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In this work, results are presented of Hybrid-Monte-Carlo simulations of the tight-binding Hamil-

tonian of graphene, coupled to an instantaneous long-rangetwo-body potential which is modeled

by a Hubbard-Stratonovich auxiliary field. We present an investigation of the spontaneous break-

ing of the sublattice symmetry, which corresponds to a phasetransition from a conducting to

an insulating phase and which occurs when the effective fine-structure constantα of the system

crosses above a certain thresholdαC. Qualitative comparisons to earlier works on the subject

(which used larger system sizes and higher statistics) are made and it is established thatαC is of a

plausible magnitude in our simulations. Also, we discuss differences between simulations using

compact and non-compact variants of the Hubbard field and present a quantitative comparison of

distinct discretization schemes of the Euclidean time-like dimension in the Fermion operator.
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1. Introduction

In recent years, much interest has arisen in the properties of graphene, a one atom thick sheet
of carbon atoms arranged on a hexagonal "honeycomb" lattice. It has become clear that such a
simple structure generates a magnitude of unusual quantum effects, which not only make graphene
a promising candidate for a wide range of technological applications but also a great model system
to study processes commonly associated with high-energy physics.1 The later stems from the fact
that the tight-binding Hamiltonian which describes electrons in theπ-orbitals of the carbon atoms
(with additional terms describing electromagnetic two-body interactions) is well approximated by a
variant of Quantum Electrodynamics in 2+1 dimensions in the limit of low energies (see e.g. Ref.
[2]). In this limit, electronic quasi-particles behave as massless Dirac particles, with a relativistic
dispersion relation. In contrast to QED however the interacting theory is strongly coupled, since the
small Fermi velocity ofvF ≈ c/300 of the electrons generates an effective fine structure constant
which isα ≈ 300/137≈ 2.2.

It is this surprising connection to relativistic field-theory which drove the high-energy physics
community to take interest in graphene. The strongly coupled nature of the interacting system mo-
tivated the utilization of established non-perturbative methods such as the simulation in discretized
spacetimes. One of the main questions in such studies, whichis of direct consequence to techno-
logical applications, is whether or not there exists a band-gap in the interacting system which is
absent in a pure tight-binding model. This corresponds to a spontaneous breaking of the symmetry
under exchange of the two triangular sublattices of the graphene sheet and is mapped onto chiral-
symmetry breaking in the low-energy effective theory. Moreover, graphene allows for a tuning
of the effective coupling constant, by affixing the sheet to asubstrate which generates dielectric
screening. It is thus of interest whether a phase-transition from a conducting to an insulating phase
takes place for some value ofα , and whether the critical value lies in a range which can be experi-
mentally realized (suspended graphene giving an upper bound). Since recent experiments provide
evidence that graphene in vacuum is in fact a conductor [3], it is important to establish model
calculations which match the observation.

Early attempts at simulating graphene on the lattice studied the low-energy limit only, since the
application of QCD methods is most direct here. Most prominently, Refs. [4] simulated the low-
energy theory using staggered Fermions, whereas Ref. [5] investigated a variant of theThirring
model which has many similarities with QED2+1. Both find a phase transition to a gapped phase
for α > αC ≈ 1, which is well within the physical region. More recently, apath integral formula-
tion of the partition function was derived directly from thetight-binding theory, which preserves
the hexagonal structure of graphene and employs unphysicaldiscretization in the time dimension
only [6], with the spatial lattice spacing as a free parameter that can be taken from experiment.
In this formulation, interactions are modeled by a non-local potential which is generated by a
Hubbard-Stratonovich field. It is immediately clear that this has many advantages. Not only does it
alleviate issues concerning parameter matching, it also opens up new opportunities to study physics
beyond low energies, such as the effect of interactions on the neck-disrupting Lifshitz transition,
which occurs in the tight-binding theory at the Van Hove singularity at finite density [7]. Recently,
two distinct simulations of the hexagonal lattice have beenconducted: One where an unscreened

1For an extensive but far from exhaustive review of graphene phenomenology see Refs. [1].
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Coulomb potential is modeled by gauge links [8] and another where the instantaneous two-body
potential was used [9]. The later work chose a form of the potential which accounts for additional
screening by electrons in theσ -orbitals, which was calculated within a constrained random phase
approximation (cRPA) in Ref. [10]. While simulations with the unscreened potential yielded a
prediction forαC consistent with the previous simulations of the low-energytheory, Ref. [9] found
evidence that screening is a mechanism which can moveαC to larger values, possibly outside of
the physically accessible region.

