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1. Asymptotic Safety

In a renormalization group approach to QFT the theory at momentum scalek is described by the
effective average actionΓk. It is obtained by choosing a microscopic action at some cutoff-scale
Λ whereΓΛ = Smic and integrating out fluctuations with scales betweenΛ andk ≪ Λ using the
renormalization group flow. We call a theoryfundamentalif it is valid on all scales, i.e. the limit
Λ → ∞ and k → 0 exists when one fine-tunes only a small number of parameters. For gravity,
we know the infrared theory very well - it is given by the Einstein-Hilbert action. However, the
perturbative approach to find a formulation that is valid at small distances and high momenta reveals
severe divergences: gravity is not renormalizable in a perturbative manner. But it should still be
possible to renormalize gravity nonperturbatively at a non-Gaussian ultraviolet fixed point with a
finite number of relevant directions (asymptotic safety scenario[1]). In this contribution, we study
the nonlinear O(N)-models inD= 3 dimensions, which are expected to show a nontrivial UV fixed
point [2,3]. The action is

S=
1

2g2

∫

d3x ∂µ~φ∂ µ~φ , with ~φ ∈R
N, ~φ~φ = 1. (1.1)

Our goal is to obtain the global flow diagram from lattice simulations and determine its fixed point
structure. To achieve this, we utilize Monte Carlo Renormalization Group (MCRG) techniques.

2. MCRG method

On the lattice, the discrete momenta are cut off by the inverse lattice spacinga−1 in the UV and
the inverse box length(aL)−1 in the IR and a lattice simulation is equivalent to integrating out
all fluctuations in between (see figure 1). The correlation functions of the theory are determined
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Figure 1: A lattice simulation integrates out all the momenta betweenthe upper cutoffΛ = a−1 and the
lower cutoff(aL)−1.

by direct measurement of lattice operators. By applying a blockspin transformation with scale
factor b, the upper cutoff is reduced whereas the lower cutoff does not change:a−1 → (ba)−1,
(aL)−1 → (baL/b)−1 = (aL)−1, see figure 2. At the reduced cutoff, we define aneffectivetheory
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Figure 2: A blockspin transformation with scale factor 2 reduces the upper cutoffΛ → Λ′ = Λ/2, yet leaves
the lower cutoff(aL)−1 unchanged.

such that the IR physics of the original and effective theorycoincide, i.e. both theories lie on the
same RG trajectory. In the RG picture, we have obtained the effective theory by integrating out the
momenta froma−1 until (ba)−1.
In our setup, we use a local HMC algorithm for the O(N)-valuedfield to compute a Markov-chain
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of configurations. This algorithm allows to simulate arbitrary N with high acceptance rate. Also, it
is straightforward to add further operators to the action,

S[~φ ] = ∑
i

giSi [~φ ]. (2.1)

On each configuration, we apply a blockspin transformation to integrate out fluctuations and on the
blocked configurations, we use the canonical demon method [4] to determine the couplingsgblocked

i

of the effective theory. In this way, we have access to the discrete beta functioñβi = β̃ (gi) =

gblocked
i −gi and the discrete stability matrixSi j =

∂ β̃i
∂gj

. The eigenvalues of the stability matrix in
the vicinity of a fixed point can be related to its critical exponents.

3. Systematic errors

After comparing RG trajectories from different lattice sizes, no finite volume effects are visible
in our results for the 323 → 163 simulations. Also, we expect discretisation errors to be small
near the critical line, where the correlation length diverges in the continuum limit. However, using
an effective action in the demon method inevitably leads to truncation errors. In particular, the
semi-group property of the combined transformationRb of blockspin transformation and demon
method is violated:Rb ◦Rb 6= Rb2. Concerning the RG trajectories, this leads to a discrepancy in
the effective couplings of a chain of two transformations, with scale factorb each, compared to a
single transformation with scale factorb2. In order to minimize this discrepancy we add further
operators to the effective action 2.1 following a derivative expansion. Our best truncation consists
of four operators which represent all possible operators ofthis model up to fourth order in the
momenta:

S0 =−

∫

d3x~φ∂µ∂ µ~φ , (3.1)

S1 =−

∫

d3x~φ (∂µ∂ µ)2~φ , (3.2)

S2 =−

∫

d3x (~φ∂µ∂ µ~φ)2, (3.3)

S3 =−

∫

d3x (~φ∂µ∂ ν~φ )(~φ∂ µ∂ν~φ). (3.4)

A second approach to overcome this problem is to use an improved blockspin transformation [5],

~Φx̃ ∝ P

(

exp
(

C~Φx̃ ∑
x∈Λx̃

~φx

)

)

, (3.5)

where the blocked spin~Φx̃ is drawn from a probability distribution that takes into account a local
neighbourhoodΛx̃ of the original spins:∑x∈Λx̃

φx. C is a temperature-like parameter that allows to
introduce additional noise. We parametrizeC = ∑i cigi such that forg→ ∞, C → ∞ holds and no
additional noise is introduced in the far broken regime, where the spins are aligned uniformly. The
parametersci are chosen such that truncation errors are minimal. To that end, we directly simu-
late the ensemble of the truncated action and determine its correlation functions. Since blockspin
transformations do not change the IR physics, the systematic effect of truncation will be visible as
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Figure 3: The ratio of correlation lengthsξ32 in the original ensemble andξ16 in the truncated ensemble is
used to fix the optimization constantc0 for differentN. A value ofξ16/ξ32 = 2 is expected to minimize the
truncation errors.

differences in the correlation functions of the original and the truncated ensemble. An optimization
of the blockspin transformation is equivalent to a minimization of the difference between the corre-
lation functions. In general, the optimal value depends on the coupling constants, lattice size, target
manifold and number of RG steps. As an approximation, we onlyconsider the correlation length,
which increases by a factorb after blocking:ξ ′ = bξ . Figure 3 shows that it is indeed possible to
find an optimal valueC = c0g∗ for the blockspin transformation (3.5) and a simple one-parameter
effective action at the fixed point couplingg∗. From an RG point of view, we use the fact that the
location of the renormalized trajectory, which connects the fixed points of the RG flow, depends
on the RG scheme. The optimal scheme causes the renormalizedtrajectory to lie closest to a given
truncation.

