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We report on studies of quantum critical behavior in thrematisional lattice Gross-Neveu mod-
els with one flavor of staggered fermions. We focus on two rispdme withSJ (2) x Z, sym-
metry and the other with aBU (2) x U(1) symmetry. Both these models could not be studied
earlier with conventional Monte Carlo methods due to sigrbfgms. However, the fermion bag
approach is free of sign problems for these models and alisvis compute the critical exponents
at the quantum phase transition that separates the mafesi@ésn phase at small couplings and
the massive fermion phase at large couplings. Our resulpsrbsolve some old puzzles in the
field.
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1. Introduction

Quantum phase transitions that separate a massless fermion phase fragive mae are of
general interest in particle physics [1]. While int3l dimensions interesting transitions usually
require the presence of non-Abelian gauge fields [2],412dimensions one expects a rich class
of transitions even with four-fermion interactions, since they are knowetofe renormalizable
non-perturbatively [3, 4]. Recent experiments in graphene haveetéggrenewed interest in the
field [5, 6]. While many Monte Carlo calculations have been performed to atergritical prop-
erties of these phase transitions using lattice techniques, the results faoenfaaleal. Difficulties
arise from two main sources: Firstly, fermion Monte Carlo algorithms are krntiowscale badly
with system size, especially when fermions are massless. Most calculateopsréormed with
a finite fermion mass which acts as another infrared regulator in addition tystenssize. The
presence of these two infrared scales creates difficulties in the anaéeisndly, many fermion
field theories suffer from unsolved sign problems and Monte Carlo metiwzisme inapplicable.
It should be noted here that sign problems can arise even in the abdectoendcal potentials
in fermion systems. Sign problems depend on the variables used to expgrattitien function
as a sum over classical configurations. While the chemical potential iscomeesof sign prob-
lems, there can be other sources. The motivation for the current workeasdtve some puzzles in
previous Monte Carlo results that arise due to these sign problems.

In order to appreciate some of the puzzles in the literature, consider lattio@llédions of
four-fermion field theories using massless staggered fermions [7]. ée #pace-time dimensions
a single staggered flavor produces two flavors of four-componeat@érmions. The free fermion
action for such a theory is known to be invariant undék(d) flavor symmetry. In the continuum
it is possible to introduce a four-fermion interaction that preserves this symyrfiodly. This is
the well known continuum Gross-Neveu model [8]. On the other hanthss of lattice Gross-
Neveu models constructed with a single flavor of staggered fermions tiveek4) symmetry to
a J(2) x Z, subgroup. Such a model was constructed and studied using Monte Cdflodsie
long ago [9]. In both models, as the four-fermion coupling is increaseel fiods a critical point
at which parity (which includes thg, symmetry in the lattice model) breaks spontaneously and
fermions acquire a mass. Surprisingly, the results for the critical expefmmd in the continuum
model match those of the lattice model although the symmetries of the two modelsferendif
In particular both models give =~ 1.0 andn ~ 0.75. While the matching of the two calculations
is quoted as a success of universality, the question why the lattice intesatttatrbreak the con-
tinuum symmetries are irrelevant, is never addressed. Recently, we natetig¢hattice model
actually suffers from a sign problem which was ignored [10]. We wilLlarbere that the results of
the lattice calculations appear to be incorrect.

The second puzzle concerns another class of four-fermion modeld G&lleing models. In
the continuum, with two flavors of four-component Dirac fermidn&4) flavor symmetric Thirring
models have been studied recently [11]. On the other hand, a lattice Thinodgl containing a
single flavor of staggered fermions, with 8d (2) x U (1) symmetry, has been studied with Monte
Carlo calculations for many years [12, 13, 14]. Fortunately, these latticelations do not suffer
from sign problems and so should be reliable. While in the continuum modelsifovand that
v &~ 2.4 andn = 1.4, on the lattice the same exponents were found to 50.85 andn ~ 0.65.
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This disagreement is not surprising since it can be attributed to the difieianthe underlying
symmetries of the two models. However, it does raise the question if lattice dalosldnave
uncovered a new universality class in Thirring models? On the other hatattice Thirring model
has the same symmetries as the lattice Gross-Neveu model and so a nastrahasid the critical
exponents found match those of the lattice Gross-Neveu model. Since mastXBeeu models
studied so far gives ~ 1.0 [15], the folk lore until now was that the lattice Thirring model and the
lattice Gross-Neveu model belong to different universality classes, tagigh their symmetries
are identical. Unfortunately, the lattice Gross-Neveu model ®itfi2) x U (1) symmetry could
not be studied due to sign problems, and the folk lore had remained umsedfso far. Here we
find evidence that the folk lore is incorrect and that the two models belong tetine universality
class.

