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In this work, results are presented of Hybrid-Monte-Cairioidations of the tight-binding Hamil-
tonian of graphene, coupled to an instantaneous long-itar@body potential which is modeled
by a Hubbard-Stratonovich auxiliary field. We present aestigation of the spontaneous break-
ing of the sublattice symmetry, which corresponds to a pla@sesition from a conducting to
an insulating phase and which occurs when the effectivedineture constara of the system
crosses above a certain threshatgl Qualitative comparisons to earlier works on the subject
(which used larger system sizes and higher statistics) ateerand it is established thag is of a
plausible magnitude in our simulations. Also, we discuffeinces between simulations using
compact and non-compact variants of the Hubbard field arskpte quantitative comparison of
distinct discretization schemes of the Euclidean time-tlkmension in the Fermion operator.
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1. Introduction

In recent years, much interest has arisen in the propertigeaphene, a one atom thick sheet
of carbon atoms arranged on a hexagonal "honeycomb" lattideas become clear that such a
simple structure generates a magnitude of unusual quarffaotsg which not only make graphene
a promising candidate for a wide range of technologicaliagpbns but also a great model system
to study processes commonly associated with high-energsigg? The later stems from the fact
that the tight-binding Hamiltonian which describes elect in therr-orbitals of the carbon atoms
(with additional terms describing electromagnetic twahpmteractions) is well approximated by a
variant of Quantum Electrodynamics inrt2l dimensions in the limit of low energies (see e.g. Ref.
[2]). In this limit, electronic quasi-particles behave aassless Dirac particles, with a relativistic
dispersion relation. In contrast to QED however the intingdheory is strongly coupled, since the
small Fermi velocity ofe ~ ¢/300 of the electrons generates an effective fine structurstant
which isa ~ 300/137~ 2.2.

It is this surprising connection to relativistic field-thigavhich drove the high-energy physics
community to take interest in graphene. The strongly calipbgure of the interacting system mo-
tivated the utilization of established non-perturbativetimods such as the simulation in discretized
spacetimes. One of the main questions in such studies, whafhdirect consequence to techno-
logical applications, is whether or not there exists a bgal-n the interacting system which is
absent in a pure tight-binding model. This corresponds fmatsineous breaking of the symmetry
under exchange of the two triangular sublattices of thelgrap sheet and is mapped onto chiral-
symmetry breaking in the low-energy effective theory. Mmer, graphene allows for a tuning
of the effective coupling constant, by affixing the sheet wubstrate which generates dielectric
screening. Itis thus of interest whether a phase-transitmm a conducting to an insulating phase
takes place for some value af and whether the critical value lies in a range which can lpeex
mentally realized (suspended graphene giving an upperd)o@ince recent experiments provide
evidence that graphene in vacuum is in fact a conductor {33 important to establish model
calculations which match the observation.

Early attempts at simulating graphene on the lattice stlidfie low-energy limit only, since the
application of QCD methods is most direct here. Most promiige Refs. [4] simulated the low-
energy theory using staggered Fermions, whereas Ref. \(8}ligated a variant of th€hirring
model which has many similarities with QER . Both find a phase transition to a gapped phase
for a > ac ~ 1, which is well within the physical region. More recentlypath integral formula-
tion of the partition function was derived directly from thight-binding theory, which preserves
the hexagonal structure of graphene and employs unphydigxktization in the time dimension
only [6], with the spatial lattice spacing as a free paramttat can be taken from experiment.
In this formulation, interactions are modeled by a non-lquatential which is generated by a
Hubbard-Stratonovich field. It is immediately clear thas tias many advantages. Not only does it
alleviate issues concerning parameter matching, it alsa®pp new opportunities to study physics
beyond low energies, such as the effect of interactions emétk-disrupting Lifshitz transition,
which occurs in the tight-binding theory at the Van Hove siagty at finite density [7]. Recently,
two distinct simulations of the hexagonal lattice have beamducted: One where an unscreened

LFor an extensive but far from exhaustive review of graphdrempmenology see Refs. [1].
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Coulomb potential is modeled by gauge links [8] and anothieere the instantaneous two-body
potential was used [9]. The later work chose a form of themqg@kwhich accounts for additional
screening by electrons in tle-orbitals, which was calculated within a constrained ranghase
approximation (cRPA) in Ref. [10]. While simulations withet unscreened potential yielded a
prediction forac consistent with the previous simulations of the low-endfgory, Ref. [9] found
evidence that screening is a mechanism which can mev® larger values, possibly outside of
the physically accessible region.

