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The lattice QCD simulation with the lattice chiral symmetry is very attractive, however, it is diffi-
cult to maintain the symmetry at a modest numerical computation cost. A candidate to reduce the
computational cost during the configuration generation with the HMC algorithm is to relax the
requirement of the chiral symmetry and to use the reweighing method recovering the symmetry
at the measurement phase. In this talk, we presented the reweighing method to restore the chi-
ral symmetry of the truncated overlap fermion operator. In order to avoid the large discrepancy
between the truncated overlap operator and the exact overlap operator, we split the reweighting
factor into several steps gradually increasing the order of truncation. We investigated the trun-
cation dependence of the reweighting factor on a set of quenched 83× 32 lattice configurations
generated with the DBW2 gauge action. We found that a large fluctuation on the reweighting
factor between a high-order truncated overlap operator and the exact overlap operator on a couple
of configurations. The origin of the large fluctuation seems to be due to a small eigenvalue of the
overlap kernel on these configurations.
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1. Introduction

It is a hard task to maintain the lattice chiral symmetry in lattice simulations. One possibility
to reduce the total computational cost is to relax the requirement of the chiral symmetry and to use
the reweighing method recovering the symmetry at the measurement phase. The HMC algorithm
with the truncated overlap fermion with approximate lattice chiral symmetry has been proposed by
Borici in terms of domain-wall type fermions [1][2][3]. The reweighting factor is the determinant
ratio between the truncated and exact overlap operators and can be estimated by stochastic noise
method. The success of the reweighting method relies on the small fluctuation of the reweighting
factor on the configuration ensemble and the overlap of the statistical histogram between ensemble
with the exact and with the truncated overlap operators.

The reweighting method for the overlap or domain-wall fermions has been investigated in
Refs. [4][5][6][7] aiming for tuning quark masses or improving chiral symmetry. In Ref. [5], the
reweighting method has been investigated to improve the chiral property of the domain-wall simu-
lations. In order to tame the fluctuation from the reweighting factor made of the ratio of two deter-
minants arising from two operators with different fifth-dimensional size, a determinant splitting via
nth-root trick and action parameter tuning were introduced and investigated. They found that one
obstacle to the efficient reweighting comes from the fluctuation among configurations. The quark
mass reweighting in the epsilon regime with dynamical overlap fermions has been investigated in
Ref. [4] and the method works well.

In this paper we investigate the reweighting method with the truncated overlap fermion instead
of the domain-wall fermion. The reweighting factor can be estimated in a four-dimensional form,
by which the fluctuation from the different truncation level of the overlap operator is reduced.
The behavior of the reweighing factor and the chiral symmetry violation on the truncation level is
investigated. Fukaya et al. also reported the reweighting technique recovering the chiral symmetry
with a similar setup [8].

In the next section we briefly describe the truncated overlap operator constructed from the
domain-wall operator. We also introduce the multiple step reweighting method using the truncated
overlap fermion. The last step of the reweighting requires the overlap operator exact at a numerical
precision. The exact operator is implemented via the optimal domain-wall operator with the low-
mode improvement [9][10]. The even-odd preconditioning for the low-mode improved optimal
domain-wall operator is implemented. In section 3 we show the simulation results on the reweight-
ing factor measured on a quenched QCD 83× 32 lattice configuration generated with the DBW2
gauge action. We summarize this paper in the last section.

2. Truncated overlap fermion and reweighting method

The truncated overlap operator can be realized by several methods depending on how to ap-
proximate the signum function contained in the overlap operator; (i) Cayley transformation type ap-
proximation, (ii) Partial fractional form of the rational approximation, (iii) Continued fraction form
of the rational approximation [11]. The truncation of the approximation induces a four-dimensional
approximated overlap operator (truncated overlap operator). Any of these approximations can be
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transformed into the form involving five-dimensional operators. We employ (i) Cayley transforma-
tion approximation which induces the domain-wall type five dimensional operator [1][2][3][12].

We employ the following truncated overlap operator;

DN5
TROV ≡ (Pε)†

(
D(N5,m f =1)

DWF

)−1
D(N5,m f )

DWF Pε, (2.1)

where Pε ((Pε)†)is the prolongation (restriction) operator between five-dimensional and four-
dimensional lattices defined by

Pε = (PL,0,0, · · · ,0,0,PR)
T , (2.2)

with PL and PR the chiral projection matrices. N5 is the size of the fifth dimension. D(N5,m f )
DWF is the

domain-wall operator;

D(N5,m f )
DWF = DWDX +Y, (2.3)

X =



b1 c1PL 0 0 · · · −m f c1PR

c2PR b2 c2PL 0 · · · 0

0 c3PR b3
. . . . . . 0

...
. . . . . . . . . . . .

...

