
P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
0
3
3

Möbius domain wall fermion method on QUDA

Hyung-Jin Kim∗

Brookhaven National Laboratory, USA
E-mail: hjkim@bnl.gov

Taku Izubuchi
RIKEN-BNL Research Center, USA
E-mail: izubuchi@quark.phy.bnl.gov

Möbius Domain Wall Fermion (DWF) method is an extended form of Shamir’s domain wall
fermion action, which provides the same overlap action correspondence in the limit of Ls → ∞.
Furthermore, Möbius DWF has an advantage in smaller size of chiral violation effect coming
from residual mass compared with Shamir’s DWF. At α = O(Ls), O(1/Ls) of Mres error in
Shamir’s DWF can be significantly reduced in Möbius DWF method[8]. This chiral enhancement
on Möbius operator enables us to use the smaller 5th dimensional size of lattice data without
scarifying the precision.
Furthermore, smaller size of lattice data is very helpful to compute the DWF algorithm on GPU
environment. In last 5 years, GPU has been widely used in lattice QCD applications and suc-
ceeded in high performance computation. However, limited size of available device memory is
still a weak point of GPU and which makes the DWF computation especially difficult. By using
the Möbius DWF method on GPU, we can relieve this limit and this is the reason why we have
implemented the Möbius DWF operator on the QUDA library. For preconditioned conjugate gra-
dient (CG) update, 4D even-odd preconditioning method is used but the detail of the algorithms
are modified for GPU optimization.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:hjkim@bnl.gov
mailto:izubuchi@quark.phy.bnl.gov

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
0
3
3

Hyung-Jin Kim

1. Introduction

There are several efforts to implement the GPU environment on the QCD Applications[1][2][3].
QUDA1 is one of well-known physics library based on the CUDA to accelerate the QCD algo-
rithms. It provides officially 5 different types of fermion operators (wilson, clover, twisted mass,
asqtad, domain wall) with O(102) GFLOPS of performance per GPU on multi node GPU platform.

Möbius DWF method[4][5] is an extended form of Shamir type domain wall fermion[9][10].
In the limit of infinite 5-th dimensional size, Möbius DWF operator exactly corresponds to the
overlap action. Usually, Möbius DWF has an advantage in smaller chiral violation effect compared
with Shamir type DWF[8]. Therefore, by using the Möbius method, one can achieve better residual
mass values even in the smaller 5th dimensional size of lattice data. This is definitely beneficial for
the applications which is strongly dominated by chiral symmetry breaking effect.

Furthermore, the bigger and the finer lattice requires huge size of computational memory also.
This situation is especially severe in DWF simulation. Unfortunately, the size of GPU memory
is small compared with system memory so, to handle such a huge size of lattice data, we need to
use many GPUs. But in that case, multi GPU scalability decreases as we increase the number of
GPUs because of the large surface data communication[2]. So if we can reduce the physical data
size without sacrificing the precision by Möbius DWF method, it will be very useful to save the
memory usage on GPU computation.

This is our main motivation of this research. There are several developed packages using
Möbius DWF method[6][7] on CPU based computer system. On the basis of QUDA library, we
have implemented the Möbius type of domain wall fermion CG inverter.

2. Möbius domain wall Fermion method

The explicit form of Dirac equation on Möbius DWF is given in Eq. (2.1)[8].

ψ̄DDW (m)ψ =
Ls

∑
s=1

ψ̄sD
(s)
+ ψs +

Ls

∑
s=2

ψ̄sD
(s)
− P+ψs−1 +

Ls−1

∑
s=1

ψ̄sD
(s)
− P−ψs+1

−mψ̄1D(1)
− P+ψLs−mψ̄LsD

(Ls)
− P−ψ1 (2.1)

where
D(s)
+ = b5Dwilson(M5)+1, D(s)

− = c5Dwilson(M5)−1 (2.2)

The main difference with Shamir type DWF is new parameter b5 and c5. If b5 is set to 1 and c5 is
equal to 0, this equation gives the exactly same result with Shamir‘s DWF equation.

Because the Möbius DWF form of equation is different with Shamir type of equation, precon-
ditioning form of dslash operator should be also changed. Like other lattice simulation, precondi-
tioned dslash operator has been well known prescription to reduce the computation and data size.
Instead of calculating a full size of vector, we can get the same result by calculating the even site
or odd site only. Here, even-odd means the sum of target lattice position indices is even or odd
number.

1see official web-page, https://github.com/lattice/quda

2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
0
3
3

Hyung-Jin Kim

In Shamir type of DWF case, even-odd condition is normally determined by summing over
all 5 dimensional indices. But to calculate the Eq. (2.1), we need to use the complete data set in
5th dimensional index. Therefore, Möbius DWF uses only 4 of (x,y,z,t) lattice indices for even-odd
preconditioning strategy and 5th s-index is given as complete set. Then, 4D even-odd form of Dirac
equation can be written as Eq. (2.3).