In this work, first results of a very recently completed Hgbkilonte-Carlo code are presented,
which simulates the hexagonal theory with a non-local p@éas in Refs. [6] entirely on GPUs.
We present an investigation of the conductor-insulatoispheansition on a rectangular graphene
sheet ofNy = Ny = 6 (counting coordinates in one triangular sub-lattice) ahdw that, when
properly choosing the exact form of the potential, we finadxgrwhich is of a plausible magnitude
compared to the previous works. We also conduct an inveistigaf the discretization errors of
the second order discretization scheme developed in Rednf@discuss distinct treatments of the
Hubbard field. Our long-term goal is to obtain a precise mtéuti for ac and to investigate the
physics of the Van Hove singularity for the interacting case

2. The path-integral and Hybrid-Monte-Carlo

A detailed derivation of the path integral formulation o ghartition function of the interacting
tight-binding model is presented in Refs. [6]. We only revithe crucial steps here. The starting
point is the Hamiltonian of the model in second quantizednfowhich is

H = Hp + He + Hn = ; (—K) (@ sBys+ B sBxs) + 3 QMg+ > Ms(@) 41811+ ax18; 1)
<X1y S Xy X

(2.1)
Here a;gs, ays are Fermionic creation- and annihilation operators whigspect the usual anti-
commutation relations.s denotes the electron spin and takes the vatués Kk ~ 2.8eV is the
hopping parametems = +mis a “staggered” mass, which has a different sign on eacHagtibe
and which is added to serve as a seed for sub-lattice symim&taking (simulations are extrapo-
lated tom — 0). The first sum runs over all pairs of nearest neighbor ,sitbde the second and
third sums run over all pairs of sites and all sites respelstivi he interaction matrix,y need not
be further specified at this point, other than that it be pasdefinite.qx = a;lam + a;_laxrl -1
is the charge operator where the constant is added to malsys$kem neutral at half filling. To
prevent a type of Fermion sign problem from occurring laten transformations are made: To
introduce new operatots, = a1, bx= ai‘fl and flip the sign of these on one sub-lattice.

The functional integral foZ = Tre PH (here is 1/ksT) can now be derived using @o-
herent statformalism? The essential step is to factor the exponential iNtderms e FH =
e %He " e (6= B/N) and to insert between them complete sets of Fermionic eaber

2The temperature is that of the gas of electronic quasigiastionly and is not equal to the physical temperature of
the graphene sheet.
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states(y, x| = (0]e™ 2@ WP gy ) = e IxWaal+nbd) |0y | This leads to the expression

N1
Tre PH :/ I_L [I_l dyi dynedny dnge | € ZX(wxf‘“l’ux”ﬁnx“lnx’t“)<q—’t+1>’7t+1|e_6H|u’t>nt> :
t= X

(2.2)
Here (i andny; are Grassman valued field variables which replace the lanjoenators. Anti-
periodic boundary conditions in the time-direction are liggh (Y n, = — Yo, Nxn = —1xo0)- We
now use the identityy, n|F(al,ay,bl b))y, 0y = F(y;,@,.n5,.n,) e %% +mm  which
uses coherent states to map normal ordered functions afdagerators to functions of Grassman
variables and obtain

N—1
Tre BH — / I_L [I_l dl.IJZt diy dn:,t dnx,t] exp{ — 5[2 Qut+1tViyQyit 41t
t= X Xy

