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1. Introduction

The Standard Model (SM) was completed with the finding of the Higgs boson in the ATLAS
and CMS experiments at CERN in 2012 [1, 2]. However, a lot of questions cannot be answered
within the SM like the amount of CP-violation or dark matter and energy. We investigate the phase
structure of a chirally-invariant Higgs-Yukawa (HY) model which could lead to a natural extension
of the SM in case of a large renormalized Yukawa coupling. In this scenario bound states of
fermions would be possible which are coupled through a Higgs boson exchange. For comparison
and validation of our analysis methods we compare two bulk phase transitions in the HY model at
small and large bare Yukawa couplings with the bulk phase transition found in the O(4) model.

The action of the O(4) model is given by

SB[Φ] =−κ ∑
x,µ

Φ
†
x
[
Φx+µ +Φx−µ

]
+∑

x
Φ

†
xΦx + λ̂ ∑

x

[
Φ

†
xΦx−1

]2
(1.1)

where the scalar field Φ is a real four-component vector, κ the hopping parameter and λ̂ the quartic
self coupling. Connection to continuum formulation can be made via

ϕ =
√

2κ

(
Φ2 + iΦ1

Φ0− iΦ3

)
, λ0 =

λ̂

4κ2 , m2
0 =

1−2λ̂ −8κ

κ
. (1.2)

On top of the O(4)-model the interaction of the Higgs-boson field with a degenerate heavy fermion
doublet is described by

SΨ = ∑
x,x′

Ψ̄x
[
Dov + yP+Φ

α
θ

†
α P̂++ yP−Φ

α
θα P̂−

]
x,x′ Ψx′ (1.3)

with θ1,2,3 = −iτ1,2,3, τ the Pauli matrices, θ4 = 12×2, the chiral projectors P± and P̂±, and y the
Yukawa coupling. The free-fermion part is described by the overlap operator Dov [3] which is
usually numerically challenging. Gauge fields are not included in this model so Dov is analyti-
cally known and its numerical computation is feasible [4]. The Polynomial Hybrid Monte Carlo
algorithm [5, 6] was used to create configurations of Higgs boson fields.

The magnetisation of the Higgs-boson field

mL =V−1
〈∣∣∣∣ 1

V ∑
x

Φx

∣∣∣∣〉 (1.4)

serves as an order parameter for the phase structure investigation. To ensure a non-vanishing mag-
netisation in the broken phase the Φ field is rotated which is equivalent of including an external
field J and taking the limit J→ 0 [7, 8].

The magnetisation is shown in fig. 1 for the O(4)-model and the two phase transitions in the
HY model at small and large Yukawa couplings respectively. While the phase transition in the O(4)-
model is scanned in the hopping parameter κ the phase transition of the HY model is scanned in the
Yukawa coupling y by simultaniously fixing κ = 0.06. Other values of κ were investigated as well
[9, 10, 11] but are not reported here. A scan in κ in the HY model is currently under investigation.
Bulk phase transitions can be observed in all three scenarios where the magnetisation is non zero
in the broken phase and goes to zero in the symmetric phase. The magnetisation is not exactly zero
in the symmetric phase due to finite volume effects. The absence of jumps in the magnetisation is
evidence of a second order phase transition.
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Figure 1: Magnetizations in the O(4)-model (left), and the HY model at small (middle) and large (right)
Yukawa couplings for various volumes.

2. Analysis methods

Finite-size scaling (FSS) is used to investigate the continuum behaviour (universality class)
of phase transitions. The idea of FSS is that finite volume scaling behaviour is connected to the
critical exponents (anomalous dimension of operators) of the phase transition in infinite volume.
The investigation of the magnetisation indicates such a second order phase transition. In each
universality class the critical exponents are unique and hence the continuum limit of the HY model
and the O(4)-model can be compared to each other.

In this analysis the focus lies on the investigation of FSS of the magnetic susceptibility

χL =V
[
〈m2

L〉−〈mL〉2
]
. (2.1)

FSS predicts different behaviour of the susceptibility in various bare parameter regions [12]:

χL
(
|T −T L

c | � 1
)
∼
∣∣T −T L

c

∣∣−γ
, (2.2)

χL
(
|T −T L

c | → 0
)
∼ L1/ν , (2.3)

T L
c −T ∞

c ∼ L−1/ν , (2.4)

where T is the scanning parameter, κ or y. In eq. (2.2) the behaviour of χL is described far away
from the phase transition. Volume effects become negligible in this region and it is scanned in
the Higgs-boson mass. Hence, susceptibility scales with the anomalous dimension of field renor-
malization, γ , which is not investigated here. Equations (2.3) and (2.4) describe FSS very close
to the bulk phase transition where volume effects become large. The only relevant operator in the
continuum limit is the mass operator so susceptibility’s height and position scales with the volume
and the anomalous dimension of mass, ν .

