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Improving the Fermilab action to third order in heavy quark effective theory yields the Oktay-
Kronfeld action, a promising candidate for precise calculations of the spectra of heavy quark
systems and weak matrix elements relevant to searches for new physics. We have optimized the
bi-stabilized conjugate gradient inverter in the SciDAC QOPQDP library and are developing a
GPU code. The action is rewritten and the needed gauge-link combinations are precalculated. In
tests with a MILC coarse lattice, this procedure accelerates the inverter by a factor of four. The
remaining floating-point operations are mostly simple matrix multiplications between gauge links
and fermion vectors, which we accelerate by more than an order of magnitude by using CUDA.
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1. Introduction

The quantity εK describes indirect CP violation in the K0-K̄0 system and enters tests of CKM
unitarity and other searches for new physics. The dominant sources of uncertainty in the Standard
Model (SM) value of |εK | are, first, the theory uncertainty in |Vcb|, which stems from the form
factors calculated with lattice QCD, and, second, the uncertainty in the matrix element B̂K , also
from lattice QCD. The values for B̂K and |Vcb| used in Ref. [1] were updated at this conference [2,
3]. With these results, the tension between the SM calculation and the experimental measurement
of |εK | remains in excess of 3σ . (With the inclusive value [4] of |Vcb|, the tension vanishes. The
exclusive and inclusive values of |Vcb| differ by 3σ [3].)

New lattice calculations of the form factors of the exclusive decays B̄→ D(∗)`ν̄ , which are
used to determine |Vcb|, are essential. Heavy-quark discretization errors are the largest source
of uncertainty at present, and the Oktay-Kronfeld (OK) action [5] has been designed to reduce
them. The OK action was developed by improving the Fermilab action [6] through third order in
HQET [5]. With tree-level matching, the third-order improvement terms consist of four dimension-
6 and two dimension-7 bilinears; no four-fermion operators arise. The HQET analysis suggests that
the charm-quark discretization errors of the OK action are comparable to those of other highly-
improved actions, while bottom-quark discretization effects are smaller [5]. In this report, we
describe an optimized conjugate gradient (CG) inverter for the OK action. For performance tests
we use the tree-level, tadpole-improved action that gave encouraging, albeit preliminary, results for
the spectrum [7].

2. Optimization

2.1 Dirac Operator

For a Dirac operator M and source vector ξ , the system of equations

∑
yβb

Mαβ ,ab
xy ψ

βb
y = ξ

αa
x (2.1)

must be solved to construct lattice correlators; x and y label the lattice sites, α and β are spin
indices, and a and b are color indices. The solution vector ψ can obtained by the CG method.
This algorithm iteratively updates the vector ψ from an initial guess. For each update the matrix
multiplication of Eq. (2.1) is required.

We focus on optimizing this matrix multiplication by reducing the number of floating-point
operations. We also consider how to exploit the size of local memory and node-to-node communi-
cation speed to increase efficiency without sacrificing performance gains from reducing the number
of floating-point operations.

We first rewrite the OK action by collecting terms with products of gauge links multiplying
the same neighboring fermion field. Suppressing spin and color indices,

∑
y

Mxyψy =W 0
x ψx +∑

µ

(
W+

µ,xψx+µ̂ +W−µ,xψx−µ̂

)
+∑

i

(
W++

ii,x ψx+2î +W−−ii,x ψx−2î

)
+∑

j>i

{
W++

i j,x ψx+î+ ĵ +W−−i j,x ψx−î− ĵ +W+−
i j,x ψx+î− ĵ +W+−

ji,x ψx−î+ ĵ

}
, (2.2)
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where µ = 1,2,3,4, µ = 4 is the temporal direction, and i runs over the spatial indices. For a
given position x, each W is a 12×12 matrix in spin-color space. W consists of sixteen 3×3 color
matrices. They are sums of gauge-link products of up to 5 links and a constant. Each gauge-link
product carries a factor of ±1 or ±i that depends on the involved γµ .

The W matrices remain the same for all CG iterations. We precalculate and reuse them to
accelerate the CG iteration. In subsequent sections we call them “precalculation matrices.”

