x) are uniquely determined by their initial
value at = 0 and are thus well-defined functions of the fundamental gauge field.

Starting from the fundamental quark fiexdO, x) = ¢/(x) at flow time zero, an associated flow
X (t,x) of quark fields may be similarly defined through the equations

ax = Ax, (2.3)

Clearly, x (t,x) is a uniquely determined linear function of the fundamental quark field amsha n
linear function of the gauge potentiB[s,y), 0 < s <t, and therefore of the fundamental gauge
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field. In the flow equation[(2.3), the gauge-covariant Lapladiaould be replaced by the square
of the Dirac operator, but while this choice would be mathematically appealidge# not appear
to offer any particular advantages in the present context.

It goes without saying that a regularization is required in the quantizedytifieothe gradient
flow and the associated quark flow to be well defined. Dimensional régati@n is a possible
choice in perturbation theory and it is straightforward to set up both thgegand the quark flow
on the lattice[[lL[]3]. For simplicity, | however continue to use a continuum notatial implicitly
assume a lattice regularization.

2.2 Smoothing property

In the direction of increasing flow time, the evolution of the time-dependergegand quark
fields tends to have a smoothing effect. It is possible to show this by exgatidirsolution of the
flow equations in powers of the fundamental fields. At the leading orderecéxpansion,

By (t,X) = /d“th(x—y)Au(y) + gauge & non-linear terms (2.5)
x(t,X)=/d4yK¢(X—y)w(y)+~--, Ki(2) Dexp{—i}, (2.6)

the fields are then seen to be smoothed with a Gaussian kernel over im@ptagge of distances
with radius roughly equal ta/8t. The smoothing property is unchanged at higher orders and is
also observed in numerical studies, the smoothing range being practicadrtieeas the one given
by the leading-order formulag (2.4),(2.6).

The Yang—Mills gradient flow was probably first considered in mathematicAtiypah and
Bott [A] in their seminal work on the Morse theory of the space of gauggsf@n two-dimensional
manifolds. In lattice QCD, field smoothing techniques are in use since marg. YRepeated “stout
link smearing” [p] in fact amounts to a numerical integration of the flow equ&fo}) using an
Euler scheme, while the source-smearing operations proposed ifgdf$.solve the quark flow
equation [28) on an equal-time hyperplane, albeit without simultaneousiyiraythe gauge field.

2.3 Observables

Gauge-invariant composite fields constructed at positive flow tjraech as
RS =X ¥xXs S°=X,Xs s flavour labels (2.8)

are well-defined functions of the fundamental field variables and areftrerpossible observables
like the ordinary composite fields. In particular, one may be interested in thre@lation functions
and, more generally, the QCD expectation values of any product offletdsd at zero and non-zero
flow times. Clearly, an observabt& (x) that is locally constructed at some flow timg 0 is not a
local expressions in the fundamental fields, but essentially only depenitie field variables in a
spherical region of space-time centered,athich | will refer to as the footprint of the observable

(see fig[]L).
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Figure 1: Local fieldsOx(x) constructed at flow time > 0 depend on the fundamental field variables in a
region of space-time approximately/3t wide (red area). Further away from the paknthe sensitivity to
the basic fields decreases like a Gaussian and very rapidbnies totally negligible.

The smoothing property of the gradient flow and the associated quarkifijples that correla-
tion functions of fields at non-zero flow times have no short-distance lsinges. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicith(¥) is a bare, gauge-
invariant composite field at flow time> 0 of degreen andn in the quark and antiquark fields, the
renormalized field is given by

Ort = (Zx)%(mrﬁ)@t, (2.9)

where the renormalization constafyt is independent of. In particular, the field[(217) does not
require renormalization and the chiral densit[es] (2.8) renormalize with the fsatoez, .