The O(4)-model has a Gaussian fixed point [13] and hence ν is known to be 1/2. Due to
triviality, the FSS proposed in eqs. (2.2) to (2.4) must be modified by logarithmic corrections [14]:

χL
(
|T −T L

c | → 0
)
∼ L2 log(L)1/2, (2.5)

T L
c −T ∞

c ∼ L−2 log(L)−1/2. (2.6)

Similar logarithmic corrections would also appear in the HY model in case of triviality but the
corresponding exponent of the logarithm was never computed analytically to the best of our knowl-
edge. It is not necessary that these corrections are identical to the ones in the O(4)-model because
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fermion loops will appear. This behaviour will be investigated in the analysis presented in the next
paragraphs.

Various methods were used to extract the critical exponent ν from the scaling behaviour of
susceptibility described in eqs. (2.2) to (2.4). Our standard analysis is a global fit to all volumes
simultaneously [15] which respects the FSS:

χL (T ;ξ ) = A1

([
L2(logL)ξ

]−1/ν

+A2,3 · τ2
)−γ/2

τ =
(
T −T L

c
)
=

[
T −

(
T ∞

c +C ·
[
L−1 · (logL)−ξ/2

]b
)]

. (2.7)

This fit function allows for a direct determination of the critical exponents ν and γ , and the phase
transition point in infinite volume, T ∞

c . It has eight free fit parameters: A1,A2,A3,C,ν ,γ,T ∞
c , where

the exponent b, which describes the peak shift of susceptibility, is directly related to the anomalous
dimension of the mass operator b = 1/ν but it is left free for generality.

The logarithmic corrections for FSS are also included in eq. (2.7). It is not possible leaving the
logarithmic exponent ξ as a free fit parameter because it always appears in combination with the
critical exponent ν . Hence, ξ must be fixed in each individual fit. The strategy is to scan through
various values of ξ to find ν in agreement with 1/2, its value in case of triviality.

The magnetic susceptibility and fit results from eq. (2.7) with ξ = 0 are shown in fig. 2 for the
O(4) and HY model. The fit covers the data well which is very strong evidence for a second order
phase transition. While the volume dependence of the peak position is very prominent in the HY
model it is very small in the O(4) model. In fact, the shift is so small in the O(4) model that we
cannot resolve it in our fits with the given statistics.
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Figure 2: Susceptibilities in O(4)-model (left) and the HY model in the small (middle) and large (right) bare
Yukawa coupling region. The curves are fits to eq. (2.7) with ξ = 0.

To address systematic effects, two additional fit methods were taken into account. In both
methods the susceptibility is fitted for each volume individually. An additional step is necessary to
extract ν either from the peak height eq. (2.3) or the peak position eq. (2.4). The susceptibility in
the O(4)-model does not show any shift of the peak position. Furthermore, a fit based in eq. (2.4)
would lead to a non-linear fit function. That is the reason that only the peak height is considered to
extract ν . Equation (2.3), which describes the volume dependence of the peak height, leads to the
linear fit function

χ
max
L (ξ ) = A1 · (L[logL]ξ )1/ν (2.8)

with two free fit parameters A1 and ν . As for the global fit the logarithmic correction is included.
The exponent ξ is not a free fit parameter and must be kept fixed in each fit. With respect to the
logarithmic correction the fit strategy is the same as for the global fits.
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One of the fit functions to extract the susceptibility’s height was proposed in [16]. The fit
function is given by

χL(T ) = a+ c ·T +
d

1+ e · |T −T L
c |

g , (2.9)

with 6 free fit parameters: a,c,d,e,g,T L
c . The other fit method is a naive fit of quadratic form

χL(T ) = m+ p ·T +q ·T 2, (2.10)

with three free fit parameters m, p,q. It can only be performed very close to the phase transition.
Exemplary fit results of the two methods are shown in the left and middel plot of fig. 3 for the

O(4)-model and L = 16. Both fits govern the data well in their fit ranges and provide information
on the peak height of one particular volume. The right plot of fig. 3 shows the extraction of ν with
respect to eq. (2.8) with ξ = 0. For comparison the result of the global fit is also shown. The values
for ν extracted from the three methods do not agree perfectly but the systematics from different fit
approaches can be addressed.

