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on the lattice by means of Monte Carlo simulations. The gauge symmetry is explicitly broken
to U(1) at the orbifold boundaries. The action is the Wilson plaquette action with a modified
weight for the boundary U(1) plaquettes. We study the phase transition and present results for
the spectrum and the shape of the static potential on the boundary. The latter is sensitive to the
presence of a massive Z-boson, in good agreement with the directly measured Z-boson mass.
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Figure 1: Schematic representation of the 5d lattice where the SU(2) orbifolded gauge theory is defined.

1. The SU(2) lattice orbifold and its symmetries

We use a five-dimensional (5d) anisotropic Euclidean lattice with T × L3× (N5 + 1) points.
The lattice spacing is a4 in the four-dimensional (4d) hyperplanes orthogonal to the extra dimension
and a5 along the extra dimension. The gauge links UM(n) ∈ SU(2) connect the lattice points n+M̂
with n. The Euclidean index M runs over the temporal M = 0 and spatial M = k,5 (k = 1,2,3)
directions. We will also use Greek indices to denote the µ = 0,k directions. The lattice is assumed
to be periodic except for the extra dimension, which is an interval with boundaries originating from
an orbifold projection [1]. The physical length of the extra dimension is πR = N5a5. We employ
the anisotropic Wilson plaquette action which is defined as

Sorb.
W =

β

2

[
1
γ

∑
4d p

wRetr{I−Pµν(n)}+ γ ∑
5d p

Retr{I−Pµ5(n)}

]
, (1.1)

where the weight factor is w = 1/2 for the boundary plaquettes and w = 1 otherwise. Only coun-
terclockwise oriented plaquettes PMN are summed over and I is the identity matrix. The anisotropy
parameter γ is in the classical continuum limit γ = a4/a5. Instead of (β ,γ) we will use the equiv-
alent parameter pair (β4 = β/γ,β5 = β γ). Along the extra dimension with coordinate n5 ∈ [0,N5]

the orbifold projection specifies Dirichlet boundary conditions

Uµ(n) = gUµ(n)g−1 ⇒ Uµ(n) = eφ(n)g ∈ U(1) (1.2)

at n5 = 0 and n5 = N5 with the SU(2) projection matrix

g =−iσ3 . (1.3)

Thus, at the interval ends, the gauge symmetry is explicitly broken to a U(1) subgroup of SU(2)
which is left invariant by group conjugation with g. The lattice of the SU(2) orbifolded gauge
theory is schematically represented in Fig. 1. There are three types of gauge links: 4d U(1) links
contained in the two boundaries at n5 = 0 and n5 =N5, hybrid extra dimensional links (with one end
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on a boundary transforming under U(1) and the other end in the bulk transforming under SU(2))
and the remaining bulk SU(2) links.

In addition to the local gauge symmetry, the orbifold theory possesses the following global
symmetries

Z⊗F⊗F . (1.4)

Z is a center transformation in the 4d hyperplanes by an element of the center Z2 = {±I} of SU(2).
F is a reflection with respect to the middle of the orbifold interval n5 = N5/2. The fixed point
symmetry is F = FL⊕FR. On the L (“left”) boundary at n5 = 0, FL is defined as

U5(n5 = 0) → g−1
F U5(n5 = 0) (1.5)

Uν(n5 = 0) → g−1
F Uν(n5 = 0)gF (1.6)

and on the R (“right”) boundary at n5 = N5, FR is defined as

U5(n5 = N5−1) → U5(n5 = N5−1)gF (1.7)

Uν(n5 = N5) → g−1
F Uν(n5 = N5)gF . (1.8)

In order that FL(R) are consistent symmetry transformations, a boundary U(1) gauge link should
remain in the U(1) group after conjugation by gF . Moreover, the transformations have to commute
with the orbifold projection and gF has to satisfy [3]

ggF = gF gzG , (1.9)

where zG is an element of the center of SU(2), i.e. zG =±I. If zG =−I or equivalently

{g,gF}= 0 , (1.10)

for example gF = eiθ (−iσ2), the fixed point transformations FL(R) are the stick symmetries in-
troduced in [3] and we denote them by SL(R). If zG = I or equivalently [g,gF ] = 0, then the
transformations FL(R) are global gauge transfomations.

