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1. Topological Lattice Actions
Lattice field theory usually starts by discretising someticmum Lagrangian, such &s
L(P(X),0uP(X) — Lat( P, [Purap — Px]/a) - (1.1)

The couplings of a discrete derivative may also be spreacewhiat beyond nearest neighbour
sites but the continuum extrapolation of physical quasgitioincides. This is due tmiversality:
the universality class is determined by the dimension ofsfiane and by the symmetries of the
order parameter fields. A condition is localityg. the couplings should decay at least exponentially
with the distance, and it is popular to tacitly assume thea &he classical continuum limit should
reproduce the continuum Lagrangia@ng.im ,[®, o5 — ®y]/a= 9, P(x).

Here we investigate counter-examples to the last assumptamely lattice actions which do
not have any classical limit. Thus we are probing how far ersality really reaches. It turns
out that the quantum continuum limit may still be correctd ar surprisingly — such highly
unconventional lattice formulations even have practicaligs.

We study O(N) models, with classical spins of unit lengtlctted to each lattice site,
&=(e,....&), & =1 vx=na, nez?. (1.2)

We consider the dimensions= 1 and 2, and\N = 2 (XY model, relevane.g.for superfluid*He
films) andN = 3 (classical Heisenberg model, asymptotically free, dessrferromagnets). For
N =d -+ 1, periodic boundary conditions imply that the configunasi@ccur in topological sectors
(we employ the geometric definition of the topological cleaod lattice configurations).

The simplest and most radical topological action is¢bastraint actionwhich just restricts
the angles between all pairs of nearest neighbour spins bpper bound,?

0 8- 8 > cosd

. 1.3
+00 otherwise (1.3)

Sel= Y s6.8), SE.8) = {
xy)
Most small deformations of a configuration (those within &tlewed set) do not cost any action;
this characterise®pological lattice actionsAll allowed configurations have the same actia 0O;
due to this enormous degeneracy, there is no classical himita perturbative expansion.
For models with topological charg€d= 3 ) dxy...) (Whereq is the topological charge
density), we also consider tl@@ suppressing action

(XYse-r )

The 2d XY model does not have topological sectors, but eaafuelte carries a vortex number
vg € {0,£1}, which can be suppressed analogouSlg] = A 5 |va|.

We are going to consider constraint actio@s(or vortex) suppressing actions, and combina-
tions. All these are topological lattice actions, sig# is invariant under most small deformations
of the configuratiorié] (in contrast to lattice actions with discrete derivativenis).

Lin this article, we do not consider gauge fields.
20(N) model simulations with such a constraint have a preshiswhich includes Refs. [1].
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2. The Quantum Rotor

The 1d XY model describes a quantum mechanical particle mgofreely on a circle, with
the continuum actiorg¢] = 'Eff dtg(t)? (¢(t): angle,l moment of inertia). With periodicity,
¢ (B) = ¢(0) mod 2m, this is the simplest model with topological sectors.

For the constraint action (th@ suppressing action) the continuum limit is attaineddas 0
(A — ). The following table displays the asymptotic behaviourtfeo scaling terms [2].

scaling term || continuum| constraint action| Q suppressing actiol

-

E,—E 3 3
o 4 41+38+...) 41-358+...)
_ (& 1 1 1 1 1

The topological actions havinear scaling artifacts, which are unusual in scalar theories.
However, the continuum values are consistently reprodficed/& — O (¢: correlation length,
Xt. topological susceptibility). This is non-trivial, we ddserve a facet of universality even in
guantum mechanics, although universality is assumed tbdrdy in field theoryd > 2.

3. The 2d O(3) Model

The 2d O(3) model with coupling (and periodic boundaries) has the continuum functionals
1 1
S€)= 52 /dzx 0,8 0,8, Q8] = ET/dzx £ 8 (0,8% 0,8) € 7, 3.1)

which obey the Schwarz inequaligg] > ‘é—’f |Q[€]| for each configuration.

On thelattice, the geometric topological charge takes the f@pfg| = %12<x7y-,2> Ayy.z» Where
X,y,zare corners of a triangle (half a plaquette), &g, is the oriented area of the (minimal) spher-
ical triangle spanned k8, &, & . We consider the standard lattice acti§jg| = _9_12 > xS Exrais
the constraint action (1.3) and tesuppressing actio§€] = A 3 xy [Axyzl-

As a scaling test we evaluated, brx 10L lattices, the step-2 Step Scaling Function (SSF) [3]
o(2,up) =2L/&(2L), with ug = L/&(L). The continuum valuer(2,up = 1.0595 = 1.26121 [4]
must be reproduced in the continuum extrapolation of sitiariaesults with any lattice action in
this universality class. For the constraint action, we granied precise numerical measurements
with the Wolff cluster algorithm. Figure 1 (left) shows thhe result is consistent with the contin-
uum value. The data can be fitted to the same ansatz as tharstamdl modified actions,

a2 za ,a
Z(Z,uo,a/L):a(2,u0)+§<clln [+czln E+"')' (3.2)

Amazingly, the constraint action even scales better thiathalconventional actions included in
Figure 1 (for them we took the data form Ref. [4]).

