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We present a new numerical Monte Carlo approach to determine the scaling behavior of lattice
field theories far from equilibrium. The presented methods are generally applicable to systems
where classical-statistical fluctuations dominate the dynamics. As an example, these methods are
applied to the random-force-driven one-dimensional Burgers’ equation — a model for hydrody-
namic turbulence. For a self-similar forcing acting on all scales the system is driven to a nonequi-
librium steady state characterized by a Kolmogorov energy spectrum. We extract correlation
functions of single- and multi-point quantities and determine their scaling spectrum displaying
anomalous scaling for high-order moments. Varying the external forcing we are able to tune the
system continuously from equilibrium, where the fluctuations are short-range correlated, to the
case where the system is strongly driven in the infrared. In the latter case the nonequilibrium
scaling of small-scale fluctuations are shown to be universal.
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1. Introduction

Turbulence, the transport of conserved quantities in a strongly-correlated state far from equi-
librium together with its universal scaling properties defines one of the most pressing problems in
physics with relevance to systems so vastly different as, e.g., ultracold atomic gases at tempera-
tures of a few nanokelvin or heavy ion collisions at ultra-relativistic energies. Its complexity can be
overwhelming — its study typically requires large computational efforts to straddle the huge range
of scales that defines the problem. In such a situation, it is desirable to have a model at hand that
allows for the important questions to be asked but removes all unnecessary details from the prob-
lem that would otherwise complicate its study. A much-employed example is the one-dimensional
Burgers’ equation without pressure [6]. The pressureless Burgers’ equation is free from the severe
nonlocal interactions present in the incompressible Navier-Stokes equations usually taken to de-
scribe realistic hydrodynamic flow. Nevertheless, the presence of strong correlations over a wide
range of scales induced by a power-law forcing makes this system sufficiently interesting from a
physics perspective (see, e.g., Ref. [5] for a review).

2. Burgers’ equation

The random-force-driven Burgers’ equation
u~+uVu—voViu = f(x,1) 2.1

was originally conceived as a one-dimensional model for compressible hydrodynamic turbulence
[6] and provides a useful benchmark setting to test new analytical and numerical methods for real-
world turbulence [5, 14]. We consider the special case where the system is driven by a self-similar
Gaussian forcing that is white in time. Its two-point correlation function in Fourier space is given
by

(fk,0) f(K 1)) = 2Dg|k|> S (k+K)S (1 —1) (2.2)

where the parameter y determines the relative importance of fluctuations put into the system at dif-
ferent scales, and the dimensionful constant Dy measures its strength. While large positive values
of y lead to a forcing that acts predominantly in the infrared (IR) in the opposite case, where y is
negative, the system is strongly driven in the ultraviolet (UV). Independent of the forcing mecha-
nism, kinematic viscosity vy provides a dissipation scale 17 and for vy — 0 the two characteristic
scales 7, and the finite system size L separate. In that case, the stochastic forcing drives the sys-
tem into a nonequilibrium steady state, where in the range 1 < k~! < L the energy flux through
wavenumber k behaves as ITg (k) ~ k*~>. In contrast, for nonzero values of the viscosity a noise
term acting in the UV can be used to model small frequency and long wavelength fluctuations in a
fluid close to thermal equilibrium (IT; = 0) [13]. Thus, the parameter y serves to control the type
of scaling behavior — depending on its value the character of excitations in the system will be very
different. While the large-scale dominated forcing leads to the appearance of coherent shocks [7]
in the short-range correlated regime the system features no such structures and, in the long-time
limit, is completely characterized by thermal noise.
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The classical field-theoretic action for the random-force-driven Burgers’ equation is obtained
via the Martin-Siggia-Rose formalism [16, 18, 21]. Introducing the auxiliary response field i, we
obtain the partition function Z = [ [dii][du] e~ with the classical action

$= ) dudx {u (Aot + uVu — voV2u) — Doa(—vz)@*y)ﬂﬁ} , 2.3)
19,0

where the quadratic noise term ~ ii|V|* =i models the fluctuations that are put into the system by
the stochastic forcing (2.2). Note, in the special case where y = 1 the one-dimensional Burgers’
equation can be mapped to the Kardar-Parisi-Zhang equation [17] which admits a generalized fluc-
tuation dissipation relation (FDR). For generic values of y > 0, however, fluctuations are equally
important on all scales leading to strong correlations in the system and a FDR is generally absent.
It is the absence of a FDR and the presence of Galilean symmetry that essentially determines the
phenomenology of the system and leads to the complex scaling behavior [12, 22].