The proof of these statemenf$ [2, 3] is based on an exact represernthtiun correlation
functions through a local field theory in 4+1 dimensions, the extra dimengioig ithe flow time.
Zinn-Justin and Zwanzigef][8] introduced the representation many ggars their work on the
renormalization of the Langevin equation. In the pure gauge theory, the datigally coincides
with the flow equation[(2]1) except for the fact that it includes a noise tetiighwcomplicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density dd of the up and down quarks
diverges like the second or third inverse power of the lattice spacing tigecontinuum limit is
taken. The divergent terms are proportional to the light-quark masseslittite theory preserves
chiral symmetry, but also in these cases their subtraction tends to give ingeddant significance
losses or even some conceptual issues. Using the gradient flow, thismproan now be elegantly
bypassed[]3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at nonflmsctimes, x (t, X),
transforms in the same way as the fundamental figlx) under global chiral rotations. In particu-
lar, the light-quark chiral densities

R rsefud, (3.1)
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Figure 2: As long ast is strictly positive, the pseudo-scalar two-point funatia the PCAC relation3)
has no short-distance singularities. Moreover, at digax: > 1/8t, the transfer matrix formalism may be
invoked to show that the correlation function falls off poofionally to e MnlX,

transform according to thé%, %) representation of the §@), x SU(2) chiral symmetry group
that acts on the up and down quark fields. The “time-dependent ccatdéns

5= —3(+ 59 (3-2)

is therefore an order parameter for the spontaneous breaking of thisetyy.

From a technical point of view, the condenséte] (3.2) is an attractiveiguecause no power-
divergent terms need to be subtracted, when the continuum limit is takelnnchultiplicative
renormalization is required according to €g.§2.9). Moreover, calcukatidB; through numerical
simulation are straightforward and quickly yield accurate results.

3.2 RelationtoX

The time-dependent condensatecan be directly used for studies of spontaneous chiral sym-
metry breaking at non-zero temperatures, for example, but one mastimeless be interested in
its relation to the standard chiral condensate

The link between the two condensates is provided by the PCAC relation. Wbbad by the
pseudo-scalar densiBf'Y at flow timet and integrated over space-time, the relation implies

 M2Fq
2Gn

5 = [ dixPre(0)). (3.3)
whereMy;, F; andG;; denote the pion mass, the pion decay constant and the vacuum-to-pion matrix
element of the densit?"? (see fig[R). At large distances, the two-point function in this equation
falls off exponentially and another constaB;t, may be defined through the asymptotic formula

_ GnGnt e_M

™o, 4
MotV (3.4)

[ PR 0))

Now when the up and down quark massgsmy are sent to zero, the integral in eff. |3.3) diverges
at largex and a few lines of algebra then show that

. Gy
2= Ilim X—. 3.5
my=my—0 th,t (3:3)

In the SU(2) chiral limit, the time-dependent chiral condengathus coincides with the standard
condensat& up to a computable proportionality constant.
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V8t [fm] azZ51%, az51s, S
Gt

0.4 0.000627795) 0.00396261)
0.5 0.000425158) 0.00387255)
0.6 0.000291136) 0.00378851)
0.7 0.000201723) 0.00371148)

Table 1: Simulation results for the unrenormalized time-dependentensate and the ratio of constants on
the right of eq. 5). The values are given in lattice unitd the quoted errors are statistical only.

3.3 Chiral perturbation theory

How exactly the chiral limit[(3]5) is reached can be predicted using chirtigation theory.
The important point to note is that local fields at non-zero flow time with a fodtpruch smaller
than the Compton wave length of the pion are indistinguishable from strictlyfietdd when only
their matrix elements between low-energy pion states are considered. [feitteve chiral theory,
and if

8tM2 < 1, (3.6)

the time-dependent densiti¢s (3.1) are therefore represented by thieddanas the ordinary chiral
densities, except for the fact that the coefficients in these expresgion®t the same.
To one-loop order of S(2) chiral perturbation theory]9], the formula

G 3M2
St =531 In(M3/A?) +... 3.7
tGTH { 321PF2 N(M7/NP) + } (3.7)
is then obtained, where
= In(AZ/M?)] 1306 mev (3.8)

is @ new low-energy effective constant. While the form of the expanfiof) (ooks familiar, the
constant; is unrelated to the well-known low-energy constaffs [9] and moreovemdspzn the
flow timet.

