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1. Introduction

At first sight, “quantizing hydrodynamics” appears nonsensical: Hydrodynamics is usually

defined as a classical theory, because it is an infrared effective description of “many” microscopic

degrees of freedom which have equilibrated. Nevertheless, as shown in [1, 2, 3], ideal hydrody-

namics can be rewritten in quantum form. Can we learn something useful from this exercise?

A lot has been written, recently, about the hydrodynamic limit of “infinitely strongly coupled”

theories, and weather a “quantum lower limit” of viscosity over entropy density (η/s) exists. While

famous results in both the Boltzmann limit [4] and the strongly coupled planar limit of a conformal

field theory [5] suggest the existance of such a lower bount at η/s ∼O
(
10−2

)
, a physical argument

for such a limit’s existance beyond such idealized setups is still lacking.

As argued in [6] and [7], such an argument might come from the possibility, at “infinitely

small mean free path”, for thermal fluctuations to excite hydrodynamic degrees of freedom: When

viscosity is so low that “typical” sound waves, of frequency ∼ T and amplitude comparable to a

thermal fluctuation, ∆ρ/〈ρ〉 ∼CV/T 3 (where ρ is the energy density, CV the heat capacity and T

the temperature), survive for a time much larger than the thermal scale, ∼ 1/T , Kubo’s formula

needs to be renormalized to account for the energy-momentum carried by the sound waves.

While in the planar limit [5] this contribution is negligible as it is O
(
N0

c

)
, at any finite degen-

eracy it will alter both the “viscosity” and the “entropy density”, and, because of turbulence, such

perturbations are not guaranteed to stay small without a cutoff.

In the absence of a sizeable microscopic cutoff, quantum mechanics becomes relevant: a typ-

ical turbulent evolution in four dimensions involves a cascade from high amplitude low frequency

perturbations to low amplitude high frequency ones [8]. This tacitly assumes that one can conserve

energy by, simultaneusly, decreasing the amplitude and increasing the frequency indefinitely. Clas-

sically, this is indeed possible. However, by Planck’s law, a sound wave can not have a transverse

energy ∼ ωc−2
s ∆ρ smaller than its frequency ω in natural units. Quantum mechanics and energy

conservation, therefore, cut the Kolmogorov cascade at frequencies ∼ T in natural units. Since this

cutoff is usually provided by viscosity, the existance of a quantum limit on viscosity is plausible

from hydrodynamic arguments alone.

More generally [9], it is often neglected that hydrodynamics is an expansion not in one small

parameter, but two: The most explored one is the dissipative Knudsen number, ∼ lm f p/R∼η/(sT R),

the mean free path (lm f p ∼ η/(sT )∼ the sound wave dissipation length) over “system size” R. The

other parameter, the “distance between microscopic degrees of freedom” ∼ 1/(gT ), where g is the

microscopic degeneracy, has to be ≪ lm f p for the BBGKY hyerarchy to converge (in [5], Nc → ∞

gives the same effect). Thus, hydrodynamics requires, in terms of the microscopic degeneracy g,

the entropy s, and the viscosity η , that

lmicro
︸︷︷︸

s−1/3∼1/g1/3T

≪ lm f p
︸︷︷︸

η/(sT )

≪ lmacro
︸ ︷︷ ︸

R∼ρ/∂µ ρ

(1.1)

Keeping the mean free path small but comparable to 1/(gT ) is precisely the limit where micro-

scopic thermal fluctuations can excite sound-waves. This is an explored limit, yet it is relevant for

systems such as heavy ion collisions and ultracold atoms, where the number of degrees of freedom

is clearly nowhere near infinite, and (T 3V )−1 is not far from (sT R)/η .
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2. The theory

3D Ideal hydrodynamics with no conserved charges1 can be rewritten [1, 2] in terms of three

fields φ I=1,2,3, which physically correspond to the x,y,z coordinates of the comoving frame w.r.t.

the lab frame. The choice of φ I=1,2,3 is of course not unique, as a perfect fluid is homogeneus, and

in its comoving frame, invariant under rotations and rescalings. This ambiguity can be represented

as a symmetry, restricting the Lagrangian to the form

L = F(B) = T 4
0 F (det (BIJ)) , BIJ = ∂ µφI∂µφJ (2.1)

The function F(B) is left arbitrary, as it corresponds to different equations of state for the fluid.

