
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
1
6

Future applications of the Yang–Mills gradient flow
in lattice QCD

M. Lüscher ∗

CERN, Physics Department, 1211 Geneva 23, Switzerland
E-mail: luscher@mail.cern.ch

The Yang–Mills gradient flow has many interesting applications in lattice QCD. In this talk, some

recent and possible future uses of the flow are discussed, emphasizing the underlying theoretical

concepts rather than any computational aspects.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:luscher@mail.cern.ch


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
1
6

Yang–Mills gradient flow M. Lüscher

1. Introduction

In the past few years, the Yang–Mills gradient flow turned out to be a theoretically attractive
and powerful tool for non-perturbative studies of QCD. A key feature of the flow is certainly the fact
that local fields constructed at positive flow time renormalize in a simple way, however complicated
they may be [1 – 3]. Correlation functions of such fields calculated in lattice QCD therefore have a
well-defined continuum limit and thus provide interesting probes of the universal properties of the
theory.

Apart from a brief recap of some basic facts and equations, the subjectwill not be reviewed in
this talk. Instead the focus is on applications of the gradient flow which havenot or just barely been
considered so far. The computation of the chiral condensate via the quark density at positive flow
times is one of them, and its discussion here partly serves as an introduction to important concepts
such as the small flow-time expansion of local fields. There are potentially very interesting uses of
the latter in studies of QCD at non-zero temperatures and in computations of electro-weak transition
matrix elements, for example.

Another topic covered is the application of the gradient flow in the context ofrenormaliza-
tion and the continuum limit. While the flow itself is not a renormalization group transformation,
non-perturbative renormalization can be based on observables at positive flow times. Calculations
of the scale evolution of couplings and fields, using step scaling, as well assystematic construc-
tions of coarse-grid actions through a matching procedure are likely to profit from the use of such
observables, since their expectation values can often be accurately computed with a modest effort.

2. The Yang–Mills gradient flow in QCD

2.1 Flow equations

The Yang–Mills gradient flowBµ(t,x), t ≥ 0, of SU(3) gauge potentials is defined by the flow
equation

∂tBµ = DνGνµ , (2.1)

Gµν = ∂µBν −∂νBµ +[Bµ ,Bν ], Dµ = ∂µ +[Bµ , · ], (2.2)

and the initial conditionBµ(0,x) = Aµ(x), whereAµ(x) denotes the fundamental gauge field inte-
grated over in the QCD functional integral. Since the flow equation is of firstorder in the derivatives
with respect to the flow timet, the gauge potentialsBµ(t,x) are uniquely determined by their initial
value att = 0 and are thus well-defined functions of the fundamental gauge field.

Starting from the fundamental quark fieldχ(0,x) = ψ(x) at flow time zero, an associated flow
χ(t,x) of quark fields may be similarly defined through the equations

∂t χ = ∆χ, (2.3)

∆ = DµDµ , Dµ = ∂µ +Bµ . (2.4)

Clearly,χ(t,x) is a uniquely determined linear function of the fundamental quark field and a non-
linear function of the gauge potentialB(s,y), 0≤ s≤ t, and therefore of the fundamental gauge
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field. In the flow equation (2.3), the gauge-covariant Laplacian∆ could be replaced by the square
of the Dirac operator, but while this choice would be mathematically appealing, itdoes not appear
to offer any particular advantages in the present context.

It goes without saying that a regularization is required in the quantized theory for the gradient
flow and the associated quark flow to be well defined. Dimensional regularization is a possible
choice in perturbation theory and it is straightforward to set up both the gauge and the quark flow
on the lattice [1, 3]. For simplicity, I however continue to use a continuum notation and implicitly
assume a lattice regularization.

2.2 Smoothing property

In the direction of increasing flow time, the evolution of the time-dependent gauge and quark
fields tends to have a smoothing effect. It is possible to show this by expanding the solution of the
flow equations in powers of the fundamental fields. At the leading order ofthe expansion,

Bµ(t,x) =
∫

d4yKt(x−y)Aµ(y)+gauge & non-linear terms, (2.5)

χ(t,x) =
∫

d4yKt(x−y)ψ(y)+ . . . , Kt(z) ∝ exp
{

−z2

4t

}

, (2.6)

the fields are then seen to be smoothed with a Gaussian kernel over a spherical range of distances
with radius roughly equal to

√
8t. The smoothing property is unchanged at higher orders and is

also observed in numerical studies, the smoothing range being practically thesame as the one given
by the leading-order formulae (2.5),(2.6).