It has been predicted long ago that the “scaling tepg€? diverges in the continuum limit
of this model § = (Q?)/V). A semi-classical argument refers to small topologicalatiations,

SHowever, a recent discussion of O(N) models at laxgguggests that the power of the leading logarithmic term
might differ for the constraint action [5].
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Figure1: On the left: The step-2 SSF for the 2d O(3) model wigh= 1.0595, for four lattice actions. The
constraint action has the correct continuum extrapolatiod the best scaling behaviour. On the right: The
“scaling term” 16 &2 = (Q?) diverges onlylogarithmicallyfor the constraint action, although dislocations
are not suppressed by any Boltzmann factor.

which are insufficiently suppressed [6]; that suggests aepalivergencex;&2 0 (& /a)P, p ~
0.9. Simulations with a (truncated) classically perfect@tti— which eliminates dislocations —
revealed a logarithmic divergence [7].

The opposite extreme is the constraint action, which (femisarly criticald-angles of interest)
allows for dislocations without any action cost. To invgate its behaviour, we fixéd./&, = 4
and measured }¢é? = (Q?) as a function oL /a = 4&,/a. The results for the constraint action
(Figure 1, right) and for th€ suppressing action still diverge only logarithmically.[2]

Due to this divergence, this model is sometimes considesak™, at least regarding topo-
logical properties. However, the correlation of the topital density,(gxdy), does have a regular
continuum limit at non-zero separation [8] y, as we confirmed for the topological actions [2].

4. The2d XY Modd

Here we can express the spinsés= (cosgy,singy) € St. For the relative angle between
nearest neighbour spins we define the mod operation suchdRat 2y = (@x — dx1ap) Mod 2T
(—m, ) . A plaquetted with the cornersq, xz, X3, X4 has thevortex number

1

VD = ZT(A¢X1’X2 ‘|— A¢X2,X’3 ‘|— A¢)Q3‘X4 ‘|— A¢X4,X1) 6 {0, :l:l} . (41)

Periodic boundary conditions implys vo = 0.

For the standard actioB€] = 3 ¥ , (1 —&- & ap) there is a well-known Berezinskii-Koster-
litz-Thouless (BKT) essential phase transition (of inndrder) at 13. = 1.11991) [9], where
the correlation length diverges exponentially,

&(B < Bc) Oexp(constant/Be— B) - 4.2)

The established picture describes this transition by thiexalynamics: af > (. they occur
(mostly) in tightly bound vortex—anti-vortex pairs, whillads to anassless phasés we decrease
B below . these pairs unbind and “disorder” the system, so we enten#ssive phasd he value
of B; has been estimated based on the action cost for isolateédegfor anti-vortices) [10].

4%, is the second moment correlation length; it almost coiridih &, but is easier to measure. Its use was
motivated in particular by th® suppressing action, where we could not apply the clusteridfgn.
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Figure 2: On the left: Schematic phase diagram for the 2d XY model vafiotogical lattice actions. On
the right: step-2 SSF for the standard action and three ogjeal lattice actions, which are all compatible
with the correct continuum extrapolation (for a suitablestantU; the continuum valuer(2,3.0038) is
included in the fit). Also here the constraint actidgn= 0) has a formidable scaling quality.

For the constraint action — with\@y, ., ap| < & for all x,u — vortices are either excluded
(6 < m/2), or allowed without any action cost. We simulated the taist action, the vortex
suppressing actioB= A 5 5 |vo| and combinations (fok > 0 we elaborated a new variant of the
cluster algorithm). At fixedh = 0, 2 or 4 we observed massive/massless phase transitions| at [11

(A =0)=177526), &(A=2)=186658), (A =4)=19368), (4.3)
where the correlation length exhibits a BKT type divergence

&(6 2 &) Oexplconstanty/d— &) - (4.4)

The phase diagram is sketched in Figure 2 (left). In the iticiof the transition, vortices are

present (they are ruled out fér< 11/2 andA = +). To probe the BKT behaviour further, we mea-

sured again the step-2 SSF, now referring to the continudoew(2,u=2L /(L) = 3.0038 =