0 0 0
. . . bN5−1 cN5−1PL

−m f cN5PL 0 0 · · · cN5PR bN5


, Y = X |b j=1,c j=−1 , (2.4)

where X has the indexes in the spin and fifth-direction. DWD is the standard four-dimensional
Wilson-Dirac operator with a negative mass M, and will be multiplied on each element of X . We
omit the identity matrix with the color, spin, and four-dimensional site indexes in front of Y . The
parameters b j and c j are tunable parameters introduced for the Möbius domain-wall operator in
Ref. [13].

The Möbius domain-wall operator interpolates between Shamir’s standard domain-wall oper-
ator and Boriçi’s domain-wall implementation of Neuberger’s overlap operator including Chiu’s
optimal operators [14]. We employ the following choices:

Type-A Shamir’s standard domain-wall operator: b j = a5, c j = 0.

Type-B Optimal Shamir’s standard domain-wall operator: b j = (w j +a5)/2, c j = (w j−a5)/2.

where a5 is a tunable normalization constant and w j’s are the coefficients from the Zolotarev op-
timal approximation for the signum function [14]. These choices realize the following overlap
operator in the infinite N5 limit.

DOV = lim
N5→∞

DN5
TROV =

1+m f

2
+

1−m f

2
γ5sign(HW ), (2.5)

HW = γ5DWD (a5DWD/2+1)−1 . (2.6)

The Type-A coefficient is used for the truncated overlap operator DN f
TROV, while the Type-B coeffi-

cient is for the exact overlap operator DOV.
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Since the configuration generation with the exact overlap operator is a hard task, we employ
the truncated overlap operator with a modest N5 in the configuration generation. The domain-wall
fermion simulations with a modest N5 seem to realize a small residual masses compared to the
QCD scale and lightest quark masses at the vanishing pseudo-scalar meson mass [15]. Thus we
expect that the ensemble generated with the truncated overlap operator with a modest N5 could
have sufficient statistical overlap to the ensemble with the exact overlap operator. The reweighting
method enables us to evaluate the expectation value with the exact chiral symmetry using the en-
semble generated with the truncated overlap operator. The expectation value of an observable O in
the two-flavor QCD case can be evaluated as

〈O〉=

〈
O

Nstep

∏
j=1

W( j)

〉
TROV(Nstep)

/〈Nstep

∏
j=1

W( j)

〉
TROV(Nstep)

, (2.7)

W(1) = det
[
DOV/D

N5(1)
TROV

]2
, (2.8)

W( j) = det
[
D

N5( j−1)
TROV /D

N5( j)
TROV

]2
(for j = 2,3, · · · ,Nstep). (2.9)

The sequence of the size of fifth dimension N5( j) is chosen to satisfy

N5(1) > N5(2) > N5(3) > · · ·> N5(Nstep−1) > N5(Nstep). (2.10)

The reweighting factors, W( j) ( j = 2,3, · · · ,Nstep), are evaluated with the Type-A coefficient. The
expectation values with 〈· · · 〉TROV(Nstep)

are evaluated on the configuration ensemble generated with

the truncated overlap operator D
N5(Nstep)

TROV . The determinants are evaluated with the stochastic estima-
tor with the Gaussian random vector χ;

W( j) = 〈exp(−dS)〉χ , dS≡
∣∣∣∣(D

N5( j−1)
TROV

)−1
D

N5( j)
TROVχ

∣∣∣∣2−|χ|2 . (2.11)

We expect that the determinant is close to 1 with a small interval step. The determinant splitting
reduces the fluctuation from the stochastic estimator on each configuration [16][5]. The success of
the reweighting method depends on the size of fluctuation of each W( j) among configuration.

In the last step of the determinant splitting we need the exact overlap operator DOV in W(1). To
ensure that it holds the exact lattice chiral symmetry at double precision, we employ the optimal
Type-B coefficient combined with the low-mode improvement method [9][10]. After computing
several low-modes and high-modes of the kernel operator HW Eq. (2.6), we shift the low-modes
according to the prescription of Ref. [10], and we determine the Zolotarev coefficients w j’s and
the size of fifth dimension N5 optimal for the shifted eigenvalue range of the kernel operator. The
low-mode improved optimal domain-wall operator D̃imp

DWF can be written as

D̃imp
DWF ≡ Dimp

DWFX−1 = D̃DWF +WkS†
k , (2.12)

D̃DWF ≡ DDWFX−1 = K− 1
2

Mhop, K = (4−M)+Y X−1, (2.13)

HWVk =VkΛk, Λk = diag(λ1,λ2, · · · ,λk), (2.14)

Wk = (a5DWD/2+1)γ5Vk, Sk = diag(λ̂1, λ̂2, · · · , λ̂k)−Λk, (2.15)
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where we multiply X−1 to explicitly extract the four-dimensional hopping matrix Mhop. In this
form the operator can be regarded as the N5-flavor four-dimensional operator with the spin-flavor
mixing mass matrix K. Vk spans the k-dimensional low-mode eigen space of the kernel operator
HW . λ̂ j are shifted eigenvalues λ̂ j = 2sign(λ j)maxs=1,··· ,k |λs|. The four-dimensional even/odd site
preconditioning can be applied not only to D̃DWF but also to the improved operator Eq. (2.12) with
the type-B coefficient. In order to apply the even/odd site preconditioning to the linear equation