The Yang–Mills gradient flow was probably first considered in mathematics byAtiyah and
Bott [4] in their seminal work on the Morse theory of the space of gauge fields on two-dimensional
manifolds. In lattice QCD, field smoothing techniques are in use since many years. Repeated “stout
link smearing” [5] in fact amounts to a numerical integration of the flow equation(2.1) using an
Euler scheme, while the source-smearing operations proposed in refs. [6, 7] solve the quark flow
equation (2.3) on an equal-time hyperplane, albeit without simultaneously evolving the gauge field.

2.3 Observables

Gauge-invariant composite fields constructed at positive flow timet, such as

Et =−1
2tr{GµνGµν}, (2.7)

Prs
t = χ rγ5χs, Srs

t = χ r χs, r,s: flavour labels, (2.8)

are well-defined functions of the fundamental field variables and are therefore possible observables
like the ordinary composite fields. In particular, one may be interested in their correlation functions
and, more generally, the QCD expectation values of any product of localfields at zero and non-zero
flow times. Clearly, an observableOt(x) that is locally constructed at some flow timet > 0 is not a
local expressions in the fundamental fields, but essentially only dependson the field variables in a
spherical region of space-time centered atx, which I will refer to as the footprint of the observable
(see fig. 1).
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Figure 1: Local fieldsOt(x) constructed at flow timet > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the pointx, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flowimplies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, ifOt(x) is a bare, gauge-
invariant composite field at flow timet > 0 of degreen andn̄ in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2(n+n̄)Ot , (2.9)

where the renormalization constantZχ is independent oft. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the samefactorZχ .

The proof of these statements [2, 3] is based on an exact representationof the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many yearsago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density ¯uu+ d̄d of the up and down quarks
diverges like the second or third inverse power of the lattice spacing whenthe continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise toimportant significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zeroflow times,χ(t,x),
transforms in the same way as the fundamental fieldψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srs
t ±Prs

t , r,s∈ {u,d}, (3.1)
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Figure 2: As long ast is strictly positive, the pseudo-scalar two-point function in the PCAC relation (3.3)
has no short-distance singularities. Moreover, at distances|x| ≫

√
8t, the transfer matrix formalism may be

invoked to show that the correlation function falls off proportionally to e−Mπ |x|.

transform according to the(1
2,

1
2) representation of the SU(2)L ×SU(2)R chiral symmetry group

that acts on the up and down quark fields. The “time-dependent condensate”

Σt =−1
2〈S

uu
t +Sdd

t 〉 (3.2)

is therefore an order parameter for the spontaneous breaking of this symmetry.
From a technical point of view, the condensate (3.2) is an attractive quantity, because no power-

divergent terms need to be subtracted, when the continuum limit is taken, andonly multiplicative
renormalization is required according to eq. (2.9). Moreover, calculations of Σt through numerical
simulation are straightforward and quickly yield accurate results.

3.2 Relation toΣΣΣ

The time-dependent condensateΣt can be directly used for studies of spontaneous chiral sym-
metry breaking at non-zero temperatures, for example, but one may nevertheless be interested in
its relation to the standard chiral condensateΣ.

The link between the two condensates is provided by the PCAC relation. Whenprobed by the
pseudo-scalar densityPdu

t at flow timet and integrated over space-time, the relation implies

Σt =−M2
πFπ

2Gπ

∫

d4x〈Pud(x)Pdu
t (0)〉, (3.3)

whereMπ , Fπ andGπ denote the pion mass, the pion decay constant and the vacuum-to-pion matrix
element of the densityPud (see fig. 2). At large distances, the two-point function in this equation
falls off exponentially and another constant,Gπ,t , may be defined through the asymptotic formula

∫

d3~x〈Pud(x)Pdu
t (0)〉 ∼

x0→∞
−GπGπ,t

Mπ
e−Mπ x0. (3.4)

Now when the up and down quark massesmu,md are sent to zero, the integral in eq. (3.3) diverges
at largex and a few lines of algebra then show that

Σ = lim
mu=md→0

Σt
Gπ

Gπ,t
. (3.5)

In the SU(2) chiral limit, the time-dependent chiral condensateΣt thus coincides with the standard
condensateΣ up to a computable proportionality constant.
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√
8t [fm] a3Z−1

P Σt a3Z−1
P Σt

Gπ

Gπ,t

0.4 0.0006277(95) 0.003962(61)
0.5 0.0004251(58) 0.003872(55)
0.6 0.0002911(36) 0.003785(51)
0.7 0.0002017(23) 0.003711(48)

Table 1: Simulation results for the unrenormalized time-dependentcondensate and the ratio of constants on
the right of eq. (3.5). The values are given in lattice units and the quoted errors are statistical only.

