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1. Introduction

Quantum phase transitions that separate a massless fermion phase from a massive one are of
general interest in particle physics [1]. While in 3+1 dimensions interesting transitions usually
require the presence of non-Abelian gauge fields [2], in 2+1 dimensions one expects a rich class
of transitions even with four-fermion interactions, since they are known to become renormalizable
non-perturbatively [3, 4]. Recent experiments in graphene have triggered renewed interest in the
field [5, 6]. While many Monte Carlo calculations have been performed to compute critical prop-
erties of these phase transitions using lattice techniques, the results are farfrom ideal. Difficulties
arise from two main sources: Firstly, fermion Monte Carlo algorithms are known to scale badly
with system size, especially when fermions are massless. Most calculations are performed with
a finite fermion mass which acts as another infrared regulator in addition to the system size. The
presence of these two infrared scales creates difficulties in the analysis.Secondly, many fermion
field theories suffer from unsolved sign problems and Monte Carlo methodsbecome inapplicable.
It should be noted here that sign problems can arise even in the absence of chemical potentials
in fermion systems. Sign problems depend on the variables used to expand thepartition function
as a sum over classical configurations. While the chemical potential is one source of sign prob-
lems, there can be other sources. The motivation for the current work is toresolve some puzzles in
previous Monte Carlo results that arise due to these sign problems.

In order to appreciate some of the puzzles in the literature, consider lattice formulations of
four-fermion field theories using massless staggered fermions [7]. In three space-time dimensions
a single staggered flavor produces two flavors of four-component Dirac fermions. The free fermion
action for such a theory is known to be invariant under aU(4) flavor symmetry. In the continuum
it is possible to introduce a four-fermion interaction that preserves this symmetry fully. This is
the well known continuum Gross-Neveu model [8]. On the other hand, a class of lattice Gross-
Neveu models constructed with a single flavor of staggered fermions breaktheU(4) symmetry to
a SU(2)× Z2 subgroup. Such a model was constructed and studied using Monte Carlo methods
long ago [9]. In both models, as the four-fermion coupling is increased, one finds a critical point
at which parity (which includes theZ2 symmetry in the lattice model) breaks spontaneously and
fermions acquire a mass. Surprisingly, the results for the critical exponents found in the continuum
model match those of the lattice model although the symmetries of the two models are different.
In particular both models giveν ≈ 1.0 andη ≈ 0.75. While the matching of the two calculations
is quoted as a success of universality, the question why the lattice interactions that break the con-
tinuum symmetries are irrelevant, is never addressed. Recently, we noted that the lattice model
actually suffers from a sign problem which was ignored [10]. We will argue here that the results of
the lattice calculations appear to be incorrect.

The second puzzle concerns another class of four-fermion models called Thirring models. In
the continuum, with two flavors of four-component Dirac fermions,U(4) flavor symmetric Thirring
models have been studied recently [11]. On the other hand, a lattice Thirringmodel containing a
single flavor of staggered fermions, with anSU(2)×U(1) symmetry, has been studied with Monte
Carlo calculations for many years [12, 13, 14]. Fortunately, these lattice calculations do not suffer
from sign problems and so should be reliable. While in the continuum model it was found that
ν ≈ 2.4 andη ≈ 1.4, on the lattice the same exponents were found to beν ≈ 0.85 andη ≈ 0.65.
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This disagreement is not surprising since it can be attributed to the difference in the underlying
symmetries of the two models. However, it does raise the question if lattice calculations have
uncovered a new universality class in Thirring models? On the other hand the lattice Thirring model
has the same symmetries as the lattice Gross-Neveu model and so a natural question is if the critical
exponents found match those of the lattice Gross-Neveu model. Since most Gross Neveu models
studied so far giveν ≈ 1.0 [15], the folk lore until now was that the lattice Thirring model and the
lattice Gross-Neveu model belong to different universality classes, even though their symmetries
are identical. Unfortunately, the lattice Gross-Neveu model withSU(2)×U(1) symmetry could
not be studied due to sign problems, and the folk lore had remained unconfirmed so far. Here we
find evidence that the folk lore is incorrect and that the two models belong to the same universality
class.