3. Scaling behavior

The classical action (2.3) depends on a single dimensionless coupling constant g(z) =(Dy/ vg JA™Y
defined at the ultraviolet scale A, which is given in terms of the dimensionful force amplitude
Dy and the kinematic viscosity Vy. It naturally appears in a perturbative treatment of the prob-
lem (see, e.g., [13]), where one typically considers the following rescaling of the fields t — vyt,
u— (vo/Dyo)"/?u, and ii — (Do /vo)'/?ii, to endow the nonlinear interaction term ~ ii(uVu) in (2.3)
with the coupling gg. Apart from the coupling constant g(z), the ratio between the lattice scale A and
the infrared cutoff 1/L defined by the inverse lattice size provides for a second dimensionless quan-
tity that we may control. Eventually, we will be interested in the scaling behavior of correlation
functions in the range between 1/L < k < A, where both limits A — o and L — oo are taken at
the end. Depending on the values of the renormalized coupling in the limit where both cutoffs are
removed one might expect different fixed point solutions that lead to a universal scaling behavior.

If the coupling g% is nonzero, the interplay of the nonlinearity with the Gaussian driving term
leads to the most interesting dynamics. For scaling behavior of stationary nonequilibrium states
one typically considers Galilei-invariant quantities, e.g., moments of field differences 6,u = u(x +
r) — u(x), where the value of the separation r is small compared to the infrared scale L. Thus, we
are concerned with the UV scaling properties in contrast to the IR scaling for excitations of a fluid
near equilibrium [13]. For stochastic driven system (2.1) with a power-law spectrum, we obtain in
the case of a homogeneous and isotropic flow

(8u) ~ DY 103 (3.1)

which follows simply from dimensional analysis and leads to the scaling spectrum ((,u)") ~
Dg/ 3r§,§°>, with (:n(o) =n(—14y/3). It is important to emphasize, that this result implies that the
viscous scale is removed vy — O to leave only the dimensionful parameter Dy. The associated
spectral energy density for this particular scaling solution is defined via the Fourier transform of
the second moment {(8,u)?). We obtain

E(k) ~ DYk 213 | (3.2)
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which depends on the continuous parameter y. Note, that eq. (3.2) describes a Kolmogorov energy
spectrum E ~ Dé/3k_5/3 when y = 4.

These scaling scenarios, eqs. (3.1) and (3.2), relate to Gaussian fixed points for the dynamics.
However, both experiments and numerical simulations indicate strong intermittency effects for high
order moments ((,u)"), where n > 1. Thus, we are led to ask if the system allows for additional
non-Gaussian scaling solutions characterized by sizable anomalous dimensions 1, = §, — C,SO) for
the relevant scaling operators. To determine these scaling corrections from first principles is a
tremendous task. One might hope that lattice Monte Carlo methods may provide a possibility to
calculate the scaling spectrum unambiguously.

4. Lattice discretization and global regularity of solutions

The choice of discretization in a lattice Monte Carlo approach [10, 20] is a subtle issue for
real-time dynamics. While an appropriate discretization in time is important for the cancellation of
the functional determinant that in principle appears in the derivation of the partition function [15],
it also controls the character of physical solutions to the dynamics. In fact, this is well-known from
the direct numerical solution of first order partial differential equations, where certain discretization
schemes simply do not yields globally regular solutions. The most prominent example for such a
behavior is the forward-time centered-space discretization (FTCS) scheme for the linear advective
equation (see, e.g., [23]). On the other hand, other discretizations may provide a dynamics that is
conditionally stable, depending on the choice of the parameters in the problem. These observations
are typically based on a linear stability analysis of the equations of motion and generally cannot be
applied to nonlinear systems.

Nevertheless, we find that a similar constraint applies for our choice of backward-time/pre-
point discretization [20]. The dynamics is only conditionally stable which relates to the value of
the lattice viscosity. If the lattice viscosity is chosen to be larger than ¥y ~ 1/2 the dynamics
will always feature instabilities. In fact, this particular bound is well understood from a similar
discretization of the diffusion equation [23]. This immediately poses the question if these problems
may be overcome by using implicit time-differencing schemes as one usually applies for direct
numerical solvers of partial differential equations (see, e.g., [3]). In what sense such discretizations
are optimal and may lead to unconditionally stable dynamics on the lattice is left for future work.

