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determine the existence of an infrared fixed point.
We describe the details of our gluonic measurements and the results obtained on a large number of
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walking technicolor theories.
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1. Introduction

Many lattice studies of many–flavour QCD have been carried out in recent years to determine
whether the SU(3) gauge theory with massless fermions is chirally broken or conformal at large
distances. The importance of the answer to such question is related to the theory being or not a
good candidate for a Walking Technicolor (WTC) model, featuring an approximate scale invariance
and a mass anomalous dimension γm ∼ 1 [1]. If a WTC candidate can be found with the above
requirements and, additionally, with a light flavour–singlet scalar bound state, then it could be able
to explain the recent Higgs boson discovery, in a scenario that goes beyond the Standard Model [2].

For this purpose, the lattice framework proves to be an excellent tool due to the inherent non–
perturbative nature of infrared dynamics in non–abelian gauge theories. It is important to stress
that lattice studies are affected by systematic effects which need to be estimated, in particular for
WTC candidate theories (for details on lattice of WTC models see Ref. [3].)

In this proceeding we focus on an instance of many–flavour QCD, which has been intensively
studied by several groups in the past: N f = 12 QCD. A previous study by us [5] has shown QCD
with N f = 12 massless fermions to be consistent with having an infrared conformal fixed point.
At the same time, the spectrum of the theory contains a flavour–singlet scalar particle [4], lighter
than the would–be pion, when the conformal symmetry is explicitly broken by a fermion mass term
∝ m f ψ̄ψ . Such a light scalar state could be due to the claimed original scale invariance of the theory
and would become a techni–dilaton behaving as a Higgs–like particle if conformal symmetry was
spontaneously broken by a dynamical fermion mass, which would play a role dynamically similar
to the explicit fermion mass in the conformal phase. The latter option seems to hold for the N f = 8
QCD theory [6, 7], where chiral symmetry breaking and a light flavour–singlet scalar bound state
appear together as signs of a possible WTC candidate.

In the following, we look at large–distance features of the twelve–flavour theory which have
not been particularly investigated so far. Namely, we measure gluonic observables, like the spec-
trum of scalar glueballs and the string tension. Although there exists a study of the string tension
for this theory [8], we add an independent measurement and we also compare our findings to the
fermionic part of the spectrum in the scalar, pseudoscalar and vector channels. The results pre-
sented in the following must be considered as preliminary.

1.1 Lattice setup

We introduce the details of our lattice simulations, which were also used to obtain the results
of Ref. [4]. The numerical simulations of the continuum SU(3) gauge theory with 12 degener-
ate fermions are carried over by the LatKMI collaboration using the Highly Improved Staggered
Quark (HISQ) action and the tree–level Symanzik gauge action. The N f = 12 degenerate massless
fermions in the continuum are represented using Ns = 3 degenerate staggered fermion species of
mass am f , each coming in Nt = 4 tastes (N f = Ns×Nt) on the lattice, where a is the lattice spacing.

The bare gauge coupling constant is set to β = 6/g2 = 4.0, which is the value closer to weak
coupling in Ref. [5]. Hence, the results presented in this proceeding are obtained at fixed lattice
spacing. We simulate four physical volumes (aL)3 with L = 18, 24, 30, 36 and aspect ratio T/L =

4/3, where T is the number of points in the temporal direction, and we select different bare quark
masses on each volume, from am f = 0.05 on the largest L = 36 volume, to am f = 0.16 on the
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smallest L = 18. Using a larger volume at smaller bare fermion mass is important to keep finite–
size effects under control, as we describe in the following.

This set of parameters allows us to check for finite–size systematics at fixed quark mass and to
test the fermion mass dependence of the spectrum in the infinite volume limit. As a reference, the
simulated pseudoscalar (would–be pion) masses are 0.32 < amπ < 0.74, while the decay constant
reads 0.06 < aFπ < 0.14.

The most important features of our simulations, that is worth mentioning, are the good flavour
symmetry realisation of the HISQ action and the large number of configurations, obtained after
O(1000) thermalisation trajectories, from uninterrupted Markov chains. In fact, we generate be-
tween approximately 10000 and 30000 trajectories to perform a large statistics analysis of the
gluonic spectrum.