In order to build lattice operators for the scalar (Higgs) and vector (gauge boson) particles, see
[2], we will use the boundary-to-boundary-line

l =
N5−1

∏
n5=0

U5(n5) . (1.11)

and the orbifolded Polyakov loop1

PL = lgl†g−1 . (1.12)

Higgs operators, with spin J = 0, charge conjugation C = 1 and spatial parity P = 1, are defined by

trPL , trΦLΦ
†
L , (1.13)

where ΦL = 1/(4N5) [PL−P†
L ,g]. Inspired by [4], we define a gauge boson operator, with J = 1,

C =−1 and P =−1, by

trZLk , ZLk(n) = gUk(n)αL(n+ k̂)U†
k (n),αL(n) , (1.14)

1The subscript L (R) indicates that an operator is defined on the L (R) boundary.
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Figure 2: The mean-field phase diagram. The size of the extra dimension is N5 = 12. Each point represents
the solution of a numerical iterative process.

where αL = ΦL/
√

det ΦL. Note that while trPL is odd under both stick symmetries SL and SR,
trZL is odd under SL and even under SR.

Another quantity which will be used in particular to study dimensional reduction from five to
four dimensions is the static potential V (r) extracted from Wilson loops. We take the latter to be
defined in a 4d hyperplane, so the static potential depends on the coordinate n5.

In order to build a larger variational basis, the links used to construct the Higgs and gauge
boson operators and the Wilson loops are smeared with a HYP smearing [5] which does not use
the temporal links and is adapted for the orbifold. In particular the smearing parameters are set to
α1 = 0.5, α2 = 0.4 and α3 = 0.2 and the spatial links in the 4d hyperplanes are not smeared along
the extra dimension.

2. Phase diagram

2.1 Mean-field

Fig. 2 shows the phase diagram based on the solutions obtained for the mean-field background
v0. Due to the orbifold boundaries, we distinguish a background v0(n5), n5 = 0,1, . . . ,N5 in the 4d
hyperplanes and v0(n5 + 1/2), n5 = 0,1, . . . ,N5− 1 along the extra dimension. For the details of
the mean-field formulation we refer to [6]. The mean-field phase diagram in Fig. 2 has four phases:

1. v0(n5) = 0, v0(n5 +1/2) = 0: confined phase (white color);

2. v0(n5) 6= 0, v0(n5 +1/2) 6= 0: deconfined phase (red color);

3. v0(n5) 6= 0, v0(n5 +1/2) = 0: layered phase, cf. [7] (blue color);

4. v0(n5 = 0) 6= 0, v0(n5 = N5/2) = 0: hybrid phase (green color).
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Figure 3: Overview of the Monte Carlo phase diagram of the 4d boundary plaquette on the 164×5 orbifold.
Hot (red) and cold (blue) starts.

The mean-field sees only bulk phase transitions and is not sensitive to compactification effects.
Approaching the phase boundary from the deconfined phase, we define the critical exponent ν of
the inverse correlation length, which is given by the Higgs mass MH = a4mH(β ) = (1−βc/β )ν

(and is measured from the Euclidean time correlator of the operator in Eq. (1.13)). For γ > 0.6,
we measure ν = 1/4, the Higgs mass MH and the background do not vanish as the phase transition
is approached. This means that the phase transition is of first order (the lattice spacing does not
go to zero). For γ . 0.6, the layered phase appears at the phase boundary and ν becomes 1/2.
Moreover the Higgs mass and the background tend to zero approaching the boundary of the decon-
fined/layered phases. This is consistent with a second order phase transition. Indeed in [6], lines
of constant physics (LCPs) have been constructed along which the continuum limit was taken. In
particular on a LCP with ρHZ = mH/mZ = 1.38 (which is the current experimental value) we find
that the Higgs mass is finite without supersymmetry and predict a Z′ state of mass mZ′ ' 1TeV.
The mean-field calculations show that a LCP with ρHZ = 1.38 at γ ≥ 1 does not exist.

2.2 Monte Carlo

Fig. 3 shows the phase diagram of the 4d plaquette on the boundary n5 = 0 in the (β4,β5)

plane. We simulated a 164× 5 orbifold in the parameter region β4 ∈ [0.3,2.5] and β5 ∈ [0.3,5].
For each parameter point we did two runs (hot and cold start) with 150 thermalization and 400
measurement steps. Two steps are separated by one heatbath and 8 overrelaxation update sweeps.

