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experimental data from the Higgs-W boson sector of the standard model. Creation operators are

constructed for all lattice irreducible representations,and a correlation matrix is formed from

which the spectrum is extracted using a variational analysis. Many multi-boson states are ob-

served and careful analysis reveals that all are consistentwith weakly-interacting Higgs andW

bosons.
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1. Introduction

As underscored by the recent discovery of a 125 GeV Higgs-like particle [1,2], the standard
model is an excellent description of nature up to presently-accessible energy scales. The Higgs-
gauge sector of the standard model, with photons neglected, is described by the SU(2)-Higgs
model, which is a useful effective field theory when a finite physical cutoff is in place.

The SU(2)-Higgs model comprises both a confinement region and a Higgs region. The con-
finement region contains a rich spectrum of bound states reminiscent of QCD. The Higgs region
is generally expected to contain only the Higgs andW bosons, although there have been recent
discussions of possible additional states in the Higgs sector [3, 4].

The remainder of this article describes the lattice computations of Ref. [5] where the Higgs-
region spectrum was thoroughly studied with parameters tuned to match the standard model. More
than a dozen energy levels were observed, all of which are consistentwith the traditional expecta-
tion: weakly-interacting multi-particle states of Higgs andW bosons.

2. Operators

The SU(2)-Higgs Lagrangian contains gauge-dependent scalarφ(x) and gauge fieldsUµ(x),
but in the absence of gauge fixing, these do not have an obvious one-to-one connection with the
physical particle states of the spectrum. Rather, the physical states coupleto gauge-invariant oper-
ators that are composites of the fields. The Higgs boson, withI(JP) = 0(0+), whereI is the weak
isospin, couples to the operator Tr

(

φ†(x)φ(x)
)

, which contains two scalar fields. TheW boson,
1(1−), couples to the isovector gauge-invariant link Tr

(

−iσaφ†(x)Uµ(x)φ(x+ µ̂)
)

.

Due to the discrete rotational symmetries of the lattice, angular momentum subduces to ir-
reducible representations (irreps)Λ of the octahedral group, as shown in Table 1. Therefore, the
0(0+) Higgs and 1(1−) W correspond to 0(A+

1 ) and 1(T−
1 ), respectively.

Table 1: The number of copies of each irreducible representationΛ for each continuum spinJ.
Λ J

0 1 2 3 4 5 6 . . .

A1 1 0 0 0 1 0 1 . . .
A2 0 0 0 1 0 0 1 . . .
E 0 0 1 0 1 1 1 . . .
T1 0 1 0 1 1 2 1 . . .
T2 0 0 1 1 1 1 2 . . .

To study the entire low-lying spectrum, zero-momentum operators with all possible I(ΛP)

quantum numbers are constructed. The gauge-invariant link operator iscomposed of two scalar
fields that are spatially separated and connected by gauge links, and is used to construct isoscalar
(I = 0) and isovector (I = 1) operators. The Wilson loop and Polyakov loop operators are also
employed to study allΛP channels forI = 0. Intricate shapes are chosen for the gauge-invariant
link, Wilson and Polyakov loops, as shown in Fig. 1, to allow access to all irreps and parity. Further
details can be found in [5].
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Figure 1: Sketches of the gauge-invariant link, Wilson loop and Polyakov loop operators used to study the
spectrum for allI(ΛP) channels.

Stout link and gaussian scalar field smearing techniques [6, 7] were usedto improve the op-
erators and generate a large basis for a variational analysis. The number of stout link and scalar
smearing iterations used for the variational basis are 0, 5, 10, 25, 50, 100, 150 and 200. It is worth
noting that a total of 3840 operators were used in the analysis of the spectrum. Two isosinglet links,
two isotriplet links, the Wilson loop and the Polyakov loop add to 10 operators.For each of the 10,
we use all 24 spatial orientations, both parities, and 8 smearings. This gives (10)(24)(2)(8)=3840
operators just for zero momentum. We also studied several operators with non-zero momentum.