While both puzzles discussed above could not be resolved earlier digmtoreblems in the
conventional approach, the recently developed fermion bag appoaachelp resolve them since
it does not suffer from sign problems [16].

2. Lattice Gross-Neveu M odels

Lattice Gross-Neveu models are usually formulated with auxiliary fields thale oo fermion
mass terms. In a popular formulation auxiliary fields live at the center ofscabe couple to mass
terms at the corners [7]. In another class of formulations, auxiliary fests live on the lattice
sites, but couple to fermion mass terms on the neighboring sites [9]. The auk#ia approach
is natural for conventional Monte Carlo methods since the action is quadhigigecmion fields.
However, with one flavor of staggered fermions it turns out that the m@tant of the fermion
matrix is not guaranteed to be positive. This leads to sign problems in thentmmad approach.
Note that the sign problem here is not due to the introduction of a chemicait@biée in QCD,
but simply because the mass terms have a fluctuating sign that depends oxiliaeydield.

Fortunately, we can integrate out the auxiliary fields and obtain a gemerafdrmion action
of the form

S= ZYX Dyy Xy — z U(xy)XxXx nyyv (2.1)
Xy (xy)

wherey,, Xx denote staggered fermion fields at the latticexséadD is the free massless staggered
fermion matrix [17]. The four-fermion interactiot,,, usually come in four types (see Fig. 1):
(1) link bondsLL (wherex,y are nearest neighbor sites), (2) face bolidévherex,y are sites
diagonally across faces of squares), (3) body bdhdwherex,y are sites diagonally across the
bodies of cubes) and (4) next-nearest-neighbor bdhdsherex, y are next nearest neighbor sites).
The symmetries of the lattice models can be easily determined from (2.1). Whéouthe
fermion couplings only couple even sites with odd sites then the well ktub{&h chiral symmetry
of staggered fermions remains unbroken. On the other hand wheneveretkist couplings be-
tween even sites or odd sites the chiral symmetry is broken t@:tlsebgroup. In addition to the
chiral symmetry, there is a8J (2) flavor symmetry as pointed out in [18]. Assuming the interac-
tions couple even sites only with odd sites, it is easy to verify that the actionagam under the
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Figure 1: A pictorial representation of four-fermion couplings, (left), Ur (center left)Jg (center right)
andUy (right) discussed in the text. Each bond refers to four-femmteractions of the formx, xx Xy Xy-

following U (2) x U (1) symmetry,

(Xe> —dv (Xe> , (XO Xo) — (XO Xo)VTe*ie, (2.2)
Xe Xe
where the subscriptsando refer to even and odd sites avids anSJ (2) matrix. When couplings
within even sites or within odd sites are introduced tBen 11/2 is the only allowed value for the
symmetry transformation and the action is only invariant unde3Ui(2) x Z, symmetry.

The physics described by models with action (2.1) is simple but interestingy dlhbave
a massless fermion phase at small couplidgdue to the fact that four-fermion couplings are
irrelevant perturbatively. However, as the coupling increases, @ndearder phase transition to
a massive fermion phase accompanied by spontaneous breaking éfsghiraetries occurs at
a critical couplingU.. The critical properties of this phase transition are the main focus of our
studies. In the broken phasgx) # 0, which means either th&, or theU (1) chiral symmetry
is spontaneously broken depending on the symmetries of the lattice model. Ghéndand the
U (2) flavor symmetry remains unbroken since. It is easy to verify that the atoralensate is a
singlet under theJ (2) flavor group. The critical properties of the phase transition are the main
focus of studies since, as we have explained above, there are marigpagsociated with them.