Ddw f =

(
M5 −κbM4

eo

−κbM4
oe M5

)
(2.3)

where
M4

eo,oe = 6DW
x,y(b5δs,t + c5 6D5) , M5 = 1+

κb

κc
6D5

and 6DW
x,y, 6D5

s,s′ are defined by,

6DW
x,y = ∑

µ

[(1+ γµ)U
†
x−µ,µδx−µ,y +(1− γµ)Ux,µδx+µ,y]

6D5
s,s′ = PRδs−1,t +PLδs+1,t −m f PRδs,0δt,Ls−1−m f PLδs,Ls−1δt,0

Projection operator PR,L and coefficients κb,c are given,

PR = (1+ γ5)/2 , PL = (1− γ5)/2

κ
−1
b = 2(b5(4−M)+1) , κ

−1
c = 2(c5(4−M)−1)

The diagonalized form of preconditioned matrix can derived by multiplying transformation matri-
ces on both side of Eq. (2.3)

D̃dw f
PC4D

=

(
1 κbM4

eoM−1
5

0 1

)(
M5 −κbM4

eo

−κbM4
oe M5

)(
1 0

κbM−1
5 M4

oe M−1
5

)

=

(
M5−κ2

b M4
oeM−1

5 M4
eo 0

0 δee

)
(2.4)

Practically, we will calculate the odd-odd part of preconditioned matrix D̃dw f
PC4D

and from this
result, we can easily get the even-even component also. Odd-odd part of Eq. (2.4) can be computed
by combinations of M5, M4

eo,oe and M−1
5 matrix operation. In the following section, we will explain

how we implement each operations with more detail.

3. Möbius implementation on QUDA

Most of the operations for preconditioning method can be easily implemented by modifying
the original QUDA code. Basically, M5 and M4

eo,oe subroutines are expressed as combinations
of 6DW

x,y and 6D5
s,s′ . Because both operators are also used in Shamir‘s type of DWF method, there

are already well implemented subroutines for those operations in QUDA library. Based on these
conventional QUDA subroutines, new 6D4

pre is defined,

6D4
pre ≡ b5δs,t + c5 6D5 (3.1)

3

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
0
3
3

Hyung-Jin Kim

FLOP/site Bytes/site (single precision)
6DW

x,y 1320 1440 (8 Read, 1 Write, 1 Gauge)
6D4

pre 168 + 48/Ls 384 (3 Read, 1 Write)
M−1

5 3Ls + 141 192 (1 Read, 1 Write)
MXPAY

5 192 + 48/Ls 480 (4 Read, 1 Write)

Table 1: The number of floating point operations and data size per lattice site on each operators.
MXPAY

5 (v1,v2)≡M5v1−κ2v2. Ls means lattice size of 5th dimension.

And then, M4
eo,oe operation can be simply noted as M4

eo,oe = 6DW
x,y 6D4

pre. Therefor, actual precondi-
tioned form of matrix operation will become D̃dw f

oo = M5−κ2
b 6D

W
oe 6D4

preM−1
5 6D

W
eo 6D4

pre.
In the 6DW

x,y of Table 1, the FLOP/Bytes ratio is given 0.9 but the FLOPS/bandwidth ratio of
C2050 GPU is about 9 in single precision. So we can consider that the performance of Dirac
operator on GPU is highly bounded by memory access bandwidth not by the FLOPS value. And
in the rest of the matrix operations in Table 1, the situations are the same. The major factor of the
bottle-neck in each operation is also the memory bandwidth.

But M−1
5 is totally new operation in QUDA program. M−1

5 can be divided into left-hand and
right-hand part as shown in Eq. (3.2) and again, each part can be written as a multiplication of two
matrices (Eq. (3.3)).

M−1
5 = M−1

5,RPR +M−1
5,LPL (3.2)

M−1
5,R =


1 0 . . . κm f

κ 1 . . . 0
. 0
0 0 κ 1


−1

=


1 0 . . . 0
κ 1 . . . 0
. 0
0 0 κ 1


−1

1+(−κ)Ls (−κ)Ls−1 . . . −κm f

0 1 . . . 0
. 0
0 0 0 1


−1

≡ A−1B−1 (3.3)

Actually, matrix A and B can be inverted explicitly. Practically, we calculate the output vector (w)
elements from multiplying the M−1

5 to source vector (v). We can solve this matrix inversion in two
different approaches, one is solving the output vector elements in sequential way and the other is
calculate the whole elements simultaneously from explicit matrix inversion. Each method has an
advantage depending on the computational environment.