The energy spectrum is extracted by fitting to the exponential decay of correlation functions

Ci j(t) =
〈

Oi(t)O j(0)
〉

= ∑
n
〈0|Oi |n〉〈n|O j |0〉exp(−Ent) (2.1)

= ∑
n

an
i an

j exp(−Ent) , (2.2)

whereOi(t) are gauge-invariant operators with the vacuum expectation value subtracted. A vari-
ational method [5, 8, 9] is used to iteratively project out the lightest energies from the correlation
matrixCi j(t):

Cn(t) = zi
nCi j(t)z

j
n = An exp(−Ent) . (2.3)

3. Spectrum with a Physical Higgs Mass

The low-lying mass spectrum for allI(ΛP), extracted using a variational analysis of correlation
matrices of gauge-invariant operators, is shown in Fig. 2. The lattice parameters areβ = 8, κ =

0.131 andλ = 0.0033 which result in a Higgs mass close to the physical value and a physicalweak
gauge coupling corresponding tog2

4π ≈ α
sin2 θW

≈ 0.04. The renormalized gauge coupling is close to

the bare coupling value [10]. The lattice size is 203×40 with 20,000 configurations.
The Higgs andW states are easily identified as the ground states in the 0(A+

1 ) and 1(T−
1 )

channels, respectively. The energy scale is set by defining theW mass to be 80.4 GeV, and the
Higgs mass from our simulation is 122±1 GeV. Of course a tiny adjustment of theλ andκ values
would move the Higgs mass to exact agreement with experiment. Moving up in Fig.2, states with
an energy of 2mW appear in the 0(A+

1 ), 0(E+), 0(T+
2 ) and 1(T+

1 ) channels, completely consistent
with the expected continuum quantum numbers for two stationaryW particles: 0(0+), 0(2+) and
1(1+). This expectation follows from Bose statistics, which requires that the total wavefunction
of theW -W state, which contains spin and isospin components, be symmetric under interchange.
No interaction energy is detectable within statistical errors at this weak gaugecoupling. One step
higher in Fig. 2, a state with an energy ofmH +mW is in the 1(T−

1 ) channel, consistent with a
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Figure 2: Energy spectrum extracted from a variational analysis of correlation functions of gauge-invariant
link, Wilson loop and Polyakov loop operators on a 203×40 lattice withβ = 8, κ = 0.131 andλ = 0.0033.
Data points are lattice results with statistical errors. Horizontal lines are expectations for non-interacting
particles with (red) and without (black) internal momentum.

stationary Higgs-W pair which has the same quantum numbers as a singleW . Next, states in the
0(A−

1 ), 1(A−
2 ), 1(E−), 1(T−

1 ) and 1(T−
2 ) channels appear with an energy of 3mW , consistent with

three stationaryW particles. Requiring that the three-W state be symmetric under the interchange
of any pair gives the follow continuum spins: 0(0−), 1(1−), 1(2−) and 1(3−), which completely
agree with the channels listed above. Missing from the results in Fig. 2 is the two-Higgs state,
expected to appear in 0(A+

1 ) at an energy of 2mH . This state is observed in Sec. 4 using operators
introduced in that section. Higher up are states with an energy ofmH +2mW , found in the same
channels as two stationaryW ’s, which is consistent with a Higgs and twoW particles all at rest.

The uppermost horizontal line in Fig. 2 (highlighted in red) represents the energy of twoW
particles, each moving with the minimal momentum allowed on a lattice but total momentum equal
to zero. The operators are defined to have zero total momentum but multi-particle states may appear
which have internal momentum. In particular, two-particle states will have back-to-back momen-
tum. The configuration of the internal momentum can not be specified by the lattice operators,
because the momentum of each particle is not a conserved quantity. Momentumoccurs on a lattice
in integer multiples of 2π/L along thex, y or z axes, whereL is the spatial length of the lattice.
Two moving particles with vanishing total momentum may also have orbital angular momentum.
Again, not being a conserved quantity, the orbital angular momentum can not be specified by the
lattice operators (much like the internal linear momentum). Only the total angular momentum,
which corresponds to the lattice irrepΛ, is conserved. The orbital angular momentum can assume
any value, and thus allI(ΛP) are expected for two movingW bosons. This signal is observed in
many channels, but not all. Section 4 discusses why this signal did not appear in some channels.
The data points at the top of Fig. 2 are difficult to interpret with the current simulation, but another
simulation (discussed below) at a larger lattice volume can provide clarity.
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Figure 3: The same as Fig. 2 but on a (larger) 243×48 lattice.