In this work, first results of a very recently completed Hybrid-Monte-Carlo code are presented,
which simulates the hexagonal theory with a non-local potential as in Refs. [6] entirely on GPUs.
We present an investigation of the conductor-insulator phase transition on a rectangular graphene
sheet ofNx = Ny = 6 (counting coordinates in one triangular sub-lattice) andshow that, when
properly choosing the exact form of the potential, we find anαC which is of a plausible magnitude
compared to the previous works. We also conduct an investigation of the discretization errors of
the second order discretization scheme developed in Ref. [9] and discuss distinct treatments of the
Hubbard field. Our long-term goal is to obtain a precise prediction for αC and to investigate the
physics of the Van Hove singularity for the interacting case.

2. The path-integral and Hybrid-Monte-Carlo

A detailed derivation of the path integral formulation of the partition function of the interacting
tight-binding model is presented in Refs. [6]. We only review the crucial steps here. The starting
point is the Hamiltonian of the model in second quantized form, which is

H = Htb+Hc+Hm= ∑
〈x,y〉,s

(−κ)(a†
x,say,s+a†

y,sax,s)+∑
x,y

qxVxyqy+∑
x

mS(a
†
x,+1ax,+1+ax,−1a†

x,−1)

(2.1)
Here a†

x,s,ax,s are Fermionic creation- and annihilation operators which respect the usual anti-
commutation relations.s denotes the electron spin and takes the values±1. κ ≈ 2.8eV is the
hopping parameter.mS=±m is a “staggered” mass, which has a different sign on each sub-lattice
and which is added to serve as a seed for sub-lattice symmetrybreaking (simulations are extrapo-
lated tom→ 0). The first sum runs over all pairs of nearest neighbor sites, while the second and
third sums run over all pairs of sites and all sites respectively. The interaction matrixVxy need not
be further specified at this point, other than that it be positive definite.qx = a†

x,1ax,1+a†
x,−1ax,−1−1

is the charge operator where the constant is added to make thesystem neutral at half filling. To
prevent a type of Fermion sign problem from occurring later,two transformations are made: To
introduce new operatorsb†

x = ax,−1 , bx = a†
x,−1 and flip the sign of these on one sub-lattice.

The functional integral forZ = Tre−βH (hereβ is 1/kBT) can now be derived using aco-
herent stateformalism.2 The essential step is to factor the exponential intoNt terms e−βH =

e−δH e−δH . . .e−δH , (δ = β/Nt) and to insert between them complete sets of Fermionic coherent

2The temperature is that of the gas of electronic quasi-particles only and is not equal to the physical temperature of
the graphene sheet.
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states〈ψk,ηk|= 〈0|e−∑x(axψ∗
x,k+bxη∗

x,k) , |ψk,ηk〉= e−∑x(ψx,ka†
x+ηx,kb†

x)|0〉 . This leads to the expression

Tre−βH =
∫ Nt−1

∏
t=0

[
∏

x
dψ∗

x,t dψx,t dη∗
x,t dηx,t

]
e−∑x(ψ∗

x,t+1ψx,t+1+η∗
x,t+1ηx,t+1)〈ψt+1,ηt+1|e

−δH |ψt ,ηt〉 .

(2.2)
Hereψx,t andηx,t are Grassman valued field variables which replace the ladderoperators. Anti-
periodic boundary conditions in the time-direction are implied (ψx,Nt =−ψx,0 , ηx,Nt =−ηx,0). We
now use the identity〈ψ ,η |F(a†

λ ,aλ ,b
†
λ ,bλ )|ψ ′,η ′〉 = F(ψ∗

λ ,ψ
′
λ ,η

∗
λ ,η

′
λ ) e∑λ ψ∗

λ ψ ′
λ+η∗

λ η ′
λ , which

uses coherent states to map normal ordered functions of ladder operators to functions of Grassman
variables and obtain

Tre−βH =

∫ Nt−1

∏
t=0

[
∏

x
dψ∗

x,t dψx,t dη∗
x,t dηx,t

]
exp

{
−δ

[
∑
x,y

Qx,t+1,tVxyQy,t+1,t

− ∑
〈x,y〉

κ(ψ∗
x,t+1ψy,t +ψ∗

y,t+1ψx,t +η∗
y,t+1ηx,t +η∗

x,t+1ηy,t)+∑
x

mS(ψ∗
x,t+1ψx,t +η∗

x,t+1ηx,t)

+∑
x

Vxx(ψ∗
x,t+1ψx,t +η∗

x,t+1ηx,t)
]
−∑

x

[
ψ∗

x,t+1(ψx,t+1−ψx,t)+η∗
x,t+1(ηx,t+1−ηx,t)

]}
.