The first sequential method is used in the CPU based Möbius DWF programs[6][7],
w0

w1

. . .

wLs−1

= M−1
5,R


v0

v1

. . .

vLs−1

=


v0−2κm f vLs−1−···−(2κ)Ls−1m f v1

1+(2κ)Lsm f

2κw0 + v1

. . .

2κwLs−2 + vn−1

 (3.4)

From Eq. (3.4), the first element w0 can be explicitly calculated from input vector elements (vi)
and M−1

5,R matrix. And next element w1 (or wi) element can be derived from the information of w0

and v1 (or wi−1 and vi) . In that way, we can get the whole data elements and it also remarkably

4

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
0
3
3

Hyung-Jin Kim

reduces the number of arithmetic operations from matrix-vector operation (O(n2)) to vector-vector
operation (O(n)).

But because of the data dependance, this method is not appropriate for the parallel computation
on GPU. In the GPU computation approach, each vector elements should be calculated in parallel
way, so we are using the explicit form of M−1

5 which is given in Eq. (3.5).
thread 0

thread 1

thread 2

. . .


︸ ︷︷ ︸

same thread block

do⇒ M−1
5,Rv =

1
1+(−κ)Lsm f


1 −(−κ)Ls−1m f −(−κ)Ls−2m f . . .

−κ 1 −(−κ)Ls−1m f . . .

(−κ)2 −κ 1 . . .

.


︸ ︷︷ ︸

summation direction on loop
⇒


v0

v1

v2

. . .


(3.5)

Even though this method increases numerical costs from O(n) to O(n2), we expect that the GPU
arithmetic performance is good enough to handle such a number of arithmetic operations. On the
other hand, explicit calculation of M−1

5 operation decreases the amount of data access from 2 read, 1
write to 1 read, 1 write, so we can expect that this strategy could be useful for GPU implementation.

4. Performance

For the performance test, we have used 4 of Nvidia C2050 and K20m GPUs. And QUDA (Ver
5.0), Columbia Physics System (CPS, Ver 5.0.23) library is used for physics measurement. Our
main target is optimizing the D̃dw f

oo operation. According to the Table 1, it can be calculated by
total 33 times of vector access, 4 gauge data access and 3309 + 3Ls + 144/Ls number of floating
point calculations per lattice site in Möbius case. Shamir type of Dirac operation needs total 23
times of vector access, 4 gauge data access and 2880 + 96/Ls number of floating point calculations
per lattice site.

Therefor, the FLOPS/bandwidth ratio of Shamir type of Dirac operation is slightly bigger (∼
10% at Ls = 8) than Möbius case. Because the bottle-neck of CG algorithm is in the memory band-
width, it is reasonable that Shamir type Dirac operator will show about 10% better performance
than the Möbius type operator.

243×64×8 MDWF DWF
C2050 390 470
K20m 840 924

Table 2: preconditioned Dirac operator performance on Möbius DWF and DWF scheme. unit is GFLOPS.
Number is 4 GPUs performance.

Tested performance result on Möbius and Shamir type of operator is given in Table 2. In
actual computation, Möbius operator is slower about 20% than Shamir type of operator. It looks
the performance of Möbius DWF operator is much slower than our expectation. This is because
the efficiency of embodied M−1

5 operator is not good enough yet.
Table 3 shows execution time of each matrix-vector operation. We can check whether imple-

mented sub routines are optimized enough or not by comparing the times with theoretical peak

5

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
0
3
3

Hyung-Jin Kim

performance. Comp. time at 3rd column of Table 3 means computational time for floating point
operations in peak performance. And Data access at 4th column of Table 3 means data Input-
Output (IO) time from GPU memory to GPU in peak memory bandwidth. For example, in 6DW

x,y

case, we can calculate these values as follow.

Comp. Time :1320× (local volume)/2(Even-Odd)/1TFLOPS∼ 1.2ms

Data Access :(9(spinor)+8(gauge link2))×4(bytes)× (local V)/2(EO)/126(GB/sec)3 ∼ 7.9ms

As you can see in Table 3, experimental time and ideal data access time of 6DW
x,y is very similar

which means most of the times are used for data transfer between GPU and GPU memory and
half of the computational time is overlapped with the data IO times. This is almost maximum
performance which we can get unless reducing the data size. In 6D4

pre and MXPAY
5 cases, the situations

are similar. Even though the overlap between the data IO and arithmetic computation is not obvious
in those cases, at least ∼80% (in MXPAY

5) of execution times are used for data access. Considering
the Data access times are calculated with maximum memory bandwidth, we can conclude the these
two operations are also optimized enough.