2. Gluonic observables

In this section we briefly introduce our methodology to extract the mass of a flavour–singlet
scalar bound state with 0++ quantum numbers using gluonic operators. We employ correlators of
spatial Wilson loops symmetrised to have the desired scalar quantum numbers. We refer to the state
extracted this way as the scalar glueball because such operators create a gluonic bound state from
the vacuum of a pure Yang–Mills theory on the lattice. In twelve–flavour QCD, where dynamical
fermions are affecting the dynamics of the vacuum, there could be a bound state with the same
quantum numbers but fermionic content ≈ q̄q, that can in principle have a non–zero overlap on the
gluonic operators. We have measured such a q̄q state using fermionic bilinear operators with the
desired quantum numbers in Ref. [4].

We use a large number of different shapes for the spatial Wilson loops in order to enlarge the
variational operatorial basis and we also include operators with different levels of smearing and
blocking. This way we obtain a large variational basis of gauge–invariant interpolating operators
Oα(x, t) with well–defined rotational quantum number.

For every configuration, we measure a matrix of correlation functions, whose elements are

C̃αβ (t) = ∑
τ

〈0|O†
α(t + τ)Oβ (τ) |0〉 . (2.1)

By solving the generalised eigenvalue problem for the matrix above, optimal operators (i.e. those
that create almost pure states |i〉) can be found that are a linear sum of the basis vectors

Õi(t) = ∑
α

vi
αOα(t) ; Õi(t) |0〉 ≈ |i〉 , (2.2)

where vi
α are the components of the ith eigenvector. Different eigenvectors vi correspond to different

states.
The mass ami of the ith state is extracted by fitting correlators of optimal operators using

C̄ii(t) = |ci|2
(

e−amit + e−ami(T−t)
)
, (2.3)

where T is the length of the lattice in the time direction and the functional form is a consequence
of the usual exponential decay in a lattice with periodic boundary condition in the time direction.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
7
3

Gluonic observables and the scalar spectrum of twelve–flavour QCD Enrico Rinaldi

In the next section, we refer to the mass extracted from the above fitting function as aMG. The
procedure described above is quite standard in lattice spectroscopy and more technical details can
be found in Ref. [9].

By changing the operators in the correlation function, one can study different states. In partic-
ular, a useful channel we investigate with this variational technique is the string tension in units of
the lattice spacing, a

√
σ . One way of extracting this observable requires to estimate the ground–

state mass of torelons. Torelons are finite–volume excitations which wrap around the periodic
boundaries of the lattice; they couple to spatial Polyakov loop operators, which we smear to create
a variational basis.

The torelon mass relates to the string tension through

amtor(L) = a2
σL− π

3L
− π2

18L3
1

a2σ
, (2.4)

where both the leading order term and the next–to–leading order universal correction [10] are
included. Once the torelon mass has been estimated for a fixed lattice size L, Eq. (2.4) is inverted
to obtain a

√
σ . In the next section we show how well we are able to extract amtor(L) from spatial

Polyakov loop correlators and what is the size of finite–volume effects on the string tension.

3. Results
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Figure 1: The scalar glueball mass in units of the lattice spacing aMG is plotted as a function of the bare
quark mass am f for several volumes (horizontally shifted for clarity). The pseudoscalar (π) and vector (ρ)
state masses are highlighted with solid lines (from Ref. [5]). The area delimited by a magenta line shows the
location of the scalar (σ ) state (from Ref. [4]).

The spectrum of the scalar glueball mass aMG is obtained for all the investigated parameters
and it is plotted in Fig. 1. At rather large bare fermion masses am f > 0.1, we only have a single
volume estimate which shows a heavy glueball mass aMG ∼ 0.8. For lighter fermions we are able
to check the volume dependence of aMG and we also observe a clear fermion mass dependence,
with the glueball state becoming lighter towards the chiral limit. This last observation indicates
that fermion loop contributions are affecting the spectrum, since such a dependence could not be
accommodated for in a quenched theory (remember that all results presented here are for a fixed
ultraviolet cutoff).
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In the light fermion region am f < 0.1 we observe a degeneracy between the scalar glueball
mass and the scalar flavour–singlet mass of the σ state. This is somehow expected since our
gluonic operators in Sec. 2 have the same quantum numbers of the fermionic ones used in Ref. [4].
However, we are able to resolve a light scalar state with gluonic operators only for a limited range
of volumes and fermion masses. A better estimate of the coupling between gluonic and fermionic
d.o.f. in the σ state is possible by including fermion operators in the variational basis of Eq. (2.1):
such analysis is in progress and will be reported elsewhere. Nonetheless, our results are a first
observation of a flavour–singlet scalar state lighter than the pseudoscalar and vector state using
gluonic and fermionic correlators in a (near-)conformal theory.
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Figure 2: (Left) The ground state effective mass extracted from correlators of spatial Polyakov loops with
a variational approach. Results for different spatial volumes L = 18, 24, 30 and 36 are shown at fixed bare
quark mass am f = 0.06. (Right) Same as the left panel but for different bare quark masses am f ≤ 0.10 at
fixed lattice volume L = 24. A good plateaux is always found in both cases and the fitted results are shown
with solid lines.