There is a bulk phase transition of first order2. It is signalled by a hysteresis and is marked by
the magenta vertical lines in Fig. 3. At γ = 1 the hysteresis is between β = 1.55 and β = 1.65, it is
wider than on the torus, cf. [9].

2The corresponding transition with periodic boundary conditions along the extra dimension (torus) was studied in
[9], see also [10].
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β4 β5 Peak Height

L=12 2.248±0.003 1.41± 0.01 1.17± 0.15

L=16 2.3575±0.0005 1.41± 0.01 0.8± 0.1

Table 1: The “end-point” of the bulk first order phase transition for lattices of size T = L = 12, T = L = 16
and N5 = 4. The last column shows the peak of the susceptibility of the 4d plaquette at n5 = 2.

β5 = 1.24:

V β4

84×5 2.0592±0.0016
124×5 2.0697±0.0007
164×5* 2.0740±0.0010

Table 2: The BT β4 values at β5 = 1.24. The error is determined by the width of the susceptibility peak.
The L = 16∗ lattice shows a clear hysteresis and its error is therefore taken to be half of the hysteresis width.

In general there are jumps of the plaquette along lines where γ2 ∈ N+, which are marked by
the gray lines in Fig. 3. Corresponding to these jumps of the plaquette value, we also find jumps of
the plaquette susceptibility but no peaks of the latter. The presence of these jumps does not depend
on the lattice size.

The γ < 1 region is interesting because the mean-field analysis predicts that the bulk phase
transition changes from first to second order, see Section 2.1. Although a second order phase
transition has not been found so far in Monte Carlo simulations on the torus, hints for dimensional
reduction and for properties resembling those of a layered phase as seen by the mean-field are
reported in [9]. Here we find on the orbifold two potential candidates for a second order phase
transition, see Fig. 3. One is the “end-point” of the first order bulk phase transition line, where the
hysteresis disappears. The other is a new type of transition signalled by an inflection point in the
boundary 4d plaquette at fixed β5 as a function of β4. We call it boundary transition (BT), because
it is not visible in the 4d plaquette in the middle of the orbifold at n5 = 2. The BT is therefore
reminiscent of the hybrid phase found in the mean-field phase diagram of Fig. 2.

Table 1 shows that the position of the “end-point” strongly changes with the 4d lattice volume
and the peak of the plaquette susceptibility is approximately constant. So we discard it as a lattice
artifact.

Instead the position of the BT does not depend much on the volume, see Table 2. We find that
the peak of the susceptibility of the boundary plaquette at the BT point increases by a factor of
more than two between the volumes 84 and 124 (the ratio of the volumes is approximately 5). This
could be consistent with a second order phase transition. However for the volume 164 we find a
clear hysteresis which means that the BT transition at β5 = 1.24 is of first order.

We mention that the 4d plaquette measured in the bulk gives a consistent picture, except that it
does not see the BT. Also the phase diagram on a 244×5 lattice gives the same qualitative picture.

Fig. 4 shows the phase diagram of the absolute value of trPL defined in Eq. (1.12). It is obtained
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Figure 4: Overview of the Monte Carlo phase diagram of |Poly5|= |trPL| on the 244×5 orbifold. Hot (red)
and cold (blue) starts. The two plots show the same data but from different views.

from hot and cold starts each having 250 thermalization and 2000 measurement steps on a 244×5
orbifold. |trPL| clearly behaves like an order parameter for confinement, separating the confined
from the deconfined phases. It vanishes in the confined phase and saturates quickly at the value 2 in
the deconfined phase. There is also an intermediate “plateau” for β4 & 2.5 for β5 values larger than
at the “end-point” transition (we have indications that for this lattice size the “end-point” moves to
such high values β4 ≈ 2.5). Without taking the absolute value, the sign of trPL changes frequently.
This is an indication that the two stick symmetries SL and SR are both spontaneously broken in the
deconfined phase. Unfortunately the observables trZ2

Lk, see Eq. (1.14), is too noisy and we cannot
display its phase diagram.

3. Spectrum

On an isotropic (γ = 1) orbifolded 64× 323× 5 lattice we measure the spectrum close to the
bulk phase transition (β = 1.66, 1.68) using the operators defined in Eq. (1.13) and Eq. (1.14). The
statistics is of 2000 measurements separated by two update steps (each update step consists of one
heatbath and 16 overrelaxation sweeps). The variational basis is constructed using smeared links
with 5, 15 and 30 HYP smearing iterations.