- Z K (Wt Wyt + Wy a Wt + Nyealxt + N Myt) + Z Ms(Wht11 Wt + NxrsaMxt)
(xy) X

+ ZVxx(q-’;tJerx,t + n:,tﬂ’?x,t)] - Z [L/—’Zt-fl(lﬂx,wl — Pyy) + n;,t+1(’7x,t+1 - nx,t)] } .
X X
(2.3)
Here we have applied normal orderingHowhich leads to the additional termV, and then con-

siderede°" to be normal ordered, which implies a discretization eff¢B/N;) (which vanishes
for Ny — ). Also, we have defined a charge fie€dd; v = Y5 Uy — Ny Nx-

Eq. (2.3) contains fourth powers gf, . We must get rid of these if we wish to carry out Gaus-
sian integration and obtain a Fermion determinant, whiakesessary for HMC. This is achieved
by applying the Hubbard-Stratonovich transformation

_ N—1 _ . _
e o th:to ! ZX.y Qx.t+1.thyQy,l+l,t ~ / [ I_L |_| d (B(J ] e % th:to ! ZX,y @,tV{yl Br—1 9 th:to ! >x Pt Qxtr1t , (2 4)
t= X

which eliminates fourth powers, at the expense of intraaigiein auxiliary fieldg : and introducing
the inverse of the matri¥yy. The constant factor before the integral in Eq. (2.4) canrbged.
Combining equations (2.3) and (2.4) and carrying out Gaunssitegration finally yields

N1
Tre AH :/ [[L |:| Ay

This form is suitable for simulation via HMC. The determihaan be sampled stochastically by
using pseudo-Fermion sources and tipugmains as the only "dynamical” field. The matkikis
defined in terms of its components as

%mem - %@y@/ S8 10) K'Y Bend 10+ MeByd 1+ VioBed 10+ iByd v
n

(2.6)

e 8 3tk Ty PV detM (@)|? . (2.5)

Heren denotes vectors connecting nearest-neighbor sites. $nisehermitian, there is no sign
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problem.

Simulations based on Eq. (2.6) have a severe problem: The+ep makes deM(¢) a
polynomial of orderpN whereN is the number of lattice sites. Thus, rounding errors arelifigth
in an uncontrollable way. As is discussed further in SecBpthis indeed make simulations using
(2.6) impossible. The solution was worked out in Refs. [@}eve it is shown that one may replace

BNy 10+ 1K By 1 — dRR8,8 10 @7)
which transformsp into a phase that is additive in dd{¢) and thus numerically stable.

It should be noted that that (2.6) is by far not the only pdesibrm of M. As Refs. [6]
discuss, there is a great deal of freedom in discretizingithe-direction and this can be exploited
to construct improved actions which converge faster to tmgicuum limit. A second order action
was presented in Ref. [9], which is constructed by factoerg(—dH ) such that the interacting
part is split off, and inserting an additional set of cohéstates between the terms:

Ne—1

2N -1
Tre PH = / [ r!) I_ldw;,tdll—’x,tdnztdnxi] r!) g Dbt alat ot a)
t= X t=

X (W, Nat|€ M) oo o 1) (Watit, N 1l€ e Yo, Nats2) - (2.8)

Carrying out the calculation in analogy to what was discdsg®ve (using the compact version of
the Hubbard field), one obtains the following Fermion opmtat

Moo ) = Oy(r — Ayap) — %K % Oyx il 1y + %ms&yﬁﬂ,t/ ‘teven 2.9)
xt)(yt') — ! )
BoyB — BB 1 EXP(—i B Bee-1)/2) t odd

Note that the Hubbard field now only appears on odd timeslittewas hypothesized in Ref. [9]
that this version of the Fermion operator has reduced dization errors.

We wish to investigate spontaneous breaking of sub-laijcemetry. Thus we require a
proper order parameter. The obvious choice is to use thereifte of number density operators on
the two sub-lattices (denoted herefaandB). In the functional integral form, this is expressed as

o) = g5 [ 7wow anon'[ 5

At

(W;Hllﬂx,t + n:,t—s-lnx,t) - g (l!!;‘,mwx,t + ’7;t+1’7x,t) ] e PH
X

/-@(P [—det(MMT)] e S = ZO xt+l (xt) EBM iy - (210

The above is valid for the first order discretization schelneva. For the second order Fermion
operator, one may insefy on even time-slices only to obtain an analogous expression.