3. Results

We have recently studied two models one witBli(2) x Z, symmetry and the other with a
U (2) x U(1) symmetry. These models were obtained from models with auxiliary fields at the
center of a cubes coupled to fermions at the corners through a singdéngpd. On integrating
out the auxiliary fields, for th&, model we findU;, = 2Up = 4Ug = U, Uy = 0, while for the
U (1) model we findJy, = 4Ug = U, Up = Uy = 0 [10]. Note that the model studied in Ref. [9] has
Ur =2Uy =U, U, =Ug = 0, while the lattice Thirring model studied in Ref. [12, 14] ihs=U,

Ur =Up =Uy=0.

In the fermion bag method it is possible to solve (2.1) directly without introduaingliary
fields for positive values df ), since the sign problem is completely solved. Further, we can work
directly in the massless limit. This helps greatly in the analysis of our data. It i®gtieg to note
that there is an important difference between spontaneous breaktagoflU (1) symmetries, the
former does not produce massless Goldstone bosons in the brokenwdtikesthe latter does. Itis
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Figure 2: Plot of the chiral susceptibility as a function ot. atU = o for the Z, (top) andU (1) (bottom)
models. The solid curve in the top graph is a fit to a constarit fo 16, while in the bottom graph it is a fit
to the finite size scaling form fdr > 10 obtained from chiral perturbation theory.

important to distinguish this feature in our results. For this purpose we laaputed the chiral
condensate susceptibility,

1 _
X=13 Xzy<xxxxxyxy>, (3.1)

as a function of the lattice size atU = o« where the effects must be clearly visible. At infinite
coupling our models can be mapped into a statistical model of closed packeid dintecan be
updated very efficiently using worm algorithms [19]. Our results are shiowig. 2. The chiral
condensate susceptibility is non-zero in the thermodynamic limit as expectettheithe finite
size effects are indeed enhanced intH&) invariant model due to the presence of massless Gold-
stone bosons and fit well to the leading order chiral perturbation theony f20]. On the other
hand the data for th#, model is almost flat.

We study the properties of the quantum critical point through the chirabpability (3.1) and
the fermion correlation function rati®; = Ce(L/2—1)/Cg (1) where

3
Cr(0)= 3 3 (0 Focas) 32)

In the above expressionis the origin or any translation of it by multiples of two lattice spacings
in each direction, and is a unit vector along each of the three directions. With massless fermions,
in the vicinity of Uc, we expecty /L%~ andR¢L?" to be an analytic function ofU — U)LYV,

In particular, at) = U, they will be constants independent of the volume. Our data fits well to this
form if we keep the first five terms in the Taylor expansion. Plots of our diatiag with fits are
shown in Fig. 3 and the critical exponents are tabulated in Table. 1.

4. Conclusions

It is interesting that bot&, andU (1) symmetric models have very similar exponents, although
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Figure 3: Plots of x /L% andR¢L?"" as a function ofJ for L from 12 to 36. The solid lines show the
combined fit which gives). = 0.08931),v = 0.83(1),n = 0.62(1) andny = 0.38(1) in the Z, case (top
row) andU. = 0.15604),v = 0.82(2),n = 0.63(2), ny = 0.37(1) in theU (1) case (bottom row).

Uc v n ng  x%d.o.f
0.0893(1) 0.83(1) 0.62(1) 0.38(1) 18
0.1560(4) 0.82(2) 0.63(2) 0.37(1) 0.88

Table 1. Results for the critical exponents obtained from a combiitesf the data in the critical region in
the Z, invariant model (top row) and (1) invariant model (bottom row).

their largeU phases are clearly different. Further, the critical exponents irSth@) x U (1)
symmetric lattice Gross-Neveu model obtained here, are consistent withritibedattice Thirring
model [14]. Thus, the folk lore that the two models belong to different ensality classes is
incorrect. This is reassuring since the two models have the same lattice symm#ibave also
studied anotheBU (2) x U (1) invariant model withU;, = Ug = U,Ur = Uy = 0 and found that
the critical exponents are again consistent with the above values [2d]bi@ng all data from the
three different studies and performing a single combined fit we estimatdtibal@xponents in the
U (2) x U (1) symmetric single staggered flavor lattice models tovbe 0.8498), n = 0.633(8)
andny = 0.373(3). Finally, we believe the critical exponents obtained in Ref. [9] are incorre
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since the model studied has the same lattice symmetries aSJq@) x Z, model. Hence the
critical exponents obtained in Ref. [9] should have been consistent withesults. Perhaps the
reason for this is that the earlier study ignored the sign problem.
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