The masses of the Higgs and gauge boson in units of 1/R are shown in Fig. 5. Together with
the ground states, also the first excited states were resolved. We find a nonzero gauge-boson mass
mZ 6= 0 and the value of mZ does not decrease with the lattice size L. This implies that the Higgs
mechanism is at work. The mass hierarchy is not the one measured by the experiments at CERN,
we find mZ > mH . The masses of the excited states of the Higgs and the Z-boson are approximately
equal.

At β = 1.66 we also measured the static potential on the boundary. The data (blue points)
are shown on the left plot of Fig. 6. In order to get a qualitative understanding of the shape of
the potential, we perform 4d Yukawa (red dashed line), 4d Coulomb (black continued line) and 5d
Coulomb (green dash-dotted line) global fits3. In the Yukawa non-linear fit, the Yukawa mass is a

3The best 5d Yukawa fit has a zero Yukawa mass and is therefore not considered.
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Figure 5: The spectrum for γ = 1, L = 32 and N5 = 4 close to the bulk phase transition marked by the
vertical dash-dotted line. The masses of the Higgs (gauge boson) ground and excited states are shown on the
left (right) plot in units of 1/R. The Higgs mass is much higher than its value from the one-loop (continuum)
formula [11, 12].
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Figure 6: The boundary static potential at γ = 1, L = 32, N5 = 4 and β = 1.66 (left plot) favors the 4d
Yukawa global fit. The Yukawa mass which minimizes the χ2 (right plot, red vertical dashed line) agrees
well with the directly measured value marked by the vertical blue dashed-dotted lines.

fit parameter. The preferred global fit is the 4d Yukawa. The χ2 of the 4d Yukawa fit is shown on
the right plot of Fig. 6 as function of the Yukawa mass amZ . The value of amZ which minimizes
the χ2 is consistent with the directly measured value of amZ , cf. Fig. 5.

After we proved the existence of the Higgs mechanism, by finding a nonzero mass for the
U(1) gauge boson, the question of its origin arises. In particular Elitzur’s theorem [13] tells that
only global symmetries can be spontaneously broken on the lattice and phase transitions are char-
acterized by gauge invariant order parameters. In Section 1 we have identified global symmetries,
the fixed point symmetries FL and FR, which contain the stick symmetries SL and SR. In the
deconfined phase, where we measure the masses, the stick symmetries are spontaneously broken,
see Section 2.2. This breaking induces the breaking of the other global symmetries, which are
global gauge transformations, this is the origin of the Higgs mechanism. The Polyakov loop trPL

in Eq. (1.13) is the order parameter for confinement/deconfinement. The deconfinement phase can
be a Coulomb or a Higgs phase. We conjecture that the operator trZLk in Eq. (1.14), is the order
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Figure 7: The mean-field background defines a “crystal” in coordinate and gauge space. Links of different
colors correspond to different values of the background.

parameter of the Higgs phase, namely the Higgs mechanism happens when
〈
trZ2

Lk

〉
6= 0.

The Higgs mechanism on the orbifold seems to have a different origin than the Hosotani
mechanism [14], which was formulated in perturbation theory and works only when fermions are
included, see also the lattice study of [15]. The orbifold mechanism of spontaneous symmetry
breaking could be related to a bosonic superconductor. The mean-field background breaks trans-
lation invariance, like a crystal, see Fig. 7. Gauge fluctuations around the mean-field background
are like phonons, the Polyakov loop (Higgs) with U(1) charge 2 is like a Cooper pair and the
Higgs mechanism, due to gauge-Higgs interaction, happens like in a superconductor slab, where
the photon becomes massive.

4. Conclusions

We have presented a Monte Carlo study of the 5d SU(2) orbifold, extending previous results
from [2]. A second order phase transition is not found. Instead there is a line of bulk first order
phase transitions and a new transition for anisotropy γ < 1 which is signalled by the boundary
(but not by the bulk) 4d plaquette. The boundary transition is also of first order where we did
simulations.

The spectrum is measured so far only at γ = 1 for an orbifold with N5 = 4, where we find
a massive gauge boson which is heavier than the Higgs scalar. The mass of the gauge boson
is consistent with the mass extracted from a 4d Yukawa fit to the boundary static potential, thus
supporting dimensional reduction. It remains to be seen how the mass hierarchy is at γ < 1, where
in the mean-field calculation it was possible to reproduce the experimentally measured masses for
the Higgs and gauge boson.
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