We now move to discuss the results for the string tension. In Fig. 2 we show the effective mass
coming from spatial Polyakov loop correlators. When a plateaux is reached in the effective mass,
the correlator is expected to behave as in Eq. (2.3). The fitted mass shown on top of the data points
in Fig. 2 is our best estimate for amtor(L). The plots show both the L dependence of the torelon
mass at fixed bare fermion mass, resulting in a volume dependence of the extracted string tension,
and the mass dependence at fixed volume.

At each bare fermion mass am f where results on more than one volume are present, we are
able to find at least two points compatible within the statistical errors; among them, we use the
largest volume result as our infinite–volume estimate for a

√
σ . We observe that the string tension

is free from finite–size effects when long Polyakov loops are considered, La
√

σ & 3.
In order to gain some insights on the (near-)conformal nature of N f = 12 QCD, we look at

ratios of spectral quantities: in the conformal phase, all masses in the spectrum vanish with the
same power law as a function of the fermion mass; therefore, ratios of masses remain constant
when approaching the chiral limit of the theory. In Fig. 3 we plot the ratio mπ/

√
σ between the

pseudoscalar mass from Ref. [5] and the string tension, and also the ratio mσ/
√

σ between the
scalar meson mass from Ref. [4] and the string tension. Results for different volumes are reported
to show that negligible finite–size effects are present when larger volumes are considered towards
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Figure 3: (Left) The mass ratio between the pseudoscalar state and the string tension mπ/
√

σ for different
bare fermion masses. (Right) The mass ratio between the fermionic flavour–singlet scalar state and the string
tension mσ/

√
σ . As a comparison, the ratio between the lightest scalar state and the string tension of a SU(3)

pure gauge theory in the continuum is shown. Data on different volumes are shown (slightly displaced for
clarity).

the chiral limit.
The first ratio we consider, mπ/

√
σ , is well compatible with a constant value all the way to the

lightest fermion masses, and the same applies to the second one, mσ/
√

σ . This result suggests a
common scaling of all the studied quantities toward the chiral limit, in contrast with the behaviour
from chiral perturbation theory.
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Figure 4: The string tension in units of the lattice spacing a
√

σ is plotted as a function of the bare quark
mass am f . Estimates from different volumes from L = 18 to L = 36 are plotted. Two fits of the L = 30 data
(only 3 points) are included: the dashed line is a linear fit implying a non–zero

√
σ in the chiral limit, while

the solid curve is a hyperscaling relation with γ ∼ 0.5.

4. Discussion and conclusions

In this proceeding we have presented our preliminary results on large volumes for the scalar
glueball mass and the string tension in twelve–flavour QCD. The scalar glueball obtained from a
variational analysis including gluonic operators with scalar quantum numbers appears to be heavier
than the pseudoscalar and vector mesons when larger volumes are considered towards the chiral
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limit. However, on smaller volumes and at light fermion masses, the extracted glueball mass is
degenerate with the one independently obtained using fermionic interpolating operators only; the
latter has been interpreted as a light flavour–singlet mesonic state [4].

We also measured the string tension using correlator of smeared spatial Polyakov loops. We
then considered mass ratios where the string tension was used to set the scale. Both the pseu-
doscalar and the scalar state in units of the string tension show a constant behaviour in the explored
mass range and large volume limit. This indicates a regime where all energy scales in the spectrum
have the same functional dependence on the bare fermion mass. This is consistent with the the-
ory being infrared conformal in the chiral limit, as expected from a previous study of the mesonic
spectrum alone [5].

By considering the string tension alone, as it is shown in Fig. 4, a definite conclusion on the
nature of the massless theory could not be reached. In fact, both the conformal hypothesis featuring
hyperscaling, and the confining hypothesis with a finite mass gap in the chiral limit are compatible
with the lattice data (see caption for details on the fits).
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