3.4 Numerical experiment

As already mentioned, the time-dependent condensate is easily computeghthtouerical
simulation of the lattice theory. For illustration, the results obtained in a first sitithys kind [3]
are now briefly recalled. In this run (labelédin ref. [I1]), the O&)-improved lattice theory with
2+1 flavours of Wilson quarks was simulated on a@22° lattice with open boundary conditions
in time [[LQ]. At the chosen point in parameter space, the lattice spacing is @B8um [L2,[1B]
and the pion and kaon masses are approximately equal to 203 and 52(#lex&ppectively.

Using a representative ensemble of 150 gauge configurations, the weélizéned for the time-
dependent condensate do indeed have small statistical errors (sdB t#se function of the flow
timet, the condensate decreases monotonically, but this trend is practically csatge by the
ratio of G-factors multiplying the condensate in eff. {3.5). The chiral correcfio}) 8Lz appears
to be small at the quark masses and flow times considered. Moreovetigingéthe lattice spacing
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a=0.0899540) fm and the renormalization constatit= 0.580047) of the pseudo-scalar density
determined by the PACS-CS collaboratipn] [13]- 15] yields
ztéi" = [287(2)MeV]® at /8t =0.5fm (3.9)

it

for the renormalized ratio in theIS scheme at 2 GeV, i.e. a value well within the range expected
from previous calculations of the condenszte

4. Small flow-time expansion

In all these calculations, no power-divergent terms were encoumneredere there any large
contributions that had to be subtracted or extrapolated away. Througmtleflow-time expan-
sion, some further insight can be gained into how exactly the power @ineeg are avoided.

4.1 General form of the expansion

Let Ot(X) be a gauge-invariant local field in the continuum theory at flow timed. Since its
footprint decreases proportionally {88t, the field looks more and more like a strictly local field
whent is taken to zero. Eventually;(x) can be represented through an asymptotic expanfion [2]

O 5, ¥ S OBX (4.)

in a series of local fieldgx(x) at vanishing flow time with time-dependent coefficieqt&). The
expansion holds when inserted in correlation functions at non-zerandegaand if all fields are
properly renormalized. Clearly, for the expansion to be completely wete@fithe chosen renor-
malization conditions must fix both the normalization and mixing of the figids).
The expansion coefficientg(t) satisfy a renormalization group equation that determines their
asymptotic behaviour
c(t) O 12 ©gh{1+ 0@} (4.2)

at small flow times. In this equatiody anddp are the engineering dimensions of the fieqgi&x)
andOx(x), the exponentsy are determined by the one-loop coefficients of their anomalous dimen-
sions andy denotes the running coupling (in any scheme) at momemmbﬁl/2 [A]. The fields

@ (X) with the lowest dimension thus dominate in the litnit- 0, all other terms being suppressed
by powers ot.

4.2 Example: expansion of the chiral densitied (3.1)

The asymptotic expressions for the expansion coefficigtit$ simplify considerably if the
renormalization-group-invariant (RGI) normalization convention is adbfuethe fields and the
quark mass matri¥ (the RGI convention is described in sect. 2.2 of ffef] [16], for examutethe
case of the densitief (B.1), the small flow-time expansion then assumesnthe for

S5(X) = Co(t)M™ 4 c1 (1) tr{M2}M" 4 co(t) (M3)™S 4 c3(t) SS(x) + O(t), 4.3)
R(x) = c3(t)P™(x) + O(t), (4.4)
Glt) = g (1HO@),  es(t) = (2g) 1+ O}, (45)
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whereby is the one-loop coefficient of the QCB-function. The structure of these expansions is
partly dictated by chiral symmetry. Moreover, the asymptotic relation

ca(t) = 2L 1 O(t) (4.6)

holds, as can easily be shown by inserting Bq] (4.4) in[eq. (3.4).