While both puzzles discussed above could not be resolved earlier due to sign problems in the
conventional approach, the recently developed fermion bag approachcan help resolve them since
it does not suffer from sign problems [16].

2. Lattice Gross-Neveu Models

Lattice Gross-Neveu models are usually formulated with auxiliary fields that couple to fermion
mass terms. In a popular formulation auxiliary fields live at the center of cubes and couple to mass
terms at the corners [7]. In another class of formulations, auxiliary fieldsalso live on the lattice
sites, but couple to fermion mass terms on the neighboring sites [9]. The auxiliary field approach
is natural for conventional Monte Carlo methods since the action is quadraticin fermion fields.
However, with one flavor of staggered fermions it turns out that the determinant of the fermion
matrix is not guaranteed to be positive. This leads to sign problems in the conventional approach.
Note that the sign problem here is not due to the introduction of a chemical potential like in QCD,
but simply because the mass terms have a fluctuating sign that depends on the auxiliary field.

Fortunately, we can integrate out the auxiliary fields and obtain a general four-fermion action
of the form

S = ∑
x,y

χx Dxy χy − ∑
〈xy〉

U〈xy〉χxχx χyχy, (2.1)

whereχx, χx denote staggered fermion fields at the lattice sitex andD is the free massless staggered
fermion matrix [17]. The four-fermion interactionsU〈xy〉 usually come in four types (see Fig. 1):
(1) link bondsL (wherex,y are nearest neighbor sites), (2) face bondsF (wherex,y are sites
diagonally across faces of squares), (3) body bondsB (wherex,y are sites diagonally across the
bodies of cubes) and (4) next-nearest-neighbor bondsN ( wherex,y are next nearest neighbor sites).

The symmetries of the lattice models can be easily determined from (2.1). When thefour-
fermion couplings only couple even sites with odd sites then the well knownU(1) chiral symmetry
of staggered fermions remains unbroken. On the other hand whenever there exist couplings be-
tween even sites or odd sites the chiral symmetry is broken to theZ2 subgroup. In addition to the
chiral symmetry, there is anSU(2) flavor symmetry as pointed out in [18]. Assuming the interac-
tions couple even sites only with odd sites, it is easy to verify that the action is invariant under the
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Figure 1: A pictorial representation of four-fermion couplingsUL (left), UF (center left),UB (center right)
andUN (right) discussed in the text. Each bond refers to four-fermion interactions of the formχxχx χyχy.

following SU(2)×U(1) symmetry,
(

χe

χe

)

→ eiθV

(

χe

χe

)

,
(

χo χo

)

→
(

χo χo

)

V †e−iθ , (2.2)

where the subscriptse ando refer to even and odd sites andV is anSU(2) matrix. When couplings
within even sites or within odd sites are introduced thenθ = π/2 is the only allowed value for the
symmetry transformation and the action is only invariant under anSU(2)×Z2 symmetry.

The physics described by models with action (2.1) is simple but interesting. They all have
a massless fermion phase at small couplingsU due to the fact that four-fermion couplings are
irrelevant perturbatively. However, as the coupling increases, a second order phase transition to
a massive fermion phase accompanied by spontaneous breaking of chiral symmetries occurs at
a critical couplingUc. The critical properties of this phase transition are the main focus of our
studies. In the broken phase〈χχ〉 6= 0, which means either theZ2 or theU(1) chiral symmetry
is spontaneously broken depending on the symmetries of the lattice model. On theother hand the
SU(2) flavor symmetry remains unbroken since. It is easy to verify that the chiralcondensate is a
singlet under theSU(2) flavor group. The critical properties of the phase transition are the main
focus of studies since, as we have explained above, there are many puzzles associated with them.

3. Results

We have recently studied two models one with aSU(2)×Z2 symmetry and the other with a
SU(2)×U(1) symmetry. These models were obtained from models with auxiliary fields at the
center of a cubes coupled to fermions at the corners through a single coupling U . On integrating
out the auxiliary fields, for theZ2 model we findUL = 2UF = 4UB ≡ U , UN = 0, while for the
U(1) model we findUL = 4UB ≡U , UF =UN = 0 [10]. Note that the model studied in Ref. [9] has
UF = 2UN =U , UL =UB = 0, while the lattice Thirring model studied in Ref. [12, 14] hasUL =U ,
UF =UB =UN = 0.

