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We investigate the chiral phase transition temperature (Tc) in the unit of the string tension (
√

σ)

for a various number of flavor (N f ) by using lattice Monte Carlo simulations. We show the first
result on the ratio Tc/

√
σ for N f = 6 and 8, and compare it with those obtained for a smaller N f .

The ratio is found to be a decreasing function of N f , and this indicates that the chiral dynamics
becomes less significant in larger N f region. We point out that our Tc/

√
σ provides an important

input for a model study on the many flavor QCD based on the gauge/gravity duality. Furthermore,
we discuss the order of the chiral phase transition for N f = 8.
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1. Introduction

Novel conformal phase associated with the infra-red fixed point (IRFP) is anticipated to emerge
in strongly-interacting non-Abelian gauge theories with the asymptotic freedom when the number
of fermion species (N f ) exceeds a critical value (N f = N∗

f ) [1]. The quasi-conformal dynamics has
been advocated as a basis for the dynamical symmetry breaking in the electroweak theory, which is
referred as the walking technicolor model [2]. Lattice Monte-Carlo simulations are now expected
to provide a solid theoretical base for this new class of the gauge theories [3].

The model studies based on the functional renormalization group [4] and the finite-temperature
holographic gauge theory [5] indicate that the onset of the conformal window coincides with the
vanishing of the chiral phase transition temperature (Tc), and the conformal phase appears as a
zero-temperature limit of a possibly strongly-interacting quark gluon plasma (QGP). It is argued
that the approach to the conformal phase shows a singular N f dependence of Tc [4, 6] which may
be regarded as a signal of the quasi-conformality.

The analysis of the finite-temperature chiral phase transition is a well-established line of re-
search in the lattice QCD, and may allows us to evaluated the N∗

f from the vanishing of Tc based on
the first-principle calculations. A quantity whose N f dependences can be defined is to be dimen-
sionless, and thus Tc should be normalized by some reference scale. The reference is then required
to be insensitive to the physics of the chiral phase transition and the IRFP, otherwise the vanishing
nature of Tc with increasing N f is contaminated by the reference scale itself and gets invisible.

Recently, we have defined the normalized critical temperature (T̂c) by utilizing the two-loop
beta-function, and estimated the onset of the conformal phase N∗

f ∼ 9.4− 14.2 via the vanishing
of T̂c(N f ) [7]. As a next step, it is preferable to define T̂c(N f ) without recourse to the perturbative
method. A simple example of the T̂c(N f ) is the ratio between the transition temperature and the
square-root of the string tension (Tc/

√
σ ), which we investigate in this proceedings. We particularly

investigate Tc/
√

σ for N f = 6 and 8, where the walking dynamics is suggested [3, 8, 9].

2. Simulation’s Setup

We investigate Tc/
√

σ for a single bare fermion mass ma = 0.02 by using the lattice Monte
Carlo simulations. To this end, we utilize our recent results [7, 10] on the critical lattice coupling
β c

L associated with the chiral phase transition for N f = 6 and 8:

β c
L =

{
5.025 (N f ,Nt) = (6,6) ,

4.275 (N f ,Nt) = (8,8) .
(2.1)

As shown in Ref. [7, 11, 10], the critical couplings have a thermal scaling, and are responsible
for the physically-relevant thermal transition rather than the bulk transition. By using them as
inputs for the zero temperature simulations with the lattice box size 323 ×64, we measure Wilson
loops Wr,t where the r(t) denotes a spatial (temporal) extension. From the Wr,t , we evaluate the
heavy-fermion potential V (r), the effective mass meff, and the Creutz ratio χr,t ,

Wr,t =C(r)e−tV (r) , meff(r, t) = log
[

Wr,t

Wr,t+1

]
=V (r) , χr,t =− log

[
Wr,tWr+1,t+1

Wr,t+1Wr+1,t

]
, (2.2)
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By fitting the lattice data with the ansatz

V (r) =V0 −
α
r
+σr , or equivalently , χr,t =

α
r̂(r̂+1)

+ σ̂ , (2.3)

where σ̂ = σa2 and r̂ = r/a, we determine the normalized string tension σ̂ . We then investigate
the dimensionless ratio Tc/

√
σ as

Tc√
σ

=
Tc ·a(β c

L )√
σ ·a2(β c

L )
=

N−1
t√
σ̂

. (2.4)

The left-hand side does not depend on Nt up to the scaling violation.
In the simulations for the Wilson loop measurements, we have used an improved version of the

staggered action, the Asqtad action, with a one-loop Symanzik and tadpole improved gauge action.
To generate configurations with mass degenerate dynamical flavours, we have used the rational
hybrid Monte Carlo algorithm.