Whent is sent to zero, the first term in the expansipn](4.3) of the scalar densitg bip like
1/t and eventually makes the dominant contribution to the time-dependent catelBn<Llearly,
for the ratioZ; Gt /Gy to be close t&, the flow time and the quark masses must be such that this
singular term is much smaller thai. Some rough estimates suggest that this condition is indeed
satisfied in the numerical experiment reported earlier.

4.3 A broader perspective

The small flow-time expansion may also be used to represent any gawgediivocal field
@(x) at vanishing flow time through an asymptotic series of local fields at someveoitiv timet.
In the simplest cases, where the fields are uniquely characterized bglitheimsion and symmetry
properties, the representation assumes the form

@(x) = c(t)Or(x) + O(t) (4.7)

with a coefficientc(t) that varies at most logarithmically agjoes to zero. Fields where such a
representation may conceivably be worth considering include the engsgyentum tensof [17]
and the various parts of the effective electro-weak Hamiltonian.

The use of local fields at non-zero flow time is attractive, because thermalization and
O(a)-improvement[[3] is very much simpler than the one of the ordinary localsfiflfl {2]L]. As
already noted, the renormalization is always multiplicative by a power of taekefield renormal-
ization constanZ,. The O@)-improvement, on the other hand, is achieved by including a mass
correction

Zy — Zy(1+ byamy, + bytrM), (4.8)
Mg = diag(Mgu, Mgd, . -.) : bare quark mass matrix (4.9)

in the renormalization factor of the quark field with flavour indeand by adding a contact term

X(t,X)X(sy) — a > K(t,x0,v){S(v,w) —agd(v—w)}K(s,y; o,w)" (4.10)

to the quark propagatd(v,w) in the contractions of the quark fields at positive flow times. The
kernelK(t,x;s,y) in eq. (4.1D) denotes the smoothing factor determined by the quark floi@gua
andcy is a new improvement coefficient that can be determined non-pertutydtiven a combi-
nation of pseudo-scalar correlation functiofjs [3]. In particulas)@fiprovement does not require
subtractions of higher-dimensional fields.

For field representations such §s}(4.7) to work out in practice, one rousvier be able to
accurately determine the coefficients multiplying the time-dependent fielderturpation theory,
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the coefficients of the fields of dimension 4 in the expansion of the energyemtum tensor in the
pure gauge theory were recently computed to one-loop ofder [17]-pedarbative calculations
of some of these coefficients may also be possible using the Ward identitietethat from the
conservation of the energy-momentum tensor in the continuum thedryAb8ther more widely
applicable method is to extract the coefficients from the asymptotic relationgsettay inserting
the field representation in suitable correlation functions, as in the case chéfficient [4.5), but
whether step-scaling strategies can be used in this context is not cleasainhp

Once the coefficients are known, calculations of hadronic matrix elementsirwggneral,
require a “scaling window”, where

a < V8t < relevant low-energy scales (4.11)

as otherwise the lattice effects and the systematic errors deriving fronegfiected terms in the
field representation are not guaranteed to be small. In this respect, theitaiom of the chiral
condensate along the lines described in this talk is a somewhat specidieesese the contribu-
tions of the neglected terms either vanish in the chiral limit or cancel in the prag@,/Gr;.

5. Wilson’s renormalization group revisited

In 1979 Wilson gave a memorable lecture at Cargese, where he prapasssithe “blockspin
renormalization group” for non-perturbative renormalization and thestcoction of coarse-grid
actions in non-Abelian gauge theorigs|[22]. An assumption made at the timihatdabe expecta-
tion values of iteratively blocked Wilson loops have a continuum limit. Wilson wels aware of
this, but remarked that a proof of scaling in lattice perturbation theory wmitfdather complicated
to carry out”.