3.3 Chiral perturbation theory

How exactly the chiral limit (3.5) is reached can be predicted using chiral perturbation theory.
The important point to note is that local fields at non-zero flow time with a footprint much smaller
than the Compton wave length of the pion are indistinguishable from strictly localfields when only
their matrix elements between low-energy pion states are considered. In the effective chiral theory,
and if

8tM2
π ≪ 1, (3.6)

the time-dependent densities (3.1) are therefore represented by the samefields as the ordinary chiral
densities, except for the fact that the coefficients in these expressionsare not the same.

To one-loop order of SU(2) chiral perturbation theory [9], the formula

Σt
Gπ

Gπ,t
= Σ

{

1− 3M2
π

32π2F2
π

ln(M2
π/Λ2

t )+ . . .

}

(3.7)

is then obtained, where

l̄t = ln(Λ2
t /M2)

∣

∣

M=139.6MeV (3.8)

is a new low-energy effective constant. While the form of the expansion (3.7) looks familiar, the
constant̄lt is unrelated to the well-known low-energy constants [9] and moreover depends on the
flow time t.

3.4 Numerical experiment

As already mentioned, the time-dependent condensate is easily computed through numerical
simulation of the lattice theory. For illustration, the results obtained in a first studyof this kind [3]
are now briefly recalled. In this run (labeledI1 in ref. [11]), the O(a)-improved lattice theory with
2+1 flavours of Wilson quarks was simulated on a 64×323 lattice with open boundary conditions
in time [10]. At the chosen point in parameter space, the lattice spacing is about 0.09 fm [12, 13]
and the pion and kaon masses are approximately equal to 203 and 520 MeV [11], respectively.

Using a representative ensemble of 150 gauge configurations, the values obtained for the time-
dependent condensate do indeed have small statistical errors (see table1). As a function of the flow
time t, the condensate decreases monotonically, but this trend is practically compensated by the
ratio of G-factors multiplying the condensate in eq. (3.5). The chiral correction (3.7) thus appears
to be small at the quark masses and flow times considered. Moreover, insertion of the lattice spacing
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a= 0.08995(40) fm and the renormalization constantZP = 0.5800(47) of the pseudo-scalar density
determined by the PACS-CS collaboration [13 – 15] yields

Σt
Gπ

Gπ,t
= [287(2)MeV]3 at

√
8t = 0.5fm (3.9)

for the renormalized ratio in theMS scheme at 2 GeV, i.e. a value well within the range expected
from previous calculations of the condensateΣ.

4. Small flow-time expansion

In all these calculations, no power-divergent terms were encounterednor were there any large
contributions that had to be subtracted or extrapolated away. Through thesmall flow-time expan-
sion, some further insight can be gained into how exactly the power divergences are avoided.

4.1 General form of the expansion

LetOt(x) be a gauge-invariant local field in the continuum theory at flow timet > 0. Since its
footprint decreases proportionally to

√
8t, the field looks more and more like a strictly local field

whent is taken to zero. Eventually,Ot(x) can be represented through an asymptotic expansion [2]

Ot(x) ∼
t→0

∑
k

ck(t)φk(x) (4.1)

in a series of local fieldsφk(x) at vanishing flow time with time-dependent coefficientsck(t). The
expansion holds when inserted in correlation functions at non-zero distances and if all fields are
properly renormalized. Clearly, for the expansion to be completely well defined, the chosen renor-
malization conditions must fix both the normalization and mixing of the fieldsφk(x).

The expansion coefficientsck(t) satisfy a renormalization group equation that determines their
asymptotic behaviour

ck(t) ∝
t→0

t
1
2(dk−dO)ḡνk{1+O(ḡ2)} (4.2)

at small flow times. In this equation,dk anddO are the engineering dimensions of the fieldsφk(x)
andOt(x), the exponentsνk are determined by the one-loop coefficients of their anomalous dimen-
sions and ¯g denotes the running coupling (in any scheme) at momentum(8t)−1/2 [2]. The fields
φk(x) with the lowest dimension thus dominate in the limitt → 0, all other terms being suppressed
by powers oft.

