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1. Introduction
Novel strong interactions might provide an explanation for the mechanism of electroweak

symmetry breaking. In order for new strong dynamics to be able to explain this breaking, the the-
ory must be near the onset of the conformal window and possess an anomalous dimension of the
chiral condensate of order one. Numerical lattice simulations provide a crucial non-perturbative
tool to check possible candidate models realising these ideas (see [1] for a recent review). Recent
lattice calculations [2–8] have demonstrated that the SU(2) gauge theory with two adjoint Dirac
flavours (N f = 2) is in the conformal window. Besides the conformal strong dynamics inducing
the electroweak symmetry breaking, an important second requirement for a realistic scenario is an
anomalous dimension close to one. The most recent measurements for this theory have revealed
an anomalous dimension γ∗ ∼ 0.37(2) [9,10], thus, ruling out the possible phenomenological rele-
vance of SU(2) with two adjoint flavours.

Hence, it is important to understand whether large anomalous dimensions can arise in the con-
text of conformal gauge theories. Although the anomalous dimension is small at the perturbative
zeros of the beta function, large anomalous dimensions might arise near or at the lower end of
the conformal window. Since, according to numerical evidence, in the two-flavour case the SU(2)
gauge theory is infrared conformal with a small anomalous dimension, the only remaining possi-
bility for observing a large anomalous dimension in SU(2) with adjoint Dirac flavours is to move
to the single flavour case. According to some heuristic arguments this theory is considered to be
confining; nevertheless, a non-perturbative study from first principles has never been performed.
Besides, at large N, studies of the infrared behaviour of the theory based on reduction are incon-
clusive [11, 12].

In these proceedings we present an investigation of the SU(2) Yang-Mills theory with one
adjoint Dirac fermion using numerical Monte Carlo studies of the theory discretised on a spacetime
lattice. The chiral symmetry breaking of this model produces only two Goldstone bosons, making
it insufficient to give mass to the W± and Z bosons. Thus, even if the theory turns out to be in
the near-conformal regime, it has no phenomenological importance. However, it may still provide
useful information about the possibility of having a large anomalous dimension.

2. Lattice Calculation
2.1 The Setup

The lattice formulation used in this work for the action S of the model is the Wilson gauge
action SG and Wilson fermionic action SF : S = SG +SF with

SG = β ∑
p

Tr [1−U(p)] and SF = ∑
x,y

ψ(x)D(x,y)ψ(y), (2.1)

where D(x,y) the massive Dirac operator:

D(x,y) = δx,y− κ

2

[(
1− γµ

)
Uµ(x)δy,x+µ +

(
1+ γµ

)
U†

µ(x−µ)δy,x−µ

]
. (2.2)

κ is referred to as the hopping parameter and is related to the bare fermion mass m through κ =

1/(8+2am). β = 2N/g2 = 4/g2 is the inverse coupling and N the number of colors.
We have applied the Rational Hybrid Monte Carlo (RHMC) algorithm to produce the gauge

configurations. Our code is based on the HiRep suite [13]. More details about the production of
configurations and their analysis will be provided in [14].
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Figure 1: The results of the pilot study, showing the average plaquette across a range of value of β and am;
the region of interest was identified around β = 2.05, am =−1.5.

2.2 The Phase Diagram
Since this system had not been investigated before, we performed a careful scan in the bare

parameters. Based on related theories, we made a first guess as to where the region of interest would
be. The next step was to narrow down the parameter ranges to make the simulation of interesting
physics feasible. The lattice phase diagram was explored by investigating the average plaquette on
a 44 lattice, choosing the ranges 1.4 ≤ β ≤ 2.8, −1.7 ≤ am ≤ −0.1, in steps of am = 0.1. This
is presented in Figure 1. Once the region of the bulk phase transition was identified to be around
β ' 1.9, am'−1.65, points were added in its neighbourhood to increase the resolution to 0.05.

Based on these results, a single value of the lattice spacing was chosen corresponding to β =

2.05, and the bare fermion mass in −1.523 ≤ am ≤ −1.475, with am = −1.523 being our closest
point to the chiral limit. For the quantitative measurements that follow, we have chosen lattices of
size NT ×N3 =16× 83, 24× 123, 32× 163 and 48× 243. The parameters for our ensembles are
presented in Table 1. At each bare mass, the size of the lattice has been fixed by requiring that
spectral observables are not affected by finite size artefacts.