In the fermion bag method it is possible to solve (2.1) directly without introducingauxiliary
fields for positive values ofU〈xy〉, since the sign problem is completely solved. Further, we can work
directly in the massless limit. This helps greatly in the analysis of our data. It is interesting to note
that there is an important difference between spontaneous breaking ofZ2 andU(1) symmetries, the
former does not produce massless Goldstone bosons in the broken phase while the latter does. It is
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Figure 2: Plot of the chiral susceptibilityχ as a function ofL atU = ∞ for theZ2 (top) andU(1) (bottom)
models. The solid curve in the top graph is a fit to a constant for L ≥ 16, while in the bottom graph it is a fit
to the finite size scaling form forL ≥ 10 obtained from chiral perturbation theory.

important to distinguish this feature in our results. For this purpose we have computed the chiral
condensate susceptibility,

χ =
1
L3 ∑

x,y
〈χxχxχyχy〉, (3.1)

as a function of the lattice sizeL at U = ∞ where the effects must be clearly visible. At infinite
coupling our models can be mapped into a statistical model of closed packed dimers and can be
updated very efficiently using worm algorithms [19]. Our results are shown in Fig. 2. The chiral
condensate susceptibility is non-zero in the thermodynamic limit as expected. Further, the finite
size effects are indeed enhanced in theU(1) invariant model due to the presence of massless Gold-
stone bosons and fit well to the leading order chiral perturbation theory form [20]. On the other
hand the data for theZ2 model is almost flat.

We study the properties of the quantum critical point through the chiral susceptibility (3.1) and
the fermion correlation function ratioR f =CF(L/2−1)/CF(1) where

CF(d) =
1
3

3

∑
α=1

〈χx χx+dα̂〉. (3.2)

In the above expressionx is the origin or any translation of it by multiples of two lattice spacings
in each direction, and̂α is a unit vector along each of the three directions. With massless fermions,
in the vicinity ofUc, we expectχ/L2−η andR f L2+ηψ to be an analytic function of(U −Uc)L1/ν .
In particular, atU =Uc they will be constants independent of the volume. Our data fits well to this
form if we keep the first five terms in the Taylor expansion. Plots of our dataalong with fits are
shown in Fig. 3 and the critical exponents are tabulated in Table. 1.

4. Conclusions

It is interesting that bothZ2 andU(1) symmetric models have very similar exponents, although
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Figure 3: Plots ofχ/L2−η andR f L2+ηψ as a function ofU for L from 12 to 36. The solid lines show the
combined fit which givesUc = 0.0893(1),ν = 0.83(1),η = 0.62(1) andηψ = 0.38(1) in the Z2 case (top
row) andUc = 0.1560(4),ν = 0.82(2),η = 0.63(2), ηψ = 0.37(1) in theU(1) case (bottom row).

Uc ν η ηψ χ2/d.o.f

0.0893(1) 0.83(1) 0.62(1) 0.38(1) 1.8

0.1560(4) 0.82(2) 0.63(2) 0.37(1) 0.88

Table 1: Results for the critical exponents obtained from a combinedfit of the data in the critical region in
theZ2 invariant model (top row) andU(1) invariant model (bottom row).

their largeU phases are clearly different. Further, the critical exponents in theSU(2)×U(1)
symmetric lattice Gross-Neveu model obtained here, are consistent with thosein the lattice Thirring
model [14]. Thus, the folk lore that the two models belong to different universality classes is
incorrect. This is reassuring since the two models have the same lattice symmetries. We have also
studied anotherSU(2)×U(1) invariant model withUL = UB = U,UF = UN = 0 and found that
the critical exponents are again consistent with the above values [21]. Combining all data from the
three different studies and performing a single combined fit we estimate the critical exponents in the
SU(2)×U(1) symmetric single staggered flavor lattice models to beν = 0.849(8), η = 0.633(8)
andηψ = 0.373(3). Finally, we believe the critical exponents obtained in Ref. [9] are incorrect
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since the model studied has the same lattice symmetries as ourSU(2)× Z2 model. Hence the
critical exponents obtained in Ref. [9] should have been consistent with our results. Perhaps the
reason for this is that the earlier study ignored the sign problem.
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