3. Results

We have simulated rectangulbly = Ny = 6 (base vectors defined in a triangular sub-lattice)
graphene sheets with periodic boundary conditions usirly the first and second order Fermion
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operators. We chose a potential which is constructed piseevhe on-site\yg), nearest-neighbor
(Vo1), next-nearest neighbo¥{,) and crossing term (across the hexagdn) are the cRPA values
of Ref. [10], while the long-range part is an unscreened Qubl potential. We account for pe-
riodicity by adding one set of eight mirror images, arrangkahg the rectangular boundary. This
may be problematic due to the zero mode in the potential. Mame we have choseryy = 4.15eV
which is slightly smaller than in Ref. [10] in a attempt to wilato [10] after the contribution of
mirror charges is taken into account (probably one shoutddoahis and us&/y = 4.65eV di-
rectly). Also, at this stage, the toroidal structure of thi¢e was not properly taken into account:
We took the shortest path that does not cross the boundasadhef the shortest actual path as
the "direct" connection. Addressing these issues is wogkagress. We chosé = 2.0 &/~ (as

in Ref. [9]). An effectivea = (300/137)(1/¢) is introduced as a free parameter which implies
a rescaling ofy — Viy/€. Our first observation is that the non-compact Hubbard fieiddeed
problematic. Foremost, we were not able to observe disfimcin-zero expectation values of the
order parameter. We thus use the compact version only. The below shows a comparison of
the discretization errors of the first and second order eigation schemes (labeled "standard"
and "improved" in the following). These were obtained by swesng (Ay) on roughly one hun-
dred independent configurations for each combinatiofoof, N;) and fitting results obtained for
differentN; € [12,...,28] to (An) = €1 % (1/Nt) + Co.

B [ev_l] a meV| C1,std C1imp C2.std C2,imp
2.0 187 | 03 | —0.748) | —0.81(3) | 0.31(1) | 0.320(4)
2.0 187 | 05 | —1.0L7) | —0.98(8) | 0.4628) | 0.4638)
2.0 255| 05 —1.5(1) —1.3(1) | 0.566(3) | 0.5633)
2.0 218 | 05 | —-1.02(5) | —1.4(2) | 0.4935) | 0.54(3)

These results provide strong evidence that both versionsmp converge to the same continuum
limit but are in fact equal for anl;. It thus appears that nothing is to be gained by using thenskeco
order action.

Subsequently we performed an investigation of the phassitian. We simulated for many
different choices ofr, where masses were chosemas 0.5,0.4,0.3,0.2,0.1eV for each case and
simulations were extrapolated to the continuum fildm-= [12, ..., 28] for each set ofa, m). Again
roughly one hundred independent measurements were doeadbrsef{a,m,N;) The continuum
results are shown in Fig. 1. We have extrapolatechte O for eacha using(Ay) = c1m? + com+
c3. We find that our choice of potential generatesarr 4.

4. Conclusions and Outlook

We have demonstrated here that our code produces qualiyathe expected behavior, with
a phase transition occurring at ag ~ 4 which is not far from what was found in Ref. [94{ ~
3.12). We stress that our result represents a plausibilitglcheot a prediction. The potential
we have chosen differs from Ref. [9] and the system size ishnsutaller. Moreover, boundary
conditions were not addressed in the same way. Very recéimtiye has been substantial progress in
this regard: We have implemented a computation of the paten& Fast Fourier Transformation,
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Figure 1: Phase transition dfly = Ny = 6 system (left figure). The red line and dots representrihe 0
extrapolated results. The right figure shows the extrajooldibr a few exemplary choices of.

which now allows us to simulate at larger volumes. When cimgothe same potential as Ref. [9]
and properly addressing boundary conditions, it appeamsrezaow able to reproduce their results
also quantitatively. We are thus confident that our code s meady for large-scale operation.
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