Lattice V −am amPCAC Nconf Lattice V −am amPCAC Nconf

A1 16×83 1.475 0.1489(9) 2400 C2 32×163 1.490 0.1279(2) 2300
A2 16×83 1.500 0.1101(12) 2200 C3 32×163 1.510 0.09111(31) 2200
A3 16×83 1.510 0.0904(14) 2400 C4 32×163 1.510 0.09048(52) 2300
A4 16×83 1.510 0.0872(22) 4000 C5 32×163 1.514 0.08223(34) 2300
B1 24×123 1.475 0.1493(5) 2400 C6 32×163 1.519 0.06587(37) 2300
B2 24×123 1.500 0.1113(8) 2300 C7 32×163 1.523 0.04840(54) 2200
B3 24×123 1.510 0.09226(92) 4000 D1 48×243 1.510 0.09130(27) 1534
C1 32×163 1.475 0.1485(4) 2100 D2 48×243 1.523 0.04722(43) 2168

Table 1: The lattices considered in this study with their volumes, bare masses, PCAC masses and number
of configurations.

2.3 Observables

Our goal in this project is to investigate the infrared regime of the theory. In particular, we
are interested in conformal properties and the chiral condensate anomalous dimension. To this
purpose, following [4,5], we have extracted the mass spectrum in the chiral regime and tested finite
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size scaling predictions. In addition, we have determined the Dirac mode number as a function of
the Dirac eigenvalues [9].

The massless fermionic action has an SU(2) global chiral symmetry. In the presence of a
nonzero condensate this breaks to SO(2)∼= U(1). The generator of the unbroken group is identified
with the baryon number B. Since parity is unbroken, our states can be characterised by the parity P
and baryon B quantum numbers i.e. BP. The spectrum consists of mesons, baryons, glueballs and
glue-fermion composite states [15], which can be classified by these quantum numbers and their
spin. In addition to the spectral states we also measure the string tension.

On the lattice, hadron masses and in general spectral energies mX are found via the temporal
asymptotic behaviour of correlators 〈O†(t,x)O(0,0)〉 t→∞−→ e−mX t where O is an operator carrying
the quantum numbers of the state in question. We work in the chiral representation with:

γ
µ =

(
0 σ µ

σµ 0

)
and charge conjugation operator C = iγ0γ2 =

(
iσ2 0
0 −iσ2

)
,

where σ µ = (1,~σ) , σ
µ = (1,−~σ) and the charge conjugation operation defined as ψC =Cψ

T.
Possible operators O bilinear in the fermion field are ψΓψ , ψTCΓψ , ψΓCψ

T and ψTCΓψ
T. We

consider Γ = 1,γ0,~γ,γ0~γ,γ5γ0,γ5~γ,γ0γ5~γ,γ5. We, therefore, see that the operators correspond to
meson states with B = 0, P =± and baryon states with B =±2, P =±.

In addition to the mesonic and baryonic states, the theory possesses a chiral doublet that can be
thought as a fermion-gluon bound state. In a supersymmetric Yang-Mills theory this state would
be called gluino-glueball; here it is noted as a spin- 1

2 state, since the fermions are not partners
of the gluons. This state can be obtained by correlators of the lattice version of the continuum
operator [15]:

O
spin- 1

2
= ∑

µ,ν

σµν tr [Fµν
ψM] (2.3)

with σµν = 1
2

[
γµ ,γν

]
. Glueball operators consist of linear combinations of ordered products of link

matrices on closed paths, which have been chosen in such a way that they transform irreducibly
under spin transformations, parity and charge conjugation.

Following [5], the string tension has been calculated using operators of blocked/smeared
Polyakov loops and from the temporal asymptotic behaviour of expectation values of Wilson loops.
The first method gives us access to the closed flux-tube spectrum, which can be fitted using an ef-
fective string theory prediction in order to extract the string tension. Wilson loops lead to the static
potential. This can be fitted by a Cornell-like potential giving, thus, the string tension.

3. Spectrum
In Figure 2 we present spectrum of several states of the theory in terms of bare quantities (left

panel) and in terms of mass ratios with the string tension (right panel). In the first plot we observe
that the meson, baryon, glueball and spin- 1

2 masses as well as the string tension in lattice units
decrease monotonically towards zero as amPCAC → 0. Hence, there is no doubt that this theory
does not follow the characteristics of the “traditional” confining behaviour.
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Figure 2: Selected spectral states of the theory, showing meson, baryon, glueball, and spin- 1
2 states, and

σ1/2, all tending towards 0 as mPCAC→ 0. On the left we present the raw masses in lattice units and on the
right mass ratios with the string tension.