D̃imp
DWFx = b, (2.16)

we introduce an auxiliary vector ζk with k componetns, and reorder the unknowns of the linear
equation to yield the following blocked form;(D̃DWF)ee (D̃DWF)eo (Wk)e

(D̃DWF)oe (D̃DWF)oo (Wk)o

(S†
k)e (S†

k)o −1


xe

xo

ζk

=

be

bo

0

 , (2.17)

where suffixes e and o mean the lattice site even/odd-ness. By eliminating ζk and xo from the
blocked equation, we can obtain the even/odd site preconditioned linear equation for xe.

3. Results

We investigate the behavior of the reweighing factor Eqs (2.8) and (2.9) and the chiral symme-
try violation due to the truncation of the overlap operator. We generate the quenched SU(3) gauge
configurations using the DBW2 gauge action with β = 0.87 on a 83× 32 lattice. We use the 10
configurations separated by HMC 100 trajectories. We scan N5 from 12 to 32 with the constant step
size N5( j−1)−N5( j) = 2. We employ (m f = 0.02,M = 1.8) for the domain-wall fermion parameter.
We observe MPS = 0.274(21) and MV = 0.661(65) at N5 = 12 for the pseudo-scalar and vector
meson masses respectively, which correspoinds to a−1 ∼ 1.3 GeV [17].

The twelve low and high eigen modes of the kernel HW (2.6) are measured to construct DOV as
in Fig. 1. Isolated small eigen values appear in some configurations. Such small eigen values affect
the quality of the chiral symmetry of the truncated operator. In order to see the chiral symmetry
violation we measure the following metric;

∆GW = η
†
[
{γ5,D−1}− 2

1+m f

(
m f D−1

γ5D−1 + γ5
)]

η , (3.1)

where η is the Gaussian random noise vector with unit norm and D = DOV or D = DN5
TROV. Figure 2

shows the chiral symmetry violation ∆GW measured with four noises on each configuration. The
accuracy of the Zolotarev approximation for the signum function we used is at 10−13 and the
optimal operator achieves 10−12 accuracy. The N5 dependence of ∆GW on the configurations having
small eigen values in HW is small, which indicates the slow convergence to the exact overlap
operator on such configurations.

Figs. 3 and 4 show the exponential weight exp(−dS) in Eq. (2.11) before taking noise average.
Two noises are generated on each configuration. The factor between the truncated overlap operators
at low order (N5 = 12 and N5 = 14) has large values (black circles in Fig. 3) while at high order
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Figure 1: Twelve high and low eigen values of the
kernel operator HW on each configuration.

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1  2  3  4  5  6  7  8  9  10

∆
G

W

conf #

Beta=0.87(DBW2,quench), 8
3
x32,

 G-W relation violation(m=0.02, M=1.8)

N5 = 12
N5 = 14
N5 = 30
N5 = 32

N5 = optimal

Figure 2: Violation of the Ginsparg-Wilson relation
∆GW on each configuration.
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Figure 3: Reweighting factor exp(−dS) before
noise averaging on each configuration.
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Figure 4: Reweighting factor exp(−dS) before
noise averaging on each configuration.

(N5 = 30 and N5 = 32) it has O(1) values (black circles in Fig. 4). The fluctuation between truncated
operators (black circles) is mild both on the noise dependence and on the configuration dependence.

As seen from the red triangles in the figures, however, the fluctuation of the factor between the
truncated operator and the exact operator is very large. We note that the large fluctuation occurs
on the configurations which contain small eigen values in HW (config.#= 1, 2, 3, 9, and 10). This
large fluctuation could spoil the validity of the use of the reweighting method for recovering the
exact chiral symmetry.

4. Summary

We have investigated the reweighting method aiming for restoring the chiral symmetry of
the truncated overlap operator. Using a set of quenched configurations, we have observed a clear
correlation among the appearance of small eigen values in the overlap kernel operator HW , the
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chiral symmetry violation, and the fluctuation of the reweighting factor between the truncated and
exact overlap operators. The appearance of the small eigen modes or near zero modes in the
kernel operator reflects the change of the topological property of the gauge configuration and zero
modes of the mass-less exact overlap operator. A more detailed analysis on the relation between
the topological zero modes and the approximation of the overlap operator has been carried out
by Fukaya et al.[8], where the mismatch between the zero mode of the overlap operator and the
truncated overlap operator has been reported.

It seems that the problems arising from the near zero modes of the kernel operator HW still
remain even if we employ the reweighting method.
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