4.2 Example: expansion of the chiral densities (3.1)

The asymptotic expressions for the expansion coefficientsck(t) simplify considerably if the
renormalization-group-invariant (RGI) normalization convention is adopted for the fields and the
quark mass matrixM (the RGI convention is described in sect. 2.2 of ref. [16], for example).In the
case of the densities (3.1), the small flow-time expansion then assumes the form

Srs
t (x) = c0(t)M

rs+c1(t)tr{M2}Mrs+c2(t)(M
3)rs+c3(t)S

rs(x)+O(t), (4.3)

Prs
t (x) = c3(t)P

rs(x)+O(t), (4.4)

c0(t) =− 3
8π2t

{1+O(ḡ2)}, c3(t) = (2b0ḡ2)−8/9{1+O(ḡ2)}, (4.5)
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whereb0 is the one-loop coefficient of the QCDβ -function. The structure of these expansions is
partly dictated by chiral symmetry. Moreover, the asymptotic relation

c3(t) =
Gπ,t

Gπ
+O(t) (4.6)

holds, as can easily be shown by inserting eq. (4.4) in eq. (3.4).
Whent is sent to zero, the first term in the expansion (4.3) of the scalar density blows up like

1/t and eventually makes the dominant contribution to the time-dependent condensateΣt . Clearly,
for the ratioΣtGπ,t/Gπ to be close toΣ, the flow time and the quark masses must be such that this
singular term is much smaller thanΣt . Some rough estimates suggest that this condition is indeed
satisfied in the numerical experiment reported earlier.

4.3 A broader perspective

The small flow-time expansion may also be used to represent any gauge-invariant local field
φ(x) at vanishing flow time through an asymptotic series of local fields at some positive flow timet.
In the simplest cases, where the fields are uniquely characterized by theirdimension and symmetry
properties, the representation assumes the form

φ(x) = c(t)Ot(x)+O(t) (4.7)

with a coefficientc(t) that varies at most logarithmically ast goes to zero. Fields where such a
representation may conceivably be worth considering include the energy-momentum tensor [17]
and the various parts of the effective electro-weak Hamiltonian.

The use of local fields at non-zero flow time is attractive, because their renormalization and
O(a)-improvement [3] is very much simpler than the one of the ordinary local fields [19 – 21]. As
already noted, the renormalization is always multiplicative by a power of the quark-field renormal-
ization constantZχ . The O(a)-improvement, on the other hand, is achieved by including a mass
correction

Zχ → Zχ(1+bχamq,r + b̄χ trMq), (4.8)

Mq = diag(mq,u,mq,d, . . .) : bare quark mass matrix, (4.9)

in the renormalization factor of the quark field with flavour indexr and by adding a contact term

χ(t,x)χ(s,y)→ a8∑
v,w

K(t,x;0,v){S(v,w)−acflδ (v−w)}K(s,y;0,w)† (4.10)

to the quark propagatorS(v,w) in the contractions of the quark fields at positive flow times. The
kernelK(t,x;s,y) in eq. (4.10) denotes the smoothing factor determined by the quark flow equation
andcfl is a new improvement coefficient that can be determined non-perturbatively from a combi-
nation of pseudo-scalar correlation functions [3]. In particular, O(a)-improvement does not require
subtractions of higher-dimensional fields.

For field representations such as (4.7) to work out in practice, one must however be able to
accurately determine the coefficients multiplying the time-dependent fields. In perturbation theory,

8
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the coefficients of the fields of dimension 4 in the expansion of the energy-momentum tensor in the
pure gauge theory were recently computed to one-loop order [17]. Non-perturbative calculations
of some of these coefficients may also be possible using the Ward identities thatderive from the
conservation of the energy-momentum tensor in the continuum theory [18].Another more widely
applicable method is to extract the coefficients from the asymptotic relations obtained by inserting
the field representation in suitable correlation functions, as in the case of thecoefficient (4.6), but
whether step-scaling strategies can be used in this context is not clear at present.

Once the coefficients are known, calculations of hadronic matrix elements will,in general,
require a “scaling window”, where

a≪
√

8t ≪ relevant low-energy scales, (4.11)

as otherwise the lattice effects and the systematic errors deriving from the neglected terms in the
field representation are not guaranteed to be small. In this respect, the computation of the chiral
condensate along the lines described in this talk is a somewhat special case,because the contribu-
tions of the neglected terms either vanish in the chiral limit or cancel in the product ΣtGπ/Gπ,t .