2.2 Precalculation

Precalculation decreases the number of floating-point operations required for the Dirac opera-
tion, but saving the entire set requires too much memory. The full set of precalculation matrices in
Eq. (2.2) has 432 color blocks. The size of a gauge configuration is 4 color blocks. It turns out that
we do not need to hold everything in memory if we exploit the conjugate relation between opposite
direction pairs of precalculation matrices. After introducing explicit representations for γµ , we can
see that some color blocks are the same or equal zero.

Precalculation matrices multiplied to the off-diagonal(i 6= j) next-to-nearest neighbor fermion
fields satisfy the following relations.

W−−i j,x =−W++†
i j,x−î− ĵ

, W+−
ji,x =−W+−†

i j,x−î+ ĵ
. (2.3)

The operation of Hermitian conjugation is applied in both spin and color spaces. Although the
necessary relations are more complicated, the diagonal precalculation matrices W−µ,x,W

−−
ii,x can be

obtained from their positive direction counterparts W+
µ,x−µ̂

,W++
ii,x−2î

. Hermitian conjugation, a sign
change, and color-block reordering are required, depending on the representation chosen for the
Dirac matrices γµ . The relations are given explicitly in Eq. (2.10).

Hence, excepting W 0
x , the memory requirement for the precalculation matrices can be reduced

by a factor of two. In the end, we can cut the required memory down to 50 color blocks, excluding
the identical and vanishing color blocks.1 As a by-product, the unnecessary floating-point opera-
tions required for constructing the precalculation matrices and for multiplying the fermion fields
by null color blocks are removed.

Though beneficial in terms of reducing floating-point operations, exploiting the conjugation
relations introduces a complicated field access pattern because the operation of Hermitian conju-
gation is applied to the precalculation matrix shifted in the opposite direction. This pattern can
be seen in Eqs. (2.3) and (2.10). To update the fermion field on the site x, the fermion fields on
the neighboring sites need to be collected to the site x. Then these and the on-site fermion field
are multiplied by the pair of precalculation matrices. (In the temporal direction, only the nearest
neighbors are involved. In the spatial directions, all the nearest and next-to-nearest neighbors par-
ticipate.) However, using the conjugation relations requires collecting not only the fermion fields,
but also the precalculation matrices, which reduces off-node performance. Copying the precal-
culation matrices can be avoided by simplifying the access pattern. We distribute precalculation
matrices multiplied by a next-to-nearest neighbor fermion field over the nearest neighbors. This
simplification is depicted in Fig. 1.

1The mass term in W 0
x is separately treated in practice. It saves memory by 1 more color block, instead of increasing

the number of floating-point operations.
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The shifted precalculation matrices can be identified by rewriting Eq. (2.2). We have

∑
y

Mxyψy =W 0
x ψx +∑

µ

(
W+

µ,xψx+µ̂ + t−µW−
µ,x+µ̂

ψx

)
+∑

i

(
tiW++

ii,x−î
ψx+î + t−iW−−ii,x+î

ψx−î

)
+∑

j>i

{
t jW++

i j,x− ĵ
ψx+î− t−iW

++†
i j,x− ĵ

ψx− ĵ + t− jW+−
i j,x+ ĵ

ψx+î− t−iW
+−†
i j,x+ ĵ

ψx+ ĵ

}
, (2.4)

where t±µ are translation operators that shift the function (field) fx by one lattice spacing in each
direction.

t±µ fx = fx±µ̂ . (2.5)

The set of precalculation matrices saved for site x consists of W 0
x ,W

+
µ,x,W

++
ii,x−î

,W++
i j,x− ĵ

and W+−
i j,x+ ĵ

,
(i < j). Using the γµ representation in Ref. [6] and the notation of Ref. [7], the explicit form of the
precalculation matrices is

W 0
x =

u0

2κ
+

(
D0

x S0
x

−S0
x D0

x

)
, D0

x =−
cBζ +16c5

2u3
0

B̄D
x , S0

x =−
cEζ

2u3
0

ĒS
x , (2.6)

