PROCEEDINGS

OF SCIENCE

Toward the Global Structure of Conformal Theories
in the SU(3) Gauge Theory

Y. Iwasaki *

Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
E-mail:iwasaki@ccs.tsukuba.ac. jp

We introduce a new concept “conformal theories with an IR cutoff’, after pointing out that the
following two categories in SU(3) gauge theories with fundamental Ny fermions possess an IR
fixed point: Large Ny (N; <Ny < 16) QCD within the conformal window (referred as Conformal
QCD) and small N f(l <Ny < N; — 1) QCD at temperature T /T, > 1 (referred as High Temper-
ature QCD). In the case of Conformal QCD in the continuum limit, the compact space and/or
time gives an IR cutoff. In the case of High Temperature QCD, the temperature 7" plays a role
of an IR cutoff together with a cutoff due to possible compact space, depending on how to take
the continuum limit. We note any lattice calculation is performed on a finite lattice. Thus any
calculation on a lattice possesses an IR cutoff.

In the conformal theories with an IR cutoff there exists the “conformal region” together with
the confining region and the deconfining region. We verify numerically on a lattice of the size
16% x 64 the existence of the conformal region and the non-trivial Z(3) structure of the vacuum
and the Yukawa-type decay form of meson propagators in the conformal region.

We stress that High Temperature QCD is intrinsically accompanied with an IR cutoff. Therefore
the understanding the vacuum structure and the property of correlation functions is the key to
resolve long standing issues in High Temperature QCD.

We further argue that there is a precise correspondence between Conformal QCD and High Tem-
perature QCD in the temporal propagators under the change of the parameters Ny and T'/T.. re-
spectively: the one boundary is close to meson states and the other is close to free quark states.
In particular, we find the correspondence between Conformal QCD with Ny =7 and High Tem-
perature QCD with Ny =2 at T ~ 2T, being in close relation to a meson unparticle model. From
this we estimate the anomalous mass dimension y* = 1.2(1) for Ny = 7.
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Toward the Global Structure of Conformal Theories

1. Strategy, Objectives and Summary

Recently much attention has been paid to four dimensional conformal theories, since confor-
mal theories or nearly conformal theories are attractive candidates for the beyond standard model.
To confront the nature, it is important to understand each conformal theory, and for this purpose, it
is urgent to clarify the global structure of conformal theories [1].

In this article, we investigate the global structure of SU(3) conformal theories with Ny fun-
damental fermions, on a lattice using the Wilson fermion. Since we have reported the results in
detail [2], I will try to make this writeup is complementary to [2], giving a résumé without detailed
discussion.

We first point out that the following two categories in SU(3) gauge theories with fundamental
Ny fermions possess an IR fixed point:

e Large Nf(N J‘c < Ny <16) QCD within the conformal window (referred as Conformal QCD);
N ]Cc is the lower critical flavor number for the conformal window.

e small Ny(2 < Ny <Ny —1) QCD at temperature 7' /7, > 1 with T, being the critical temper-
ature (referred as High Temperature QCD)

We then introduce a new concept “conformal theories with an IR cutoff” [4]. In the case of
Conformal QCD in the continuum limit, the compact space and/or time gives an IR cutoff. In the
case of High Temperature QCD, the temperature 7' plays a role of an IR cutoff together with a
cutoff due to possible compact space, depending on how to take the continuum limit. We note any
lattice calculation is performed on a finite lattice. Thus any calculation on a lattice possesses an IR
cutoff.

Finally the objectives of this article are (for details of numerical simulations see Ref. [2].)

1. Verify numerically on a lattice of the size 163 x 64 that the “conformal region” exists together
with the confining region and the deconfining region in the phase structure parametrized by
B and K, both in Conformal QCD and High Temperature QCD.

Further verify the vacuum of the conformal region is the nontrivial Z(3) twisted vacuum
modified by non-perturbative effects and temporal propagators of meson behave at large ¢
as a power-law corrected Yukawa-type decaying form. The transition from the conformal
region to the deconfining region or the confining region is a transition between different
vacua and therefore the transition is a first order transition both in Conformal QCD and in
High Temperature QCD.

2. Verify a precise correspondence between Conformal QCD and High Temperature QCD
within the conformal region is realized under the change of a continuous parameter 7'/7,
and a discrete parameter Ny, respectively: the one boundary is close to meson states and the
other is close to free quark states.

We stress that High Temperature QCD is intrinsically accompanied with an IR cutoff. There-
fore the understanding the vacuum structure and the property of correlation functions is the key to
resolve long standing issues in High Temperature QCD.
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Figure 1: Phase diagram on a finite lattice : (left) 1 < Ny < N;- — 1 ; (right) N;' < Ny < 16; In the case
N]ﬁ < Ny < 16 the massless quark line originating from the UV fixed point hits the bulk transition point at
finite B and no massless line exists in the confining region. The region above the bulk transition corresponds
to the doublers of the Wilson fermion. On the other hand, in the case 1 < Ny < N; — 1 on the massless quark
line there is a chiral phase transition point. Below the critical point the massless line is in the confining
region.

2. The existence of an IR fixed point

The existence of an IR fixed point in Conformal QCD is well known as the Banks-Zaks IR
fixed point [3].

In High Temperature QCD the existence of an IR fixed point has been recently pointed out
in Ref. [5]. Define a running coupling constant g(u;7) at temperature 7 in the massless quark
case (See for example [6]). When T' /T, > 1, where the quark is not confined, the running coupling
constant g(i;T) cannot be arbitrarily large. This means that there is an IR fixed point with non-
trivial zero of the beta function when 7'/T, > 1. This is the key observation. For example, numerical
results of the running coupling constant g(r; 7') shown in Fig. 2 in [6] are consistent with the above:
the running coupling constant g(r; T') increases as r increases up to some value and does not further
increases more than that.