χ
L

κ

L=16

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.298  0.3  0.302  0.304  0.306  0.308  0.31

χ
L

κ

L=16

 10

 20

 30

 40

 50

 60

 0.3 0.302 0.304 0.306 0.308

χ
L

m
ax

L

quadratic

volume

global

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 8  10  12  14  16  18  20  22  24

Figure 3: Individual volume fits to L = 16 in the O(4)-model to eq. (2.9) (left) and eq. (2.10) (middle).
Extraction of ν from eq. (2.8) for the three fit methods (right).

3. Results of the phase structure analysis

Three different kinds of systematic effects have been addressed in the O(4)-model analysis of
the critical exponent ν . First, the previously mentioned variation of fit methods. Second, it was
investigated how the absence of the largest and smallest volumes would effect ν . Third, the fit
ranges of the susceptibility fits were changed which turned out to be a small effect. The other two
effects are of the order of the statistical error. In case of the HY model not enough data points with
good enough statistics have been produced yet to perform a comparable analysis here.

A comparison of final results for the O(4)-model and preliminary results for the HY model
are shown in fig. 4. Plotted is 1/ν in dependence of the logarithmic-correction exponent ξ . The
mean value is taken from the global fit with all volumes taken into account. The inner errorbars are
statistical and the outer ones are statistical and systematic errors added in quadrature.

Three important observation can be made from fig. 4. First, the inclusion of logarithmic cor-
rections is important and has a big influence on the extraction of ν . This becomes evident in the
O(4)-model. Second, the sign of ξ would be different in the HY model compared to the O(4)-
model if the HY model was also trivial. Third, the ν-dependence of ξ is the same within errors for
the phase transitions in the small and large Yukawa-coupling region. Hence, it stand to reason that
both phase transition are in the same universality class.
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Figure 4: Results for the critical exponent ν in the O(4)-model (left) and the HY model (right) for various
choices of logarithmic-correction exponents ξ .

4. Spectrum calculations

Not only the investigation of the phase transition of the HY model is interesting but also
its spectrum. The easiest quantities to compute are the Higgs- and Goldstone boson masses, the
field-renormalisation constants, and the fermion masses. The boson masses and the corresponding
field-renormalisation constants can be computed from the momentum dependence of propagators
[17]. The masses presented in the following are based on a fit to the propagators according to a
perturbative one-loop motivated expression [6] which allows a simultaneous extraction of masses
and field-renormalisation constants.

The spectrum investigation is still at an early stage and the Higgs boson masses are computed
only for one volume (L = 12) so far. In the left plot of fig. 5 the Higgs boson mass in lattice units
is shown in dependence of the inverse lattice spacing

a =
vr

246 GeV
, vr =

v√
ZG

, v =
√

2κ 〈mL〉 . (4.1)

for small and large Yukawa couplings. Although no volumes effects have been taken into account
the Higgs boson mass dependence on the inverse lattice spacing is comparable in both regimes.
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Figure 5: Higgs boson masses for L = 12 in dependence of the cutoff for small and large Yukawa couplings
(left). Fermion correlation functions in the small (middle) and large (right) bare Yukawa coupling regime.

Examples of fermion correlation functions, from which the masses can be derived, are show
in the middle and right plot of fig. 5 for small and large Yukawa couplings. The fermion correlation
functions are different close to the two phase transitions. In the small Yukawa coupling region
(middle plot) the correlation function shows the expected sinh-behaviour. In the large Yukawa
coupling region (right plot) the correlation functions jumps from negative to positive values. This
is a strong indication for doublers. Doublers are additional poles in the propagator which can be
avoided by shifting their masses close to the cutoff [18]. In the large Yukawa-coupling region the
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fermion might become so heavy that it also gets a mass close to the cutoff and the doublers are not
separated anymore. This effect does not vanish at a larger volume (L = 24) and higher cutoff (≈ 8)
GeV. Hence, this might a generic effect of the model and not a simple volume effect.

5. Conclusions and outlook

The analysis of the phase structure of this HY model is close to be finished. However, the
findings of our preliminary spectrum calculations seem not to be consistent with the phase structure
study. The fermion correlation function shows a different behaviour in the regimes of small and
large Yukawa couplings while both phase transitions seem to be in the same universality class. In
this study we only investigated the anomalous dimension connected to the Higgs boson mass, ν ,
but did not investigate the anomalous dimension connected to the Yukawa coupling, δ . It is still
possible that δ turns out to be different for both bulk phase transitions and hence, that the phase
transitions are not in the same universality class. This will be investigated in a later study.

We will finish our analysis of the critical exponent ν by increasing statistics and adding more
points. This will allow us to perform a thorough study of systematic effect like for the O(4)-model.
The spectrum will be investigated on larger volumes to address volume effects which are expected
to be large in case of the boson masses. We will also scrutinize the possible appearance of bound
states of fermions and Higgs bosons.
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