Dimensional analysis makes it apparent that the F(B) should be defined, in terms of an energy

scale T0. T0, in this context, must be the “temperature” of the microscopic degrees of freedom.

Equivalently, T−1
0 means the distance at which such microscopic degrees of freedom become rel-

evant. Note that this tells us only about the density (and equilibrium/quantum fluctuations of it),

and is in general different from the mean free path of the interacting theory, which in the ideal

hydrodynamic limit goes to zero.

Thus, if Eq. 2.1 is used to build a partition function, the effective “Planck’s constant” becomes

dimensionful; It is natural to identify T−1
0 with the lmicro parameter in Eq. 1.1, since as T0 → ∞ the

classical picture of hydrodynamics should emerge. Eq. 2.1, however, makes it clear the expansion

in T0 might be strongly non-perturbative, as can be expected from a “turbulent” thermally fluctu-

ating ideal fluid. It is straight-forward to show that the energy-momentum tensor corresponding to

the Lagrangian in Eq. 2.1 is that of ideal hydrodynamics

Tµν = (p+ρ)uµuν − pgµν (2.2)

and hence this is simply an unusual reparametrization of ideal hydrodynamics. The energy density

and pressure in this notation are

ρ =−F(B) , p = F(B)−2B
dF

dB
(2.3)

hydrodynamic flow is defined in terms of enenrgy flow as

uµ =
1

6
√

B
ε µαβγεIJK∂α φ I∂β φ J∂γφK (2.4)

We can also show that ∂µ(
√

Buµ) = 0. By inspection, without any conserved charges (those are

examined in [3]) we can identify

s = gT 3
0

√
B (2.5)

with the microscopic entropy. Using the Gibbs-Duhem relation, then, the temperature will be

T =
e+ p

s
= T0

√
B(dF/dB)

g
(2.6)

1We assume, for simplicity there are no conserved charges, so all “density” is energy density (any “particles” are

balanced by antiparticles”). Dense systems can be described by an extension of the approach described here [3]
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The non-perturbative nature of the theory is confirmed by examining the “vortex” degrees of free-

dom [2]: In a hydrostatic background, vortices do not propagate, yet carry arbitrarily small amounts

of energy and momentum. Thus, an S-matrix cannot be defined, since quantum vortices can survive

for an arbitrarily long time, and dominate the vacuum (in the T0 → ∞ limit all such quantum fluctu-

ations are suppressed). Thus, at finite T0, the quantum expectation value of Tµν could very well be

different from the classical one, due to the backreaction of sound waves and vortices. On the lattice,

one can investigate this independently of any perturbative expansion, and without deforming the

theory in the infrared (as was done in [1, 7]).

Conversely, a lattice calculation could show the theory is deformed in the IR in a way that

breaks some, if not most, of the lagrangian’s symmetries. An example for this in 2d classical

hydrodynamics is the famous regular patterns of vortices that form in 2d fluids [10]. If quantum

fluctuations generate solutions like this, the low energy theory will contain effective terms which

break most of the symmetries of Eq. 2.1, but will be missing in the perturbative expansion.

The theory formulated via Eq. 2.1 can be put on the lattice in the usual way, via

lnZ =
∫

DφI exp

(

i

∫

d4xL+ JφI

)

→
︸︷︷︸

lattice+Wick

∫

dφ i
I exp

[

−(aT0)
4 ∑

i

F(φi)+ JφI

]

(2.7)

care needs to be taken since this theory is non-renormalizeable and, once F(B) has been defined,

has no free parameters. The existance of a well-defined continuus limit is therefore not guaranteed.