4. Flow diagram

The beta function for the simplest possible truncation, consisting of only a nearest-neighbor op-
erator, shows a Gaussian fixed point at zero coupling and a non-Gaussian fixed point with a UV-
attractive direction (see Fig. 4, left panel). From the slope of the beta function, we can already
determine the critical exponentν of the correlation length (see Fig. 4, right panel) and we seethat
our result provides a reasonable estimate only forN = 6. For valuesN 6= 6, our estimate deviates
from the comparable result in the literature [8]. In Fig. 5 (left panel), we extended our truncation
and included a next-to-nearest-neighbour operator. We locate three fixed points of the RG flow: a
high temperature or Gaussian fixed point at vanishing coupling (HT FP), a low temperature fixed
point at infinite coupling (LT FP) and anon-Gaussian fixed point(NG FP) with one IR-relevant and
one IR-irrelevant direction. Furthermore, we can clearly localize the critical line (CL) which sep-
arates the flow diagram into the lower left part with trajectories flowing into the high-temperature
fixed point and the upper right part with trajectories flowinginto the low-temperature fixed point.
The critical trajectory itself flows into the non-Gaussian fixed point. These three fixed points are
connected by the renormalized trajectory (RT) and act as infrared fixed points for the Heisenberg
ferromagnet, which "lives" on theg0 axis. From the universality hypothesis, we expect that the
non-Gaussian fixed point corresponds to the well-known Wilson-Fisher fixed point of the linear
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Figure 4: Left panel: the lattice beta function shows a Gaussian and a non-Gaussian fixed point with UV-
attractive direction.Right panel: the estimate for the critical exponent of the correlation lengthν seems to
improve for largerN ≤ 6, but then deviates again.
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Figure 5: Left panel: trajectories of the RG flow using the two-parameter effective action. Abbreviations
are given in the text.Right panel: eigenvalue of the stability matrix corresponding to the relevant direction.
In the vicinity of a fixed point the eigenvalue is equal to the inverse critical exponentν.

Sigma Model and the structure found in [6] indeed matches ourfindings. However, the Heisen-
berg ferromagnet is an effective theory that is only valid ata fixed ultraviolet cutoff. To obtain
a fundamental theory that is complete both in the IR as well asin the UV, we have to follow the
renormalized trajectory, where the non-Gaussian fixed point acts as anultraviolet fixed pointand,
depending on theonly relevant direction, drives the RG flow towards the low- or high-temperature
fixed point. Therefore, we clearly see the asymptotic safetyscenario fulfilled in this truncation. By
computing the eigenvalues of the stability matrix (see Fig.5, right panel), we can extract a prelim-
inary value for the critical exponent at the non-Gaussian fixed point forN = 3 of ν = 0.64, which
is a significant improvement compared to the 1-parameter effective action (ν = 0.5). Still, we are
about 10% off from the predictions from a direct computationof the thermodynamical critical ex-
ponents. At the trivial fixed points, the critical exponent takes its trivial valueν = 1 or ν = −1 as
expected. These results are still preliminary and we are currently computing critical exponents for
different values ofN and will report our findings in a later publication [7]. However, it is clear that
the presented method does not compete with traditional Monte-Carlo methods in terms of precision
but aims at a measurement of the global flow diagram of the theory.
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Figure 6: Using ashootingtechnique, we show trajectories of the RG flow for the three-parameter effective
action that flow towards the renormalized trajectory in the vicinity of the non-Gaussian fixed point.

We continue by computing trajectories for the 3-parameter truncation and observe that only an ir-
relevant coupling is added to the non-Gaussian fixed point. Figure 6 shows trajectories that initially
start in theg2 = 0 plane and descend below this plane towards the non-Gaussian fixed point. De-
pending on the relevant direction, they continue to flow along the renormalized trajectory towards
the low-temperature or high-temperature fixed point.

5. Conclusion

We have shown that a combination of blockspin transformations and demon method is suitable to
obtain the global flow diagram of the nonlinear Sigma Model inthree dimensions. In contrast to
the traditional lattice matching technique, our analysis rests on single trajectories rather than on
long chains of trajectories. We therefore do not need exponentially large lattices and a scan of the
flow diagram can be parallelized easily. By employing improved blockspin transformations with
a suitable optimization scheme, we reduce the systematic errors that stem from a truncation of the
effective action.
The flow diagram reveals two trivial IR fixed points that correspond to absolute order and absolute
disorder, respectively, and a nontrivial ultraviolet fixedpoint. This fixed point structure is stable
against a change of truncation. In particular, we always findonly a single relevant direction for
the UV fixed point. Therefore, we conclude that the asymptotic safety scenario is realized for the
nonlinear Sigma Model.
When we have finished our detailed simulations to obtain other critical exponents, we can compare
our findings to largeN and FRG results. An interesting question would be to repeat the present

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
5
2

MCRG Flow for the nonlinear Sigma Model Daniel Koerner

analysis in four dimensions, where the model is suspected tobe trivial. Furthermore, one may be
interested to extend these methods to fermionic models, e.g. the Thirring model which shows a
rich flow diagram [9], or lattice quantum gravity [10].
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