5. Lattice Monte Carlo algorithms

In this work two different types of algorithms were employed, an improved local overrelax-
ation algorithm [1, 2] and a variant of the Hybrid Monte Carlo (HMC) algorithm [9]. While both
algorithms have been discussed at length in the literature in the context of equilibrium systems,
here, we discuss necessary adaptions and their application for simulations of classical-statistical
dynamics in the presence of a stochastic driving term. We investigate specific improvements to
control the performance of the HMC at the example of the one-dimensional Burgers’ equation and
comment on the relation to the improved overrelaxation algorithm. Results obtained with the over-
relaxation algorithm, including the scaling spectrum {, for the moments of field differences, were
reported in Ref. [20].
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Figure 1: (a) MD force spectrum |F (k,#)| at fixed physical time ¢ in a single 1024 x 512 (time x space)
configuration for different values of y. The data points are taken from a simulation where the Fourier accel-
eration is set iteratively after each Markov step. (b) Spectral energy density E (k) evaluated on an ensemble
of statistically independent configurations for different values of the exponent y.

A useful quantity that one may employ to monitor the performance of the HMC algorithm
is the contribution F = —dS/du to the Molecular Dynamics (MD) evolution equations du/dt =
dHcg/dm and 01/ 0T = —dH.sr/du = F, generated by the effective Hamiltonian Hegs = %||7r| 1>+
S(u), where 7 is the MD evolution parameter and 7 are the conjugate momenta. Typically, the
system will strongly emphasize certain modes, while others are slowed down in comparison. This
is illustrated in Fig. 1a where we show a typical sample of the MD forces |F (k,7)| in the Fourier
representation for a fixed value of the physical time ¢ measured on a single configuration. Clearly,
the power-law forcing (2.2) induces strong variations in the MD force spectrum, where |F (k,1)| ~
k0=3)/2 on average, fory=1,...,7. What is even more striking are the strong fluctuations induced
by the real-time dynamics which cover a range of roughly two orders of magnitude. This makes
the numerical solution quite demanding as the integrator has to tackle these different scales and
avoid possible instabilities [11] triggered by a too large value of the stepsize At of the MD solver.
In fact, a naive application of the HMC will not work unless the stepsizes are chosen extremely
small, which might stabilize the integrator but effectively freezes the HMC dynamics.

Fourier acceleration [8] addresses this problem and suggests an alternative MD update which
is based on the modified effective Hamiltonian HIpC = 1% . m(x,1)Q(x,x"s1)m(x’, 1) + S(u).
This choice yields an improved sampling of the conjugate momenta, and adapts the MD stepsizes
for a given mode At — [Q(k,7)]'/?At. The kernel © is chosen such that it compensates for the
strong fluctuations, i.e., we set Q(k,7) = Cqo|F (k,t)|~'/? after each Markov step iteratively with
a proportionality factor Cq that requires tuning. We should point out, that an effectively field-
dependent Q (k) = Q(k;u) adapted at each step in the Markov process might alter the convergence
properties of this HMC algorithm. In practice, one must check if the right fixed point distribution
is sampled.

With these observations we have chosen to implement an adaption of the HMC which is local
in time but global in space with a field-dependent sampling of the conjugate momenta. That is, for
each physical time in a configuration a Metropolis step is carried out separately. The quasi-locality
of the algorithm requires an even-odd type update for the fields in the physical time direction.
The presented adaptions have proven to be sufficient to yield a stable HMC for stochastic driven
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systems. It is worth pointing out that there are no comparable difficulties relating to the stability of
the overrelaxation algorithm [10, 20]. In fact, it has been shown that the overrelaxation algorithm
is competitive with a stochastic optimal Fourier accelerated Langevin-type algorithm [2].

In Fig. 1b we give an overview on the data obtained so far with the quasi-local HMC. The
shown energy spectra indicate a transition in the UV scaling behavior. For y > 6 the scaling prop-
erties of the small-scale fluctuations deviate from the power-law behavior dictated by the Gaussian
forcing. The current data suggest a crossover to a large-scale dominated forcing regime where the
UV scaling behavior is expected to be universal. However, a careful analysis of the scaling contri-
butions to E (k) is necessary to make firm statements. This is currently in progress and results will
be presented in a forthcoming publication [19].

6. Conclusions

We have shown that lattice Monte Carlo simulations of driven nonequilibrium systems using
a HMC algorithm are possible but require a careful set up. The presently employed quasi-local
HMC with optimal tuning outperforms the overrelaxation algorithm [10, 20] considerably. This
is not surprising as the strong coupling of a large number of degrees of freedom as present in
hydrodynamic turbulence is hard to tackle with a fully local algorithm. In addition, the HMC allows
for the simple inclusion of additional constraints in the microscopic action that might enable an
improved importance sampling, that is, an efficient sampling of field configurations that contribute
significantly to a specific class of observables. This is especially interesting since it was suggested
that instanton configurations (rare events on the attractor) might play an important role to explain
the asymptotic behavior of probability distribution functions and for the scaling behavior of high-
order moments [4]. Possible techniques in this direction are currently under investigation.
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