The scaling of observables with T0 as one approaches the limit of T0 → ∞ can however still be

explored. As we will investigate non-trivial quantum structures in configuration space, such as

quantum-seeded vortices, the large lattice limit will be as important as the continuum limit.

3. Lattice implementation

In order to ensure that the fields on all lattice sites participate in the same updating procedure,

we use one-sided finite differences for derivatives and average over the eight per hypercube. The

derivatives ∂µφ I and all quantities derived from them (e.g., BIJ , uµ , Tµν ) are thereby envisioned as

occupying the centers of the hypercubes. Since the fields represent the comoving coordinates of

the fluid, it is better to use “shifted” variables to avoid problems with the periodic boundaries (i.e.,

one subtracts the hydrostatic background):

π I = φ I − xI → ∂α φ I = ∂α π I +1δ I
α . (3.1)

We expect this theory to describe quite extended structures (e.g., vortices) which are easily

created from the “vacuum” and we therefore use HMC updates in an attempt to learn something

about their amenability to change in the Markov process. Thus, we require the variation of the

action with respect to the local field values:

δS

δφ I(x)
=

δS

δ
√

B

δ
√

B

δ (∂α φ J)

δ (∂α φ J)

δφ I(x)
(3.2)

= ∑
y,µ ,ν ,σ

dF

d
√

B
δ IJδ (y− x± µ̂/2± ν̂/2± σ̂/2)

√
B

8
B−1

JK |εµνσα |∂α φK

∣
∣
∣
∣
∣

y−α̂/2

y+α̂/2

.
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L4 C(= aT0) traj dτMD accept

204 0.8 4000 0.001 / 0.0005 49% / 85%

164 1 10000 0.001 52%

124 1.33333 10000 0.0005 61%

104 1.6 10000 0.0005 41%

84 2 10000 0.00025 72%

64 2.66667 10000 0.00025 56%

Table 1: Lattice parameters for runs with constant volume.

We have implemented the updating algorithm and the calculation of observables in C code,

with parallelization via OpenMP. Table 1 displays a subset of our runs performed with the aim

of preserving the physical volume: L4 = (16/(aT0))
4. To achieve reasonable acceptance rates,

quite small values of the molecular-dynamics time step (dτMD) are required (even at such small

volumes). Correspondingly, convergence to a plateau (say, in 〈
√

B〉) is slow, typically requiring

the omission of the first few thousand trajectories from observables and blocking of data to avoid

autocorrelations. In future runs at larger volumes and lattice spacings (ideally, L−1 ≪ l−1
macro ≪

a−1 ≪ T0), we may need to add mass terms to the scalar fields (or perhaps work at finite density:

see Ref. [3]) and extrapolate to the massless (zero chemical potential) limit.

4. Some preliminary results

A good initial example is the ideal gas EOS,

F(B) = T 4
0 B2/3 . (4.1)

This can be easily generalized to any monotonic EoS (without phase transitions), for example an

EoS ,say, fitting the QCD cross-over [7]. The ideal gas, however, is a good testing laboratory as all

of its parameters are very simple

〈e〉= T 4
0 B2/3 =

gπ2

60
T 4 , 〈p〉= 〈e〉

3
, 〈s〉= T 3

0

√
B=

gπ2

45
T 3 , T =

4

3g
T0B1/6 (4.2)

This allows us to fill in all members of Tµν in the static frame,
〈
Tµν

〉
= diag [〈e〉 ,〈e〉/3,〈e〉/3,〈e〉/3]

Correlations should be localized around standard thermodynamic fluctuations

〈
e(x′)e(x)

〉
−〈e(x)〉

〈
e(x′)

〉
= δ 3

(
~x−~x′

)
CV T 2 ∼ 4π2

15
gT 8

0 (4.3)

Fig. 1 shows average and fluctuations of the s observable. We have checked that the other observ-

ables scale with entropy as expected from Eq. 4.2.

