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The study of the interaction potential between static charges within Monte-Carlo simulation of
graphene is carried out. The numerical simulations are performed in the effective lattice field
theory with noncompact 3 + 1-dimensional Abelian lattice gauge fields and 2 + 1-dimensional
staggered lattice fermions. At low temperature the interaction can be described by the Coulomb
potential reduced by some dielectric permittivity εR. The dependence of the εR on the dielectric
permittivity of substrate is determined. In addition, the renormalization of the quasiparticle charge
is studied. At large temperatures the interaction potential can be described by the two dimensional
Debye screening. The dependence of Debye screening mass on the dielectric permittivity of
substrate allows to determine the position of the insulator-semimetal phase transition. It is shown
that graphene reveals in the semimetal phase the properties of the two-dimensional plasma of
fermions excitations.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:braguta@mail.ru
mailto:valgushev@itep.ru
mailto:nikolaev.aa@dvfu.ru
mailto:polykarp@itep.ru
mailto:ulybyshev@goa.bog.msu.ru


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
4
6

Interaction of static charges in graphene within Monte-Carlo simulation Victor Braguta

1. Introduction

Graphene is an allotrope of carbon, in which atoms form a two-dimensional honeycomb lattice.
Carbon atoms in graphene are bonded by sp3-bonds and the bond length is about 0.142 nm [1].

The charge carriers in graphene at low energies behave as massless Dirac fermions [2]. The
Fermi velocity of charge carriers vF ≈ c

300 . Since the Fermi velocity is much smaller than the speed
of light, magnetic and retardation effects in the interactions between charge carriers in graphene
may be neglected, thus electron-electron interaction in graphene is described by the instantaneous
Coulomb potential. The effective coupling constant for the Coulomb interaction in suspended
graphene

g2 =
e2

vF
≈ 2 (1.1)

is large, so this material may be considered as a strongly interacting system.
In real experiments graphene is put on a substrate. The effective coupling constant for graphene

on substrate with the dielectric permittivity ε is reduced by a factor 2/(ε +1). The variation of the
dielectric permittivity ε of substrate changes effective coupling constant and thus allows to study
the properties of graphene in both strong and weak coupling regime.

There exists a number of papers where graphene was studied by Monte-Carlo method [3,
4, 5, 6] and insulator-semimetal transition was found. At weak coupling regime (ε > 5, g2 <

0.7) graphene is in the semimetal phase. In this phase the conductivity is σ ≈ e2

h and there is
no gap in the spectrum of fermionic excitations. The chiral symmetry of graphene is not broken.
At strong coupling regime (ε < 3, g2 > 1) graphene is in the insulator phase. In this phase the
conductivity is considerably suppressed and fermionic excitations acquire dynamical mass [7].
The phase transition from weak to strong coupling regime takes place at the dielectric permittivity
of substrate ε ≈ 4.

2. Lattice simulation of graphene

2.1 Effective field theory Lagrangian

We present the results of MC simulations of graphene in the framework of effective field
model. Potential between static charges in graphene plane was measured. The non-MC calculations
of the potential were performed in [8] (see also references therein). The partition function of
graphene effective field theory can be written as [2, 9, 10, 11]:

Z =
∫

Dψ̄DψDA0 exp
(
−1

2

∫
d4x(∂iA0)

2−

−
∫

d3x ψ̄ f

(
γ0 (∂0− igA0)− ∑

i=1,2
γi∂i

)
ψ f

)
, (2.1)

where A0 is the zero component of the vector potential of the 3+ 1 electromagnetic field, γµ are
Euclidean gamma-matrices and ψ f ( f = 1,2) are two flavors of Dirac fermions which correspond
to the two spin components of the non-relativistic electrons in graphene, effective coupling constant
g2 = 2e2/(vF(ε +1)) (h̄ = c = 1 is assumed).
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The simulation of partition function (2.1) is carried out within the approach developed in [5].
In order to discretize the fermionic part of the action in (2.1) the staggered fermions [12, 13] are
used. One flavor of staggered fermions in 2+1 dimensions corresponds to two flavors of continuum
Dirac fermions [12, 13, 14], which makes them especially suitable for simulations of the graphene
effective field theory. Noncompact lattice electric field is used for the electromagnetic part of the
action in (2.1). Technical details of the lattice regularization scheme and simulation algorithm may
be found in [15].