3. Results and Discussions

3.1 String Tension for N f = 6 and 8

In Fig. 1, we show the Creutz ratio χ for N f = 6 and 8 as a function of the spatial extension
ra. The Creutz ratio can depend on the temporal extension, and we have determined it by taking
the value of the plateau. The symbol + (red) at ra = 1 represents the results without a smearing,
and the symbols “×” (blue) are the results with an Ape and a time-link smearing. The smearing
parameters are adjusted to maximize the overlap function C(r) appeared in the heavy-fermion
potential (2.2). Although the smearing may affect the constant term V0 as well as C(r) of the heavy-
fermion potential, the Creutz ratio does not depend on V0 nor C(r). Therefore, the comparison of
the smeared and the non-smeared makes sense, and allows us to exclude the smearing artifacts:
Apparently, the smeared result at ra = 1 is inconsistent to the non-smeared and should be excluded
from the fit. The dashed line is the fit with the ansatz (2.3) for the smeared results in the region [2,7],
and found to be consistent to the non-smeared result at ra = 1. This indicates that the smearing
artifact becomes minor in [2,7]. Combining this with the fact that the string tension σ is responsible
for the large distance dynamics, the fit would be qualitatively reliable, and we find,

(α,σa2) =

{
(0.551(18),0.196(4)) N f = 6 ,

(0.479(35),0.130(7)) N f = 8 ,
(3.1)

In order to evaluate σa2 more quantitatively, we utilize the heavy-fermion potential, which is
shown in Fig. 2. The data points represent the smeared results. To be consistent to the analyses of
the Creutz ratio, we have excluded the data at ra = 1 from the fit (blue dashed line) and found,

(V0,α,σa2) =

{
(0.359(42),0.640(58),0.185(8)) N f = 6 ,

(0.447(65),0.657(88),0.117(12)) N f = 8 ,
(3.2)
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Figure 1: The Creutz ratio for N f = 6 (left) and N f = 8 (right). The symbol “+” (red) at ra= 1 represents the
results without a smearing, and the symbols “×” (blue) are the results with a Ape and a time-link smearing.
The dashed line is the fit for the smeared results in the region [2,7], and consistent to the non-smeared result
at ra = 1.
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Figure 2: The heavy-fermion potential for N f = 6 (left) and N f = 8 (right) with an Ape and a time-link
smearing. The dashed line is the fit for the data points in the region [2,7].

The difference between Eq. (3.1) and (3.2) would be regarded as a systematic error. We take
the average of Eq. (3.1) and (3.2) and determine the error to include the maximum deviation from
the average,

σa2 =

{
0.191(14) N f = 6 ,

0.124(19) N f = 8 .
(3.3)

3.2 String Tension versus Critical Temperature

We evaluate the ratio Tc/
√

σ by substituting the σa2 obtained in previous subsection into (2.4),
and compare the results with those for N f = 0− 4 [14, 15, 16]. Since the ratio has been obtained
via the heavy-fermion potential fit for N f = 0− 4, we use the σa2 shown in Eq. (3.2) rather than
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(3.3), and we find,

Tc√
σ

=

{
0.388(8) N f = 6 ,

0.365(17) N f = 8 .
(3.4)
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Figure 3: The Tc/
√

σ as a function of N f . The
symbol + (red) represents the present results (N f =

6,8). For a comparison, we have quoted the Tc/
√

σ
from [14] (N f = 0), [15] (N f = 2,3), [16] (N f = 4).