Turning now to the mass ratios, we observe that, with the exception of the pseudovector meson,
over which we have a poor control, within two standard deviations all states have constant mass
ratios throughout the range in which they were observed. The scalar meson 0+ is the lightest state
in the scaling region. In addition we expect the scalar glueball 0++ and the scalar meson to mix.
As a matter of fact the mass ratios of these two states appear to be degenerate within the statistical
uncertainties. The mass ratios of the baryon states appear to behave in a similar manner as the
mesonic states. Namely, their mass ratios are constant throughout the range of amPCAC.

Our results, therefore, obey the hyperscaling hypothesis according to which the mass ratios
of spectral quantities in the chiral scaling regime for a mass-deformed infrared conformal gauge
theory should be constant. Hence, the SU(2) gauge theory with one adjoint Dirac fermion appears
to possess an infrared behaviour compatible with a conformal or nearly-conformal nature of the
theory.

4. The chiral condensate anomalous dimension
Various techniques can be used to extract γ∗. The first method we show consists in revealing

an approximate value for the anomalous dimension using finite size scaling predictions. For a
conformal theory a spectral quantity mX of the system on a finite lattice of spatial extension L, as
L→ ∞ and the combination Lm1/(1+γ∗)

PCAC is kept constant, obeys the asymptotic formula:

LmX = f

(
Lm

1
1+γ∗
PCAC

)
, (4.1)

for some unknown function f . If the system is in the scaling region, the equation above can be used
for determining γ∗. Hence, we plot on the same figure LmX as a function of Lm1/(1+γ∗)

PCAC for a fixed
value of γ∗ and for several ensembles. Next, we find the suitable value of γ∗ for which the data
points for different ensembles collapse on a universal curve. In Figure 3 we provide such plots for
m0− , with γ∗ = 0.9, 1.0 and 1.1, for three different lattice volumes. These plots are taken from a
sequence of plots for γ∗= 0.1−2.0 with an increment of 0.1 and demonstrate that for γ∗= 0.9−1.0
our results identify a universal curve. Hence, by inspection we would expect that the anomalous
dimension γ∗ would lie between 0.9 and 1.0.
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Figure 3: Plots of Lm0− as a function of Lm1/(1+γ∗)
PCAC for the three lattice volumes 24× 123, 32× 163 and

48×243 and γ∗ = 0.9, 1.0, 1.1. The results appear to identify a universal curve for γ∗ = 0.9−1.0.

Another way of obtaining γ∗, which leads to a more precise and rigorous determination, is
by fitting the Dirac mode number ν̄(Ω) as a function of the Dirac eigenvalues Ω [9]. The raw
data [14] for the mode number for several lattice volumes are consistent at high Ω, but diverge at
low Ω, moving further from a straight line as the lattice volume is reduced. It, therefore, makes
more sense to focus on our results on D2. Fitting the mode number requires particular care. In fact,
the scaling regime [9]:

a−4
ν̄(Ω)≈ a−4

ν̄0(m)+A
[
(aΩ)2− (am)2] 2

1+γ∗ (4.2)

is realised only in an intermediary region of Ω, the extent of which is not known a priori. In
addition the fit is highly sensitive on initial conditions, creating a systematic uncertainty on the
fitting parameters. For a more detailed description of the fitting method see [9]. In Figure 4
we provide our results for the four fitting parameters of Equation (4.2) for several ranges of the
fitting window in Ω controlled by the lower and upper ends. According to [9] we seek for a
plateau which demonstrates the stability of the fit in both ends. The best result obtained in this
optimisation gives an anomalous dimension of the condensate in the range 0.9 ≤ γ∗ ≤ 0.95 with
a best fit of γ∗ = 0.92(1). This agrees perfectly with the result from the finite scaling scenario.
Combining this result with the spectral analysis, the indication coming from our study is that the
theory is conformal (or near-conformal), with an anomalous dimension of the right size for a viable
EWSB model. Although, as we have discussed, the chiral symmetry breaking pattern of this model
excludes it from candidate walking technicolor theories, we have preliminary evidence that large
anomalous dimensions are realised near the onset of the conformal window. In order to put these
conclusions on firmer grounds, a careful infinite volume extrapolation (e.g. along the lines of [10])
needs to be performed.
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