4L /€& (2L) = 4.3895, which had been confirmed for the standard action [1gurE 2 (right) shows

those data, and our results for three topological actiommigiware all compatible with a fit to the

right continuum value. Again the constraint action (with= 0) has an excellent scaling behaviour.
For that case, we further measured the dimensionlesstieticidulus

Y=—-02Inp(a)|a=o, (4.5)

whereaq is a twist angle in the boundary conditions. The theoreticatliction at a BKT transition

is Ye = 2/m[13]. We simulated witrdynamical boundary conditioresnd determined” from the
curvature in the histogram for the values [14]. Figure 3 on the left shows that for increasing
volume a jump down to zero is approximateddat, o, as expected. The plot on the right shows
our results at fixed, in various volumes, which we denote ‘E}s Earlier studies dealt with the
standard action [9] and the “step action” [15]. Those dat&araproduced in our plot, but they
confirmed the theoretical value only with a ladgextrapolation. The standard action (step action)
result atL = 2048 ( = 256) was still 5.6 % (4.1 %) off, whereas the constraint actesults for

L > 64 match the prediction within the errors, and even down+o8 they deviate only by 2.8 %.

5|f all these measurements were at a massless point, one expidett a universal curVE’;(L). However, since one
uses the parameters which would be critical in infinite vaduthe correlation length is actually finite, and one obtains
mixed finite size and lattice spacing artifacts, as usual.
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Figure 3: For the constraint action, the dimensionless helicity nhasiy’ approaches a jump neég for
increasing volume (on the left). A% it reproduces very well the BKT value/2r (on the right).

Finally we verified [14] that the (un)binding mechanism oftex—anti-vortex pairs is still
valid for this transition, even in the absence of any actiost ¢or free vortices (and anti-vortices).
Figure 4 (left) shows the densities of “free vortices”, deflras vortices which do not have an anti-
vortex partner (or v.v.) within a distance o0& 1, 2 or 4 lattice spacings. A significant density sets
in as we increas® somewhat abové.. Figure 4 (right) shows the “vorticity correlation funatid

C(r) = <VD,xVD,x+r>||vD,x|:1 . (4.6)

In particular forr = 1 — nearest neighbour pairs — we see a significant anti-atioal up to

o =~ &, which fades away as we increade Along with measurements for the “optimal pair
formation” (based osimulated annealing we obtained compelling evidence that the (un)binding
mechanism does indeed still drive the BKT transition, ewarilie constraint action [14].
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Figure4: At 6 2 & the density of “free vortices” (without opposite partnethimn distancer) rises (left),

while the vorticity anti-correlation fades away (right)of® support the BKT (un)binding mechanism.

We return to the phase diagram in Figure 2 (on the left) andSan the pur€ suppressing
action (which corresponds = 7). Initially we expected the phase transition line to end sem
where on this upper axis at finife. However, the simulation results matéigA ) 0 exp(0.729A ),
hence the endpoint is locatedt= + (as depicted in the phase diagram) [11]. In this limit the
vortices and anti-vortices are completely eliminated, @ may question whether this can still be
a BKT transition. Indeed, the numerical result for the SSH,[#7(2,u = 6)num = 9.47(1), differs
from the BKT valueo (2,u= 6)gxt = 11.53 (provided by J. Balog). Therefore the transition at this
endpoint isnot of the BKT type; it belongs to another class, which has appbréeen overlooked
in the (tremendous) literature on this model.
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5. Conclusions

Topological lattice actions do not have a classical limit a perturbative expansion, but in
the O(N) models studied here they do have the correct quachmimuum limit. This underscores
the enormous power of universality. It even capturesrtiter as a quantum mechanical model
(d = 1), though with unusual linear lattice artifacts.

In the 2d O(3) modethe constraint action violates the Schwarz inequality,itdus an excel-
lent scaling behaviour, which can be further improved byralgimation with a fine-tuned standard
coupling constant [5]. The term &2 diverges logarithmically in the continuum limit, but thereo
relator of the topological charge densityqy), remains finite forx # y. This enabled precise
studies off vacuum effects [16].

Inthe2d XY modelthe(J,A) phase diagram has a BKT transition line at fiditéat least up to
A = 4). This was shown by measuring the SSF and the critical exqian[11]. For the constraint
action, the helicity modulus approaches a jump rdgdor increasing volume. Ad. it reproduces
directly the BKT valueY, = 2/, which constitutes one of the best numerical evidences BB
transition. It is still driven by the vortex—anti-vortexip&un)binding mechanism, now as a purely
combinatorial effect, since there is no Boltzmann facteoived.

On the other hand, without a constraint angle, a new typeaoisttion is attained at vortex
suppressiom — oo; this endpoint of the transition line in tHé,A) phase diagram remains to be
explored.
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