The left panel of Fig. 1 shows the entropy density as a function of the lattice spacing. Allowing

for finite-size effects, no appreciable dependence is seen. The same goes for the rather sizeable,

relative fluctuations in the entropy density (middle plot). There also appears to be little dependence

upon the “macroscopic temperature” (aNt)
−1, i.e., the temperature of the phonon / vortex gas. It
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Figure 1: The expectation value of the entropy density (left), the corresponding fluctuation (middle) and

the relative spatial correlation along x̂ (right).

will be especially interesting to see if this trend (or lack thereof) continues as we push to larger

lattice extents at larger aT0 values: i.e., as we push from the microscopic-dominated entropy region

to one where macroscopic structures carry a large share of entropy. The fluctuations do indeed

lead to a “correction” to the input equation of state (EoS): the EoS dictates s/T 3 = 27/64 ∼ 0.422,

whereas averaging first over the lattice leads to 〈s〉x /〈T 〉3
x ∼ 0.496. One can see in the rightmost

plot that the spatial correlations in the entropy density persist across the lattice (the same can be

seen for T , p, and ρ). We cannot comment more on this result as yet, beyond remarking that it

might show that quantum fluctuations are non-negligible for observables at all scales.

The ideal hydrostatic background further requires any space component of a vector or tensors

observable’s average should be zero. These can be parametrized into the flow tensor

〈
Ωµν

〉
=

〈
uµuν +gµν

〉
=
〈
B−1

IJ ∂µφ I∂νφ J
〉
, (4.4)

which gives insight to the turbulence seeded by quantum fluctuations. While, unlike the locally-

defined scalar perturbation, the average Ωµν is set by symmetries, its correlation function can reveal

interesting structures. In particular, a non-vanishing value at large distances can signal the vacuum

generally contains “quantum turbulence”, and can break some of the original symmetries.

Figure 2: Left: zero-momentum-projected xy flow-tensor correlators. Middle: Spatial correlations of

xx− zz stress-energy tensor. Right: the squared-average of Ti j as a function of lattice extent L (red symbols
at constant physical size L ∝ 1/C, circles at C = 1; the lowest lying data fit to ∼ L−3.85(14)).

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
5
5

Quantum ideal hydrodynamics on the lattice Giorgio Torrieri

The left plot in Fig. 2 shows a zero-momentum-projected flow-tensor correlator (source at

t = 8a). While there appears to be some structure, suggesting the presence of a quantum “sound

mode”, the same is not seen at all lattice spacings (outside of the “enhancement” at t = tsource). Like

with the entropy density, some components (or combinations thereof) of the flow and stress-energy

tensors show non-zero, persistent spatial correlations (middle plot). Indeed, the off-diagonal spatial

components (Ti j and Ωi j) give non-zero averages (indicating non-zero flow) which only vanish in

the “thermodynamic” limit (L → ∞; see the rightmost plot). Even then, some ensembles appear to

be rather stubborn and find a different minimum of the action, perhaps due to macroscopic, topo-

logical features (e.g., vortex rings wrapped around the torus). It would be interesting to search these

lattices for such structures in order to determine to what extent such ensembles should contribute

to an overall average (i.e., whether they are indeed due to the boundary conditions or not). That

these elements are non-zero may also be a hint of existence of structures analogous to well-studied

calorons and instantons in QCD. In a hydrodynamic context, these structures can be interpreted as

quantum vortices, perhaps triggering turbulence. Observables such as the relativistic circulation

CP =
∮

P(p+ e)uµdxµ across a closed path P can be used to investigate the existance and relevance

of such phenomena.

In conclusion, we have argued that a lattice implementation of ideal quantum hydrodynamics

can give insight into a hitherto unexplored limit of strongly interacting matter, one where the dissi-

pation vanishes but the microscopic and macroscopic length scales may not be well separated. We

have discussed the technical details of this implementation and presented some preliminary results.

None of the latter should be taken as anything other than a feasibility demonstration, this is the

beginning of what can only be a very involved research project.
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