(2.3)

Here we have applied normal ordering toH, which leads to the additional term∼Vxx and then con-
siderede−δH to be normal ordered, which implies a discretization errorO(β/Nt) (which vanishes
for Nt → ∞). Also, we have defined a charge fieldQx,t,t ′ = ψ∗

x,t ψx,t ′ −η∗
x,tηx,t ′ .

Eq. (2.3) contains fourth powers ofψ ,η . We must get rid of these if we wish to carry out Gaus-
sian integration and obtain a Fermion determinant, which isnecessary for HMC. This is achieved
by applying the Hubbard-Stratonovich transformation

e−δ ∑Nt−1
t=0 ∑x,y Qx,t+1,tVxyQy,t+1,t ∼

∫ [
Nt−1

∏
t=0

∏
x

dφx,t

]
e−

δ
4 ∑Nt−1

t=0 ∑x,y φx,tV−1
xy φy,t−i δ ∑Nt−1

t=0 ∑x φx,tQx,t+1,t , (2.4)

which eliminates fourth powers, at the expense of introducing an auxiliary fieldφx,t and introducing
the inverse of the matrixVxy. The constant factor before the integral in Eq. (2.4) can be dropped.
Combining equations (2.3) and (2.4) and carrying out Gaussian integration finally yields

Tre−βH =

∫ [
Nt−1

∏
t=0

∏
x

dφx,t

]
e−

δ
4 ∑Nt−1

t=0 ∑x,y φx,tV−1
xy φy,t |detM(φ)|2 . (2.5)

This form is suitable for simulation via HMC. The determinant can be sampled stochastically by
using pseudo-Fermion sources and thusφ remains as the only "dynamical" field. The matrixM is
defined in terms of its components as

Nt

β
M(x,t)(y,t ′) =

Nt

β
δxy(δtt ′ −δt−1,t ′)−κ ∑

~n

δy,x+~nδt−1,t ′ +mSδxyδt−1,t ′ +Vxxδxyδt−1,t ′ + iφx,tδxyδt−1,t ′ .

(2.6)

Here~n denotes vectors connecting nearest-neighbor sites. SinceM is hermitian, there is no sign
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problem.
Simulations based on Eq. (2.6) have a severe problem: The term ∼ φ makes detM(φ) a

polynomial of orderφN whereN is the number of lattice sites. Thus, rounding errors are amplified
in an uncontrollable way. As is discussed further in Section3, this indeed make simulations using
(2.6) impossible. The solution was worked out in Refs. [6], where it is shown that one may replace

β
Nt

Vxxδxyδt−1,t ′ + i
β
Nt

φx,t δxyδt−1,t ′ −→ ei β
Nt

φx,t δxyδt−1,t ′ , (2.7)

which transformsφ into a phase that is additive in detM(φ) and thus numerically stable.

It should be noted that that (2.6) is by far not the only possible form of M. As Refs. [6]
discuss, there is a great deal of freedom in discretizing thetime-direction and this can be exploited
to construct improved actions which converge faster to the continuum limit. A second order action
was presented in Ref. [9], which is constructed by factoringexp(−δH) such that the interacting
part is split off, and inserting an additional set of coherent states between the terms:

Tre−βH =
∫ [

2Nt−1

∏
t=0

∏
x

dψ∗
x,t dψx,t dη∗

x,t dηx,t

]
Nt−1

∏
t=0

e−∑x(ψ∗
x,2tψx,2t+η∗

x,2tηx,2t+ψ∗
x,2t+1ψx,2t+1+η∗

x,2t+1ηx,2t+1)

×〈ψ2t ,η2t |e
−δ (Htb+Hm)|ψ2t+1,η2t+1〉〈ψ2t+1,η2t+1|e

−δHC|ψ2t+2,η2t+2〉 . (2.8)

Carrying out the calculation in analogy to what was discussed above (using the compact version of
the Hubbard field), one obtains the following Fermion operator:

M(x,t)(y,t ′) =





δxy(δtt ′ −δt+1,t ′)−
β
Nt

κ ∑
~n

δy,x+~nδt+1,t ′ +
β
Nt

mSδxyδt+1,t ′ : t even

δxyδtt ′ −δxyδt+1,t ′ exp(−i β
Nt

φx,(t−1)/2) : t odd
(2.9)

Note that the Hubbard field now only appears on odd time-slices. It was hypothesized in Ref. [9]
that this version of the Fermion operator has reduced discretization errors.