2.2 Physical observables on the lattice

To measure the potential, V (~r), between static charges in graphene, we calculate the correlator
of two Polyakov lines 〈Pγ(0)(Pγ(~r))+〉:

〈Pγ(0)(Pγ(~r))+〉= aexp
(
−V (~r)

T

)
, (2.2)

where T 1 is the temperature of graphene sample,~r is restricted to the graphene plane, a parameter-
izes the self-energy part of the correlator, the Polyakov line P(~r) is

P(~r) = exp
(
−ie

∫ 1/T

0
dtA0(t,~r)

)
=

Lt−1

∏
t=0

exp(−iθ(t,~r),0). (2.3)

To suppress statistical errors, we measure the correlator of Polyakov lines in some rational
power. Physically this means that the interaction potential between static charges ±e · γ is consid-
ered. We have found that for γ ∼ 0.1 the uncertainty of the calculation is much smaller than for
γ = 1 (usual Polyakov line). In the calculations the value γ = 0.1 is used.

Below we use the following notations:

α0 = e2 2
ε +1

(2.4)

is the bare effective squared charge and

αr =
α0

εR
(2.5)

is the effective squared charge, renormalized due to interaction, εR is the effective dielectric per-
mittivity of graphene.

To get the potential between static charges, we measure the correlator of Polaykov lines and
fit V (~r) by lattice screened Coulomb potential:

V (~r) =
1
εR

VC(~r)+ c, (2.6)

VC(~r) = −α0
πγ2

L3
s as

∑
n1,n2,n3

1

∑i sin2(pias/2)
ei~p~r, (2.7)

pi =
2π

Lsas
ni. (2.8)

1T = vF/(Ltat) in terms of lattice regularization (Lt and at denote lattice size and lattice spacing in temporal
direction respectively).
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Figure 1: The renormalized squared charge αR as a
function of the bare squared charge α0 (rescaled by
the vF ) and the plot of one loop renormalization for-
mula (3.1). The insulator-semimetal phase transition
takes place at α0/vF ∼ 0.9.
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Figure 2: The dependence of the εR on the ε at
different temperatures obtained from the fitting with
Coulomb potential VC(~r) (2.7).

and determine εR. The constant c in formula (2.6) parameterizes self-energy contribution to the
potential, VC(~r) is the lattice Couloumb potential, which takes into account spatial discretization
and finite volume effects, ni are integers which run in the interval (0,Ls−1) (the point n1 = n2 =

n3 = 0 is excluded).

3. Numerical results and discussion

To study the dependence of the dielectric permittivity εR on ε and on the temperature, we
generated 100 statistically independent gauge field configurations at the lattices 203×Lt ,Lt =120,
56, 50, 38, 28, 26, 22, 18 for a set of values of the dielectric permittivity of substrate ε ∈ (1,8).
These lattices correspond to the temperatures T = 0.23 eV, 0.50 eV, 0.56 eV, 0.74 eV, 1.00 eV,
1.08 eV, 1.28 eV, 1.56 eV respectively2. The calculations were performed with as/at = 6 and m =

0.01, because these values of temporal lattice spacing and excitation mass reproduce continuum
limit rather well (see [15] for details). We have found an excellent agreement between our data
and expression (2.7) (χ2/do f ∼ 1 for all ε). Thus this result confirms that static charges at low
temperature in graphene interact via Coulomb potential.

At first let us consider the dependence of εR on ε at low temperature. In Fig. 1 we show how αR

is renormalized due to the interaction (T = 0.23 eV). In the semimetal phase the effective coupling
constant is not large α0/vF < 1 and one can try to apply perturbation theory to desribe our data.
At one loop approximation the dependence of αR on the α0 for graphene is given by the following
expression [16]:

αR

α0
=

1
1+ π

2
α0
vF

=
1

1+3.4 2
ε+1

. (3.1)

2It is important to note that we discuss phenomena related to electron degrees of freedom and neglect the thermal
vibration of the graphene honeycomb lattice. Thus we can consider the temperatures T ∼ 103−104 K, at which the real
graphene is melted.
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Fig. 1 shows that at small α0 we have a good agreement with perturbation theory.
The dependence of εR on ε at different temperatures is shown in Fig. 2. Formula (2.7) fits data

satisfactory (χ2/do f ∼ 1− 3) for all temperatures, but it is clear that the form of the εR = f (ε)
curve depends heavily on temperature. Moreover, the larger the temperature the larger χ2/do f .
One can assume that the worsening of the fitting model can be assigned to the following fact. At
sufficiently large temperature graphene contains equal number of electrons and holes. If one puts
electric charge into such media, a nonzero charge density will be created. This charge density leads
to some sort of Debye screening in graphene which is not accounted in (2.7).

