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1. Introduction

As underscored by the recent discovery of a 125 GeV Higgs-like mfti¢?], the standard
model is an excellent description of nature up to presently-accessihigyeswales. The Higgs-
gauge sector of the standard model, with photons neglected, is descyibtbe BU(2)-Higgs
model, which is a useful effective field theory when a finite physical figah place.

The SU(2)-Higgs model comprises both a confinement region and a Higgsr The con-
finement region contains a rich spectrum of bound states reminiscent@f Q& Higgs region
is generally expected to contain only the Higgs &ddosons, although there have been recent
discussions of possible additional states in the Higgs sector [3, 4].

The remainder of this article describes the lattice computations of Ref. [Sjewthe Higgs-
region spectrum was thoroughly studied with parameters tuned to match tbarstamodel. More
than a dozen energy levels were observed, all of which are consigtarthe traditional expecta-
tion: weakly-interacting multi-particle states of Higgs a‘cbosons.

2. Operators

The SU(2)-Higgs Lagrangian contains gauge-dependent spatarand gauge fieldsl, (x),
but in the absence of gauge fixing, these do not have an obvious @m&toconnection with the
physical particle states of the spectrum. Rather, the physical states t@gplege-invariant oper-
ators that are composites of the fields. The Higgs boson,\dffy = 0(0*), wherel is the weak
isospin, couples to the operator('ﬁy*(x)(p(x)), which contains two scalar fields. Thé boson,
1(17), couples to the isovector gauge-invariant link Fio2¢' (x)U (X) @(x+ f1)).

Due to the discrete rotational symmetries of the lattice, angular momentum ssliduice
reducible representations (irreps)of the octahedral group, as shown in Table 1. Therefore, the
0(0") Higgs and 11~) W correspond to A ) and 1T, ), respectively.

Table 1: The number of copies of each irreducible representatiéor each continuum spid.

A J

0 1 2 3 45 6
Aij]l1 0 0 01 0 1
A0 0O 0 1 0 0 1
E|0O O 1 0 1 1 1
T7/0 1 0 1 1 2 1
/0 01 1 1 1 2

To study the entire low-lying spectrum, zero-momentum operators with alitped$AP)
guantum numbers are constructed. The gauge-invariant link operatomigosed of two scalar
fields that are spatially separated and connected by gauge links, aratlisousonstruct isoscalar
(I = 0) and isovectorl(= 1) operators. The Wilson loop and Polyakov loop operators are also
employed to study al\" channels fol = 0. Intricate shapes are chosen for the gauge-invariant
link, Wilson and Polyakov loops, as shown in Fig. 1, to allow access to giisraed parity. Further
details can be found in [5].
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Figure 1: Sketches of the gauge-invariant link, Wilson loop and Pladydoop operators used to study the
spectrum for all (AP) channels.

Stout link and gaussian scalar field smearing techniques [6, 7] weraagagrove the op-
erators and generate a large basis for a variational analysis. The nahgieut link and scalar
smearing iterations used for the variational basis are 0, 5, 10, 25, 60130 and 200. It is worth
noting that a total of 3840 operators were used in the analysis of the spediwo isosinglet links,
two isotriplet links, the Wilson loop and the Polyakov loop add to 10 operafanseach of the 10,
we use all 24 spatial orientations, both parities, and 8 smearings. This(@0¥24)(2)(8)=3840
operators just for zero momentum. We also studied several operatorsomitbeno momentum.

The energy spectrum is extracted by fitting to the exponential decay rel@bon functions

Cij(t) = (4i(1)6}(0)) = 3 (0] i ) (n| ] |0) exp(—Ext) (2.1)

n

= a'ajexp(—Edt) , (2.2)
n

wheredi(t) are gauge-invariant operators with the vacuum expectation value stelokraA vari-
ational method [5, 8, 9] is used to iteratively project out the lightest ersefgien the correlation
matrixCij (t):

Cn(t) = Z,Cij ()7 = Anexp(—Ext) - (2.3)

3. Spectrum with a Physical Higgs M ass

The low-lying mass spectrum for allA”), extracted using a variational analysis of correlation
matrices of gauge-invariant operators, is shown in Fig. 2. The latticenedeas arg8 = 8, K =
0.131 andA = 0.0033 which result in a Higgs mass close to the physical value and a physiakl
gauge coupling correspondinggé ~ smgaN ~ 0.04. The renormalized gauge coupling is close to
the bare coupling value [10]. The lattice size i$ 2040 with 20,000 configurations.

The Higgs andV states are easily identified as the ground states in tAg)0and 1T, ")
channels, respectively. The energy scale is set by definingvtihheass to be 8@ GeV, and the
Higgs mass from our simulation is 1221 GeV. Of course a tiny adjustment of theandk values
would move the Higgs mass to exact agreement with experiment. Moving up i8,Ktates with
an energy of By appear in the A\, ), 0(E™), O(T,") and IT;") channels, completely consistent
with the expected continuum quantum numbers for two stationaparticles: @0*), 0(2") and
1(17). This expectation follows from Bose statistics, which requires that the t@teéfunction
of theW-W state, which contains spin and isospin components, be symmetric under amigech
No interaction energy is detectable within statistical errors at this weak gaugsding. One step
higher in Fig. 2, a state with an energy of; + my is in the T, ) channel, consistent with a
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Figure 2: Energy spectrum extracted from a variational analysis ofetation functions of gauge-invariant
link, Wilson loop and Polyakov loop operators on & 2040 lattice withB = 8, k = 0.131 andA = 0.0033.
Data points are lattice results with statistical errors.rietintal lines are expectations for non-interacting
particles with (red) and without (black) internal momentum