ĒS
x =

3

∑
i=1

σiEi,x , B̄D
x = i

3

∑
i=1

σiBi,x , W+
4,x =

(
0 S+4,x

S+4,x −U4,x

)
, S+4,x =

cEE

2u4
0
(U4,xĒS

x+4− ĒS
x U4,x) ,

(2.7)

W+
i,x =

(
D+

i,x S+i,x
S+i,x D+

i,x

)
, S+i,x =

1
2
(ζ −2c1−12c2)σiUi,x +

c3

2u4
0
(Ui,xσiB̄D

x+i−σiB̄D
x Ui,x +2iBi,xUi,x) ,

D+
i,x =−

1
2
(rsζ +8c4)Ui,x + i

c5

4
(
u−2

0 −u−4
0

) 3

∑
j,k=1

εi jkσ j(Uk,xUi,x+kU
†
k,x+i−U†

k,x−kUi,x−kUk,x−k+i)

+
c5

u4
0

[
Ui,xB̄D

x+i + B̄D
x Ui,x− iσi(Ui,xBi,x+i +Bi,xUi,x)

]
, (2.8)

W++
ii,x =

(
D++

ii,x S++
ii,x

S++
ii,x D++

ii,x

)
, D++

ii,x =
c4

u0
Ui,xUi,x+i , S++

ii,x =
c1 +2c2

2u0
σiUi,xUi,x+i , (2.9)

W−4,x =

(
−U†

4,x−4 −S+†
4,x−4

−S+†
4,x−4 0

)
, W−i,x =

(
D+†

i,x−i −S+†
i,x−i

−S+†
i,x−i D+†

i,x−i

)
, W−−ii,x =

(
D++†

ii,x−2i −S++†
ii,x−2i

−S++†
ii,x−2i D++†

ii,x−2i

)
,

(2.10)

W++
i j,x =

(
0 S++

i j,x

S++
i j,x 0

)
, S++

i j,x =
c2

2u0
(σi +σ j)(Ui,xU j,x+i +U j,xUi,x+ j) , (i 6= j) , (2.11)

W+−
i j,x =

(
0 S+−i j,x

S+−i j,x 0

)
, S+−i j,x =

c2

2u0
(σi−σ j)(Ui,xU

†
j,x− j+i +U†

j,x− jUi,x− j) , (i 6= j) . (2.12)

The matrix multiplications in Eq. (2.4) are isolated from shift operations occurring before and
after the multiplications. Pre-multiplication shifts gather nearest neighbor fermion fields. Post-
multiplication shifts distribute the multiplication results to the nearest neighbors, followed by the
fermion vector sum. Through these steps, shown in Fig. 2, each next-to-nearest neighbor fermion
field contribution is propagated to the proper destination site. In a parallel computing environment,
such as MPI, off-node communications are necessary only for the outermost boundary surfaces.
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2.3 Implementation

In the USQCD library [8], a test version of the OK action CG inverter was included as part of
QOPQDP. The inverter consists of a general purpose QOPQDP inverter that uses the bi-stabilized
CG algorithm and a specific implementation of the OK action Dirac operator. The MILC library
serves as our testing environment for the OK action CG inverters. We perform a mixed precision
inversion by calling the QOPQDP inverter or Dirac operation module in single or double precision,
as appropriate.

For CPU clusters, the optimized OK Dirac operator of Eq.(2.4) is implemented as part of
QOPQDP. For GPU clusters, only part of the matrix multiplication in the optimized Dirac operator
is replaced with CUDA function calls. To write working GPU code, we do not need to alter the
parts of the optimized CPU code responsible for communication and precalculation. As reflected
in the performance results, this GPU module can be further optimized.

3. Performance

To measure CG performance, we use a MILC coarse (a ≈ 0.12 fm) lattice with dimensions
203×64. The lattice is divided to fit 4 nodes of the SNU cluster DAVID1. Each node consists of one
core of an Intel i7-920 CPU together with an NVIDIA GTX480 GPU. Each node communicates
with a single-rail QLogic InfiniBand network.