To carry out the study of the temperature dependence of the interaction potential we replace the
lattice Coulomb potential VC(~r) in model (2.6) by the lattice version of Debye screening potential:

VD(~r) = 4πα0γ
2

∑
n1,n2

f (p1, p2)

1+2mD(Lsas)2 f (p1, p2)
ei~p~r, (3.2)

f (p1, p2) =
1

4L3
s as

∑
n3

1

∑i sin2(pias/2)
, pi =

2π

Lsas
ni,

where the integers n1, n2, n3 run over the values 0,1, ..,Ls− 1, except the case n1 = n2 = n3 = 0.
The derivation of the formula (3.2) is given in appendix A of [15]. It is assumed that the interaction
between quasiparticles is weak (this condition is satisfied only for sufficienty large ε). Debye
potential without explicit expression for the screening mass can be thought of as a modification of
the Coulomb potential with unknown parameter mD. In this sense formula (3.2) can be applied for
all values of ε and temperature.

The description of the available data became more precise (χ2/do f > 1−3 vs χ2/do f < 1 )
for all temperatures and ε after the modification of the potential. In Fig. 3 we plot the values of εR

as a function of ε for different temperatures. One can see that the εR obtained from the potential
with Debye screening is almost temperature independent contrary to the fitting procedure with
ordinary Coulomb potential. So, the fitting with Debye screening potential cancels the temperature
dependence of the dielectric permittivity εR and encodes it into Debye mass mD. This confirms
that in some region the temperature dependence of the interaction potential results from the Debye
screening.

Now let us turn to Debye screening mass. Evidently, mD is equal to zero if there is no interac-
tion between quasiparticles. This means that the expansion of mD starts for the term proportional
to the αR, which determines the strength of the interaction. The second property of the mD is its
disappearance in case of zero quasiparticles density n. So, one concludes that mD ∼ αR

n
T , where

temperature appeares in the denominator for the dimensional reasons3. In Fig. 4 we present the fol-
lowing observable r = (mDe2)/(T αR) which is proportional to the n/T 2. This observable allows to
study the density of quasiparticles in graphene. If the interaction between quasiparticles is weak,
the ratio (mDe2)/(T αR) equals to [15]

r =
mDe2

T αR
= 8log2

e2

v2
F
' 3600. (3.3)

3The density n in graphene has dimension ∼(energy)2.
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Figure 3: The dependence of the εR on the ε at differ-
ent temperatures obtained from the fitting with De-
bye screening potential VD(~r) (3.2).
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Figure 4: The dependence of the ratio r =

(mDe2)/(T αR) on the ε at different temperatures.
The line parallel to the ε-axis is the value of the ratio
(mDe2)/(T αR) at the approximation of weakly inter-
acting two-dimensional plasma of quasiparticles.

One can see from Fig. 4 that at low temperature Debye mass mD plays a role of order pa-
rameter of the insulator-semimetal phase transition. At small dielectric permittivity of substrate,
mD is equal to zero within the accuracy of the calculation, it means that the interaction potential is
ordinary Coulomb. At ε ∼ 4− 5 Debye mass becomes nonzero, abruptly reaching the regime of
two-dimesional plasma. Thus the study of Debye screening mass allows to determine the position
of the insulator-semimetal phase transition, which takes place at ε ∼ 4−5, in accordance with the
results of papers [3, 5]. At large temperatures mD is nonzero for any values of the ε . It is a smoothly
rising function of ε which is saturated at ε ∼ 4−5.

Now let us consider the semimetal phase in the region ε > 5. In this region the introduced ratio
(mDe2)/(T αR) tends to some constant value and this value is by a factor ∼ 1.5−2.0 smaller than
the one given by the formula (3.3). The possible source of this disagreement is that we used the
bare Fermi velocity vF in formula (3.3). Possibly one should use the renormalized Fermi velocity
vR

F , but this study is beyond the scope of this paper. The vR
F is larger than the vF , so the inclusion

of Fermi velocity renormalization will push the constant (3.3) to the correct direction. The ratio
vR

F/vF may be estimated as∼ 1.2−1.4 according to Fig. 4. This value is in a reasonable agreement
with the results obtained within Monte-Carlo simulation of graphene [17] and with experiment
[18]. Accounting the fact of Fermi velocity renormalization one can conclude that in the semimetal
phase electron excitations in graphene form a weakly interacting two-dimensional plasma.
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