We wish to investigate spontaneous breaking of sub-latticesymmetry. Thus we require a
proper order parameter. The obvious choice is to use the difference of number density operators on
the two sub-lattices (denoted here asA andB). In the functional integral form, this is expressed as

〈∆N〉=
1

ZNt

∫
DψDψ∗

DηDη∗
[
∑
XA,t

(
ψ∗

x,t+1ψx,t +η∗
x,t+1ηx,t

)
− ∑

XB,t

(
ψ∗

x,t+1ψx,t +η∗
x,t+1ηx,t

)]
e−βH

=
−1
βZ

∫
Dφ

[
∂

∂m
det

(
MM†)

]
e−S[φ ] =

−2
Nt

Nt−1

∑
t=0

〈∑
x∈A

M−1
(x,t+1)(x,t)− ∑

x∈B

M−1
(x,t+1)(x,t)〉 . (2.10)

The above is valid for the first order discretization scheme above. For the second order Fermion
operator, one may insert̂∆N on even time-slices only to obtain an analogous expression.

3. Results

We have simulated rectangularNx = Ny = 6 (base vectors defined in a triangular sub-lattice)
graphene sheets with periodic boundary conditions using both the first and second order Fermion

5
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operators. We chose a potential which is constructed piecewise: The on-site (V00), nearest-neighbor
(V01), next-nearest neighbor (V02) and crossing term (across the hexagon,V03) are the cRPA values
of Ref. [10], while the long-range part is an unscreened Coulomb potential. We account for pe-
riodicity by adding one set of eight mirror images, arrangedalong the rectangular boundary. This
may be problematic due to the zero mode in the potential. Moreover, we have chosenV00= 4.15eV
which is slightly smaller than in Ref. [10] in a attempt to match to [10] after the contribution of
mirror charges is taken into account (probably one should not do this and useV00 = 4.65eV di-
rectly). Also, at this stage, the toroidal structure of the lattice was not properly taken into account:
We took the shortest path that does not cross the boundary instead of the shortest actual path as
the "direct" connection. Addressing these issues is work inprogress. We choseβ = 2.0 eV−1 (as
in Ref. [9]). An effectiveα = (300/137)(1/ε) is introduced as a free parameter which implies
a rescaling ofVxy →Vxy/ε . Our first observation is that the non-compact Hubbard field is indeed
problematic. Foremost, we were not able to observe distinctly non-zero expectation values of the
order parameter. We thus use the compact version only. The table below shows a comparison of
the discretization errors of the first and second order discretization schemes (labeled "standard"
and "improved" in the following). These were obtained by measuring〈∆N〉 on roughly one hun-
dred independent configurations for each combination of(α ,m,Nt) and fitting results obtained for
differentNt ∈ [12, . . . ,28] to 〈∆N〉= c1∗ (1/Nt)+c2.

β [eV−1] α m[eV] c1,std c1,imp c2,std c2,imp

2.0 1.87 0.3 −0.74(8) −0.81(3) 0.31(1) 0.320(4)

2.0 1.87 0.5 −1.01(7) −0.98(8) 0.462(8) 0.463(8)

2.0 2.55 0.5 −1.5(1) −1.3(1) 0.566(3) 0.563(3)

2.0 2.18 0.5 −1.02(5) −1.4(2) 0.493(5) 0.54(3)

These results provide strong evidence that both versions not only converge to the same continuum
limit but are in fact equal for anyNt. It thus appears that nothing is to be gained by using the second
order action.

Subsequently we performed an investigation of the phase transition. We simulated for many
different choices ofα , where masses were chosen asm= 0.5,0.4,0.3,0.2,0.1eV for each case and
simulations were extrapolated to the continuum fromNt = [12, . . . ,28] for each set of(α ,m). Again
roughly one hundred independent measurements were done foreach set(α ,m,Nt) The continuum
results are shown in Fig. 1. We have extrapolated tom= 0 for eachα using〈∆N〉= c1m2+c2m+

c3. We find that our choice of potential generates anαC ≈ 4.

4. Conclusions and Outlook

We have demonstrated here that our code produces qualitatively the expected behavior, with
a phase transition occurring at anαC ≈ 4 which is not far from what was found in Ref. [9] (αC ≈

3.12). We stress that our result represents a plausibility check, not a prediction. The potential
we have chosen differs from Ref. [9] and the system size is much smaller. Moreover, boundary
conditions were not addressed in the same way. Very recently, there has been substantial progress in
this regard: We have implemented a computation of the potential via Fast Fourier Transformation,
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Figure 1: Phase transition ofNx = Ny = 6 system (left figure). The red line and dots represent them→ 0
extrapolated results. The right figure shows the extrapolation for a few exemplary choices ofα.

which now allows us to simulate at larger volumes. When choosing the same potential as Ref. [9]
and properly addressing boundary conditions, it appears weare now able to reproduce their results
also quantitatively. We are thus confident that our code is now ready for large-scale operation.
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