To verify the interpretation of states in Fig. 2 as two-particle states with the minimal non-
zero back-to-to-back momentum, all lattice parameters will be held fixed (β = 8, κ = 0.131 and
λ = 0.0033) except the lattice size which is increased from 203×40 to 243×48. Increasing the
lattice size decreases the minimal momentum 2π/L. Spectrum results for the larger lattice are
shown in Fig. 3. The energy values remain unchanged except that thosewhich have non-zero
momentum (red horizontal lines in Fig. 3) have decreased. Previously unidentified states from
Fig. 2 are now identified as a Higgs-W pair moving with the minimal momentum. While allΛP

with I = 1 are expected to appear for a moving Higgs-W pair (due to intrinsic orbital angular
momentum), only a few channels observe a signal. Section 4 will discuss why there are missing
irreps for multi-particle states with momentum.

4. Two-Particle Operators

Multi-particle operators are constructed by multiplying operators of definite momentum that
predominantly couple to a single particle state. The "single" Higgs andW operators, as a function
of momentum~p, are given by

H(~p) = ∑
~x

1
2

Tr
{

φ†(x)φ(x)
}

exp{i~p ·~x} , (4.1)

W a
µ (~p) = ∑

~x

1
2

Tr
{

−iσaφ†(x)Uµ(x)φ(x+ µ̂)
}

exp
{

i~p ·
(

~x+ 1
2 µ̂

)}

. (4.2)

"Two"-particle operators with back-to-back momentum are built as follows:

H(~p)H(−~p) , I = 0 , (4.3)

H(~p)W a
µ (−~p) , I = 1 , (4.4)
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Figure 4: Energy spectrum of Higgs-Higgs and Higgs-W states with back-to-back momentum|~p| = 0,
|~p| = 2π/L, |~p| =

√
2(2π/L) and|~p| =

√
3(2π/L). Lattice is 243×48 with parametersβ = 8, κ = 0.131

andλ = 0.0033.

W a
µ (~p)W

a
ν (−~p) , I = 0 , (4.5)

εabcW b
µ (~p)W

c
ν (−~p) , I = 1 , (4.6)

where repeated indicesa, b, c are summed. Of course, these operators do not couple only to two
particles with the specified internal momentum. They can, for example, couple toa single particle,
two particles with a different momentum configuration, and more as long as theI(ΛP) quantum
numbers are obeyed. However, this construction results in a much stronger contribution from two-
particle states, which is needed to observe the two-Higgs state. All possibleI(ΛP) are constructed
from H(~p) andW a

µ (~p).

Figure 4 shows the Higgs-Higgs and Higgs-W spectrum with back-to-back momenta|~p|= 0,
|~p|= 2π/L, |~p|=

√
2(2π/L) and|~p|=

√
3(2π/L). The two-Higgs state is now easily found. The

same calculation is performed for twoW particles in Fig. 5. There are a number of data points
missing in Figs. 4 and 5 for two-particle states with non-zero momentum. TheW -W states with
|~p| = 2π/L in Fig. 5 match those found in Figs. 2 and 3. In fact, it is not possible to construct
lattice operators of the form in Eqs. (4.3)-(4.6) for the missingI(ΛP). Due to the lattice rotational
symmetries, the direction of the internal momentum for multi-particle states restricts the allowed
irreducible representations.

5. Conclusions

The entire SU(2)-Higgs energy spectrum has been studied with all parameters tuned to match
the standard model. The multi-boson spectrum was observed and is consistent with collections of
weakly interacting Higgs andW bosons.
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Figure 5: Energy spectrum ofW -W states with back-to-back momentum|~p| = 0, |~p| = 2π/L, |~p| =√
2(2π/L) and|~p|=

√
3(2π/L). Lattice is 243×48 with parametersβ = 8, κ = 0.131 andλ = 0.0033.
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