Precalculation reduces overall CG time by a factor of 3.9 times. This gain is increased to 13.1
when the precalculation matrix multiplication is performed with CUDA. (See Table 1a.) Table 1b
and 1c show the timing details and CG performance in GFLOPS. Counting only the matrix multi-
plication, the maximum performance is 58.7 GFLOPS. Including memory copy time between host
and GPU global memory for the precalculation matrix and the fermion field, the performance is
decreased to 18.2 GFLOPS.

Because the CUDA module is called from the QOPQDP side, another overhead of QOPQDP
preparation time arises. To pass the QDP data types to the external CUDA function, they should
be exposed to the C intrinsic pointer variables. After arithmetic on the GPU, they must be recast

i
j

Figure 1: To update the fermion field on the site x (red), one needs in addition the fermion fields
defined on the neighboring sites (yellow). The precalculation matrices defined on the blue-circled
sites are also needed. By calculating shifted precalculation matrices, the field access pattern is
simplified, saving floating-point operations.
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Naive Precalc. CUDA

11814.8 3048.8 898.7

(a) CG Time

Precalc. CUDA

Matrix Multiplication 962[1206] 32[107]

CUDA Memory Copy, W 4[262]

CUDA Memory Copy, ψ 60[121]

QOPQDP Preparation 54[163]

(b) Matrix Multiplication

Communication 2[11]

Gamma Basis Change 16[32]

Spin Decomposition 23[45]

Vector Addition 69[66]

(c) Common Module

Table 1: CG performance: (a) The CG time is measured in seconds. “Naive” means the origi-
nal CG inverter without any improvement. “Precalc” means the CG inverter with precalculation
of W matrices. “CUDA” means the CG inverter with precalculation and with the Dirac opertor
programmed in CUDA. (b) The values are measured in the unit of milliseconds. Each value repre-
sents the time elapsed per single CG iteration. Values in the bracket [· · · ] correspond to the double
precision calculation. (c) The same notation as in (b).

to the previous QDP data types. With the current implementation, the total CUDA overhead time,
which consists of memory copy time (= CUDA Memory Copy, W + CUDA Memory Copy, ψ in
Table 1b) and QOPQDP preparation time, exceeds the matrix multiplication time by a factor of 3.7
(5.1) for a single Dirac operation of single (double) precision.

The GTX480 has 1.5 GB of global memory, which is not large enough to hold all the necessary
precalculation matrices at once. At best we can allocate GPU global memory space for the full
set of single precision precalculation matrices. The double precision update is divided into two
parts so that the double precision precalculation matrices can be held by the allocated GPU global
memory space. For each double precision update, the sets of precalculation matrices are copied
in succession from the host memory. Single precision precalculation matrices are copied at the
beginning of the iterations and used again in each iteration. When the precision is changed, the
precalculation matrices for the other precision are wiped from the GPU global memory. This

i
j

Step 1 Step 2

Figure 2: The dashed line is the computing node boundary. To update the fermion field (red),
in the first step, only the nearest neighbor fermion fields are gathered and multiplied with the
precalculation matrices (blue circles). In the second step, the resulting products are gathered from
the nearest neighbor sites and added together.
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precalculation matrix copy overhead can be overcome by using a GPU (such as GTX Titan) with
global memory sufficient to store the single and double precision precalculation matrices.

The remaining overheads are the fermion field copy time (CUDA Memory Copy, ψ in Table
1b) and QOPQDP preparation time. Together these occupy 96.6% (52.0%) of the total CUDA
overhead time in single (double) precision, so we expect more optimization of the GPU inverter
can be achieved without new hardware.

4. Future Work

By developing the OK action inverter with QUDA, the QOPQDP preparation time can be
removed. Reducing the CPU-GPU communication time requires reducing overheads from copying
the fermion fields and the precalculation matrices; the latter could be addressed with hardware
with more global memory. Finally, M†M preconditioning, even-odd preconditioning, and spin
projection are commonly used to optimize inversions of the Dirac operator with the CG algorithm.
Even-odd preconditioning appears very difficult for the OK action; we have not yet investigated
how to implement the remaining two techniques.
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