In Fig. 3, we show the ratio Tc/
√

σ as a
function of N f . We see that the ratio is a de-
creasing function. This indicates that the chi-
ral dynamics becomes less significant in larger
N f region. The decreasing trend becomes mi-
nor with increasing N f , and does not seem to
cross the N f axis before the asymptotic free-
dom is lost (N f = 16.5). This may not be sur-
prising. We find at least two reasons for the
non-vanishing Tc/

√
σ : First, the

√
σ would not

be a “UV” quantity and may also be vanish-
ing when the conformal phase sets in. In other
words, our result indicates that the regulator of
Tc have to be more UV than

√
σ to elucidate the

vanishing of the chiral dynamics via the Tc. In
this point of view, a quantity Tcw0 where w0 is a
UV scale [17] defined by the Wilson flow [18]
may be a candidate to be evaluated in future. Second, the finite bare fermion mass breaks the con-
formality, and both Tc and σ could be defined and finite even in the region N f ≥ N∗

f , where the
N∗

f represents the lower edge of the conformal phase in the chiral limit. Thus bare fermion mass
effects to Tc/

√
σ(N f ) should be an important subject to be studied in future.

As indicated in Ref. [19], the ratio Tc/
√

σ is one of the input parameters to set a scale in
models based on the gauge/gravity duality at finite T . Such inputs for the (would-be) walking
regime N f = 6 and 8 are now available by the present study.

3.3 Discussion

The left panel of Fig. 4 shows ensemble averages of chiral condensates a3〈ψ̄ψ〉 (PBP) for
N f = 8 with the temporal extension Nt = 8. The blue (red) symbols represent the cold- (hot-)
start results, which show the hysteresis at βL = 4.25. The hysteresis indicates that the first-order
transition exists around there: β c

L = 4.275 [7]. Using the smaller temporal extension Nt = 6 in
the same lattice setup [11], the first-order transition was observed at β c

L = 4.1125±0.0125, which
is smaller than the present result β c

L ∼ 4.275. The shift of β c
L for a different Nt indicates that

the hysteresis does not result from the bulk transition but from a physical thermal transition. This
would be a potential interest in the electroweak baryogenesis scenario. We note that the mean-
field based analysis for the anomaly [13] may not be robust in the walking regime due to the IRFP
associated singularity [4, 6], and thus the observation of the first-order-like transition in the N f = 8
is a non-trivial finding.

However, there is a caveat for this result. The right panel of Fig. 4 shows the effective mass
of the Wilson loop measured with the smearing at zero temperature by using β c

L = 4.275 as an
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input. We see the small oscillatory behavior. We have checked that the oscillation disappears
in the non-smearing measurement. Such a lattice artifact indicates that the β c

L = 4.275 or smaller
corresponds to the strong coupling region. The observed hysteresis in the left panel may involve the
sizable discretization error. In particular, the oscillation is reminiscent of the S4 breaking phase [20]
or the intermediate phase appearing between two bulk transitions in N f = 12 QCD [21]. We should
further investigate the transition property for N f = 8 by using larger volume (Nt) to determine the
critical lattice coupling β c

L in the weaker coupling region, before concluding the emergence of the
first-order thermal transition for N f = 8.
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Figure 4: Left: The chiral condensate as a function of the lattice coupling βL for N f = 8. The lattice volume
is 243 ×8 and the bare fermion mass is fixed to ma = 0.02. Right: The ta dependence of the effective mass
of the Wilson loop at ra = 1. The small oscillation is visible.

4. Summary

We have investigated the chiral phase transition temperature (Tc) in the unit of the string ten-
sion (

√
σ) for a various number of flavor (N f ) by using Monte Carlo simulations. We have provided

the first result on the ratio Tc/
√

σ for N f = 6 and 8. The ratio is found to be a decreasing func-
tion of N f , which indicates that the chiral dynamics becomes less significant in larger N f region.
We have pointed out that the ratio Tc/

√
σ for N f = 6, 8 can be used in the Gauge/Gravity dual-

ity models. We have discussed a possibility of the first-order chiral transition for N f = 8 based
on the thermal scaling of the critical coupling. In fact, two critical couplings associated with the
first-order-like chiral transition have shown the thermal scaling, which indicates the transition has a
physical relevance. However, we have found a small oscillatory behavior results from the smearing
in the effective mass of the Wilson loop measured at the critical coupling. This indicates that the
first-order-like transition has been observed in the strong coupling region. In order to confirm the
existence of the physical first-order transition, we need a simulation with a larger temporal exten-
sion (thereby the larger lattice volume) and a smaller lattice bare fermion mass. This should be
considered as a future work.
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