stationary Higgd¥ pair which has the same quantum numbers as a siigl&lext, states in the
0(A;), L(A)), 1(E7), I(T,") and IT, ) channels appear with an energy ofi3, consistent with
three stationaryV particles. Requiring that the thr&g-state be symmetric under the interchange
of any pair gives the follow continuum spins(@ ), 1(1~), 1(27) and 13~), which completely
agree with the channels listed above. Missing from the results in Fig. 2 is theliggs state,
expected to appear iNA; ) at an energy of @. This state is observed in Sec. 4 using operators
introduced in that section. Higher up are states with an energy;of 2my, found in the same
channels as two stationavy’s, which is consistent with a Higgs and tWé particles all at rest.

The uppermost horizontal line in Fig. 2 (highlighted in red) representsribggg of twoW
particles, each moving with the minimal momentum allowed on a lattice but total momentuah eq
to zero. The operators are defined to have zero total momentum but mtiltigostates may appear
which have internal momentum. In particular, two-particle states will have-tmblack momen-
tum. The configuration of the internal momentum can not be specified by thes lafiirators,
because the momentum of each particle is not a conserved quantity. Momeettura on a lattice
in integer multiples of Zr/L along thex, y or z axes, wheré_ is the spatial length of the lattice.
Two moving particles with vanishing total momentum may also have orbital angulaemom.
Again, not being a conserved quantity, the orbital angular momentum c¢érerspecified by the
lattice operators (much like the internal linear momentum). Only the total angular niomge
which corresponds to the lattice irrép is conserved. The orbital angular momentum can assume
any value, and thus al(AP) are expected for two moving/ bosons. This signal is observed in
many channels, but not all. Section 4 discusses why this signal did neaappsome channels.
The data points at the top of Fig. 2 are difficult to interpret with the curiemtlgtion, but another
simulation (discussed below) at a larger lattice volume can provide clarity.
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Figure 3: The same as Fig. 2 but on a (largery 2448 lattice.

To verify the interpretation of states in Fig. 2 as two-particle states with the minioral n
zero back-to-to-back momentum, all lattice parameters will be held figed 8, k = 0.131 and
A = 0.0033) except the lattice size which is increased from2@0 to 24 x 48. Increasing the
lattice size decreases the minimal momenturtyl2 Spectrum results for the larger lattice are
shown in Fig. 3. The energy values remain unchanged except thatioske have non-zero
momentum (red horizontal lines in Fig. 3) have decreased. Previouslgntifidd states from
Fig. 2 are now identified as a Higys-pair moving with the minimal momentum. While a\®
with | = 1 are expected to appear for a moving Hi§gspair (due to intrinsic orbital angular
momentum), only a few channels observe a signal. Section 4 will discuss wtg/dne missing
irreps for multi-particle states with momentum.

4. Two-Particle Operators

Multi-particle operators are constructed by multiplying operators of definitemembum that
predominantly couple to a single particle state. The "single" Higg9/dmgberators, as a function
of momentump, are given by

. z%w{w*(x)fp(x)} exp(ip-} (@.1)
z Tr —io?Q" (U () @(x+ 1)} exp{ip- (R+310)} . (4.2)

"Two"-particle operators with back-to-back momentum are built as follows:

H(PH(-P), 1=0, (4.3)
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Figure 4: Energy spectrum of Higgs-Higgs and Hig@sstates with back-to-back momentuim = 0,
|B| = 2m/L, |B| = v2(2r/L) and|p| = v/3(2m/L). Lattice is 24 x 48 with parameter§ = 8, k = 0.131
andA = 0.0033.

WE(BWE(—B), | =0,
W (PWS (), 1=1,

(4.5)
(4.6)

where repeated indices b, ¢c are summed. Of course, these operators do not couple only to two
particles with the specified internal momentum. They can, for example, coupleingle particle,
two particles with a different momentum configuration, and more as long agAf¢ quantum
numbers are obeyed. However, this construction results in a much storggbution from two-
particle states, which is needed to observe the two-Higgs state. All pos@\lgare constructed
from H(p) andW(p).

Figure 4 shows the Higgs-Higgs and Higgsspectrum with back-to-back momenf = 0,
1Bl = 2m/L, || = v2(2r/L) and|p| = v/3(2m/L). The two-Higgs state is now easily found. The
same calculation is performed for tWi particles in Fig. 5. There are a number of data points
missing in Figs. 4 and 5 for two-particle states with non-zero momentum.\Wi-i¢ states with
|B| = 2rr/L in Fig. 5 match those found in Figs. 2 and 3. In fact, it is not possible to agristr
lattice operators of the form in Egs. (4.3)-(4.6) for the misdiafy). Due to the lattice rotational
symmetries, the direction of the internal momentum for multi-particle states resticédidhved
irreducible representations.

5. Conclusions

The entire SU(2)-Higgs energy spectrum has been studied with all pemaniened to match
the standard model. The multi-boson spectrum was observed and is aoinsisitecollections of
weakly interacting Higgs and/ bosons.
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Figure 5. Energy spectrum oW-W states with back-to-back momentujg = 0, |p| = 2rr/L, |p| =
V2(2r/L) and|p| = v/3(2m/L). Lattice is 24 x 48 with parameterg = 8, k = 0.131 andA = 0.0033.
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