5. Wilson’s renormalization group revisited

In 1979 Wilson gave a memorable lecture at Cargèse, where he proposedto use the “blockspin
renormalization group” for non-perturbative renormalization and the construction of coarse-grid
actions in non-Abelian gauge theories [22]. An assumption made at the time wasthat the expecta-
tion values of iteratively blocked Wilson loops have a continuum limit. Wilson was well aware of
this, but remarked that a proof of scaling in lattice perturbation theory wouldbe “rather complicated
to carry out”.

We may now consider replacing the link blocking by the gradient flow and to combine the latter
with step scaling [23], which may be regarded as a particular incarnation ofthe renormalization
group. For simplicity, the quark masses are set to zero in the following, but the extension of the
discussion to the general case is straightforward and is of some interest, since mass-independent
renormalization schemes are inappropriate for the charm and the heavier quarks.

5.1 Step scaling

Step scaling is a finite-size scaling method, where the gauge coupling and the renormalization-
scale-dependent fields run with the lattice sizeL (see fig. 3). The precise choice of the normalization
conditions for the coupling and fields is only of practical importance in this context. In particular,
using the gradient flow, a possible definition of the running coupling is [1, 24 – 26]

ḡ2(L) = constant×
{

t2〈Et〉
}

√
8t= 1

3L . (5.1)

As discussed before, the fieldEt does not require renormalization. Moreover, since the flow timet
in eq. (5.1) is scaled proportionally toL2, the coupling depends on a single external scale and thus
runs withL as it should (the proportionality constant is a parameter of the renormalizationscheme,
which may in principle be set to any value [25]).

9
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L

Figure 3: In step-scaling calculations, the scale evolution amountsto changing the lattice sizeL at fixed
lattice spacinga (i.e. fixed bare coupling) by, say, a factor 2. Then follows a renormalization step, where the
running coupling ¯g2(L) (and thusL in physical units) is held fixed, whilea is increased by a factor 2. After
that the process continues with another scale evolution step, and so on.

The coupling (5.1) has some good technical properties that should allow step-scaling studies
to be performed with unprecedented precision. In particular, its computationin numerical lattice
QCD does not require any fits or extrapolations to be performed, nor does its variance increase
significantly towards the large-volume regime of the theory [26], where contact is made with the
non-perturbative low-energy scales of the theory.

5.2 Construction of improved actions

Step scaling is usually combined with an extrapolation to the continuum limit of the so-called
step-scaling functions [23]. The calculation then effectively solves the non-perturbative renormal-
ization problem in the continuum theory. When constructing improved lattice actions, the goal is a
different one, namely to reduce the lattice effects as much as possible afterhaving properly taking
into account the parameter and field renormalization.

For practical reasons, improved lattice theories may not be too complicated. Their construction
must therefore start from a suitable ansatz for the action and the improved fields with a reasonably
small number of parameters. The tuning of the parameters of the improved theory then proceeds
by matching lattices with different spacings as in fig. 4 [22].

To be able to do this, a sufficiently large set of accurately computable renormalized quantities
is needed. So far this requirement was difficult to meet, but there is now newhope that progress
can be made using observables based on the Yang–Mills gradient flow andthe associated quark
flow. The expectation values of the fields

tr{GµνGµν}, χχ, χσµνGµν χ, (5.2)

(χ Γχ)(χ Γχ), Γ ∈ {1,γ5,γµ ,γµγ5,σµν}, (5.3)

are simple examples of such quantities, and there is obviously a wide range offurther observables,
local and non-local ones, that may serve the purpose. Moreover, allof them can be considered at
several flow timest. Being able to probe the theory in many different channels is important in order
exclude a situation, where the parameter tuning removes some small lattice effects in one channel
but produces large effects elsewhere.

10
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Figure 4: At fixed couplingḡ2(L), renormalized quantities are independent of the lattice spacing up to lattice
effects. Improved actions and fields can therefore be tuned by simulating sequences of matched lattices and
by minimizing the differences in the measured values of a suitable set of such quantities.

6. Concluding remarks

Some of the ideas discussed in this talk clearly need to be further developed,through both
analytical and numerical studies, before their viability can be assessed. The Yang–Mills gradient
flow and its extension to the quark fields however stand on solid theoretical ground and there are
already a few important applications of the flow, which are known to work out in practice.

The fact that the power-divergent mixing of the scalar quark density withthe unit field can
be bypassed by going to non-zero flow time is intriguing and suggests that thesame may perhaps
be possible in other cases of field mixing as well. Computations of electro-weaktransition matrix
elements, for example, might profit from such a change of strategy, but the application of the Yang–
Mills gradient flow in this context probably belongs to the more distant future.
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