Operator type Exp. Comp. time (peak) Data access (peak)
6DW

pre 3.0 0.15 2.7
6DW

x,y 8.6 1.2 7.9
M−1

5 7.1 0.15 1.4
MXPAY

5 4.1 0.18 3.4
total D̃dw f

oo ∼ 34 ∼ 3.0 ∼ 26

Table 3: Time table of the subroutines in preconditioned Dirac operator. unit is milli second. There are 2 of
6DW

pre and 6DW
x,y operators, 1 of M−1

5 and MXPAY
5 operators per D̃dw f

oo . All measurements are done with single
precision.

But unlike these operators, the M−1
5 operator shows very huge discrepancy in experimental

result and ideal prediction. We suspect that caching failure is happening during the data IO se-
quence. In Table 1, we assumed that 2 (1 read, 1 write) of vector data accesses are needed for M−1

5
operation. But this assumption is not valid in current implemented program. In Eq. (3.5), our strat-
egy is that assigning the each parallel thread to the corresponding row of M−1

5 matrix. And then,
m-th thread will multiply n-th input element with (m,n) element of M−1

5 and add them to the row
direction by using loop sequence. More specifically, let‘s think about the multiplication sequence
of v0 element with 0-th column of M−1

5 matrix. Once v0 element is loaded to shared cache memory
area, it can be accessed with small latency to every thread processor.

But if the data sharing in cache memory is not successful, unnecessary data reloading is needed
and consequently, we need more data IO in the M−1

5 operation. If the 5th dimensional site are
divided by n times in thread geometry, it means we have to read the same input vector n times.
Unfortunately, the basic strategy of thread geometry in QUDA library is not appropriate to this

28 parameter SU(3) reconstruction method is applied to reduce the data IO
3Memory bandwidth is limited by 7/8 because of ECC

6

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
0
3
3

Hyung-Jin Kim

cache re-usability. The single thread block does not contains complete set of 5th dimensional sites
so there are unnecessary multiple data accesses on input vector.

The one solution for this problem is changing the thread geometry to appropriate M−1
5 . But

in this case, coalesced memory access pattern in QUDA library could be broken so we need to be
very careful for this modification. Now we are testing several combination of thread block size and
optimization of M−1

5 operator is still going on.

5. Conclusion

We have successfully implemented Möbius DWF method in QUDA library. Developing ver-
sion of QUDA program can be downloaded at official QUDA developer web page. Current ver-
sion of Möbius code shows 10∼20% slower performance in single Dirac operation sequence than
Shamir type of DWF operator. But even with developing version, user can easily achieve a TFLOPS
scale of computational capability within 4 of GPUs. We hope our Möbius implementation will be
useful in a future domain wall fermion research.

6. Acknowledgments

The research of Hyung-Jin Kim is supported by SciDAC-3: Searching for Physics Program
(KA2401021) funded by U.S. Department of Energy.

References

[1] M. A. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi, Solving Lattice QCD systems of
equations using mixed precision solvers on GPUs. Comput. Phys. Commun. 181, 1517 (2010)

[2] R. Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower, and S. Gottlieb, Scaling lattice QCD beyond
100 GPUs," International Conference for High Performance Computing, Networking, Storage and
Analysis. arXiv:1109.2935 [hep-lat]

[3] Yong-Chull Jang, Hyung-Jin Kim, Weonjong Lee, Multi GPU Performance of Conjugate Gradient
Solver with Staggered Fermions in Mixed Precision. PoS, Lattice 2011:309, 2011.

[4] Richard C. Brower, Hartmut Neff, and Kostas Orginos, Moebius fermions: Improved domain wall
chiral fermions. Nucl. Phys. Proc. Suppl.,140:686-688, 2005.

[5] Richard C. Brower, Hartmut Neff, and Kostas Orginos, Moebius fermions. Nucl. Phys. Proc.
Suppl.,153:191-198, 2006.

[6] Hantao Yin and Robert D. Mawhinney, Improving DWF Simulations: the Force Gradient Integrator
and the Möbius Accelerated DWF Solver. PoS, LATTICE2011:051, 2011.

[7] Andrew Pochinsky, Writing efficient QCD code made simpler: QA(0). PoS, LATTICE2008:040,
2008, See http://www.mit.edu/avp/mdwf/

[8] Richard C. Brower, Harmut Neff, and Kostas Orginos, The Möbius Domain Wall Fermion Algorithm.
arXiv:1206.5214v1 [hep-lat]

[9] David B. Kaplan, A method for simulating chiral fermions on the lattice. Phys. Lett.,B288:342-347,
1992.

[10] Yigal Shamir, Chiral fermions from lattice boundaries. Nucl. Phys., B406:90-106, 1993

7