We may now consider replacing the link blocking by the gradient flow andrtdoate the latter
with step scaling[[33], which may be regarded as a particular incarnatitmeatnormalization
group. For simplicity, the quark masses are set to zero in the following, bugxtension of the
discussion to the general case is straightforward and is of some inteénest,nsass-independent
renormalization schemes are inappropriate for the charm and the heaarks g

5.1 Step scaling

Step scaling is a finite-size scaling method, where the gauge coupling amehtdmmalization-
scale-dependent fields run with the lattice difsee fig[B). The precise choice of the normalization
conditions for the coupling and fields is only of practical importance in thisestnIn particular,
using the gradient flow, a possible definition of the running coupling iE4L[28]

g2(L) = constantx {t2<Et)}\/§:%L. (5.1)

As discussed before, the figki does not require renormalization. Moreover, since the flow time
in eq. (5.1) is scaled proportionally t&, the coupling depends on a single external scale and thus
runs withL as it should (the proportionality constant is a parameter of the renormalizati@me,
which may in principle be set to any vale][25]).
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Figure 3: In step-scaling calculations, the scale evolution amotmtshanging the lattice size at fixed
lattice spacing (i.e. fixed bare coupling) by, say, a factor 2. Then followsmarmalization step, where the
running couplingy®(L) (and thus_ in physical units) is held fixed, whila is increased by a factor 2. After
that the process continues with another scale evolutign ated so on.

The coupling [5]1) has some good technical properties that should allpvesating studies
to be performed with unprecedented precision. In particular, its compuitatiommerical lattice
QCD does not require any fits or extrapolations to be performed, nar itkogariance increase
significantly towards the large-volume regime of the the¢ry [26], wher¢acbis made with the
non-perturbative low-energy scales of the theory.

5.2 Construction of improved actions

Step scaling is usually combined with an extrapolation to the continuum limit of ticalted
step-scaling functiong [P3]. The calculation then effectively solves timeperturbative renormal-
ization problem in the continuum theory. When constructing improved latticeractioe goal is a
different one, namely to reduce the lattice effects as much as possiblaéafteg properly taking
into account the parameter and field renormalization.

For practical reasons, improved lattice theories may not be too complicdiedt.construction
must therefore start from a suitable ansatz for the action and the imprel@siiiith a reasonably
small number of parameters. The tuning of the parameters of the improveg thea proceeds
by matching lattices with different spacings as in fig[ 4 [22].

To be able to do this, a sufficiently large set of accurately computablematiaed quantities
is needed. So far this requirement was difficult to meet, but there is nowhapes that progress
can be made using observables based on the Yang—Mills gradient flothemdsociated quark
flow. The expectation values of the fields

tr{GuwGuw}, XX, XOuwGuvX, (5.2)
(YFX)(YI_X)7 r € {17 V:_Ju leu Vu)’&@w}; (53)

are simple examples of such quantities, and there is obviously a wide rahgéhef observables,
local and non-local ones, that may serve the purpose. Moreovef, thikm can be considered at
several flow times. Being able to probe the theory in many different channels is important @r ord
exclude a situation, where the parameter tuning removes some small lattids effene channel
but produces large effects elsewhere.

10
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Figure 4: At fixed couplingg?(L), renormalized quantities are independent of the lattieeisig up to lattice
effects. Improved actions and fields can therefore be tugeihbulating sequences of matched lattices and
by minimizing the differences in the measured values of tablé set of such quantities.

6. Concluding remarks

Some of the ideas discussed in this talk clearly need to be further develbpedgh both
analytical and numerical studies, before their viability can be assessedyang—Mills gradient
flow and its extension to the quark fields however stand on solid theoretmahd and there are
already a few important applications of the flow, which are known to wotkropractice.

The fact that the power-divergent mixing of the scalar quark density thihunit field can
be bypassed by going to non-zero flow time is intriguing and suggests thedrtie may perhaps
be possible in other cases of field mixing as well. Computations of electro-tnagadition matrix
elements, for example, might profit from such a change of strategy, éapilication of the Yang—
Mills gradient flow in this context probably belongs to the more distant future.
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