The existence of an IR fixed point is not common in the lattice community. One possible
reason might be due to the non-vanishing trace anomaly in High Temperature QCD. To make clear
the implication of vanishing of the beta function at finite temperature, we recall the relation between
the trace anomaly of energy momentum tensor and the beta function with massless quarks:

(T = B(g (1) (Tr(Fuy (1)) 7

where %(g~2(u)) is the zero temperature beta function evaluated at g = g(ut), and (Tr(Fyy (1))?)|7
is the field strength squared at temperature 7" renormalized at scale i (Appendix B of [2]).

In Lorentz invariant zero-temperature field theories, the vanishing beta function means that
the trace anomaly vanishes and the theory is conformal invariant. However, when the beta function
at finite temperatures vanishes, it does not imply vanishing of the trace of the energy-momentum
tensor. Thus the vanishing beta function at 7 > T, does not contradict with the non-vanishing of
the difference of energy density and three times the pressure.

Another reason for that the existence of an IR fixed point is not common might be due to the
existence of an intrinsic IR cutoff in High Temperature QCD. We will discuss such cases below.
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Figure 2: Correspondence between Conformal QCD and High Temperature QCD in terms of the beta
function. The horizontal line on the top represents the correspondence between the number of flavor Ny and
the temperature T /T,.

3. Conformal theories with an IR cutoff and Conformal Region

We first define the conformal field theories with an IR cutoff. The first assumption is that the
beta function (either zero-temperature or finite temperature) vanishes. Of course, if there were no
dimensionful quantities, this would imply that the theory is scale invariant and all the correlation
functions show a strict power behavior.

Our new observation is that when such theories have a finite cutoff, then they will show the
universal behavior that we call “conformal field theories with an IR cutoff": the “conformal region”
exists together with the confining region and the deconfining region in the phase structure.

We have verified numerically on a lattice of the size 16 x 64 the existence of the conformal
region for Ny =7,8,12 and 16 as depicted on the right panel of Fig. 1 and for Ny = 2 as on the left
panel.

In the conformal region we find the vacuum is the nontrivial Z(3) twisted vacuum modified
by non-perturbative effects and temporal propagators of meson behave at large ¢ as a power-law
corrected Yukawa-type decaying form. The transition from the conformal region to the deconfining
region or the confining region is a transition between different vacua and therefore the transition is
a first order transition both in Conformal QCD and in High Temperature QCD.

Let us show the results for the existence of the conformal region and the transition to a decon-
fining region is first order, in Figs. 3 and 4 for the Ny = 16 case. Both of Fig. 3 represent effective
mass plots at the same 8 and K; B = 11.5 and K = 0.125 (m, = 0.24). The left one is the result
taking a configuration at larger K as an initial state, while the right one at smaller K. We see that
not only the values at ¢ ~ 30 are quite different from each other, but the behavior at large ¢ are quite
different. On the left there is no plateau up to 7 = 31. We are able to fit the data with a power-law
corrected Yukawa-type decaying form for the range r = [15 : 31] with the exponent & = 1.3(1).

Fig. 4 represents the scattered plots of Polyakov loops in spacial directions overlaid. The
parameters are the same as Fig. 3. The left panel shows that the argument of the Polyakov loops
are 27w /3 with the absolute values 0.18, while the right panel shows the arguments are 0 and the
absolute values are 0.05 ~ 0.2. These results clearly show the difference of the vacua of the two
states.
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Figure 3: The effective mass: both for Ny = 16 at § = 11.5 and K = 0.125: (left) from larger K and (right)
from smaller K; See the main text for the three types of sources.
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Figure 4: The scattered plots of Polyakov loops in the x, y and z directions overlaid; both for Ny = 16 at
B =11.5and K = 0.125: (left) from larger K and (right) from smaller K.

4. Correspondence between Conformal QCD and High Temperature QCD

Based on our theoretical analysis based on the RG flow and our numerical simulations, we
propose that there is a precise correspondence between Conformal QCD and High Temperature
QCD and in the phase structure under the change of the parameters Ny and 7' /T, with the same
anomalous mass dimension.

We show the two sets of ¢(7) side by side in Figs. 5, the Conformal QCD data on the right
panel and the High Temperature QCD data on the left panel in order to compare them directly.
Here o (7) is a local exponent defined by parametrizing the propagator G(t) as

exp(—m(1)1)

G(t)=c ) ,

4.1)

We observe the correspondence on the ¢ dependence of () between the two sets of data
is excellent with the following each pair: T ~ 2T. and Ny =7, T ~ 4T. and Ny = 8; T ~ 16T,
and Ny = 12; T ~ 256T. and Ny = 16. Thus we plot schematically the correspondence between
Conformal QCD and High Temperature QCD as in Fig.(2). The correspondence is a powerful tool
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to investigate the properties of conformal theories. The 7'/T.. is a continuous variable, while the Ny
is a discrete variable. Therefore we are able to use the information in High Temperature QCD to
understand the properties of Conformal QCD.

Since High Temperature QCD covers 0.0 < y* < 2.0 and Conformal QCD takes discrete values
of 7* between 0.0 and 2.0 (y* is the anomalous mass dimention), the correspondence is realized
between a continuous parameter 7' /7. and a discrete parameter Ny. This is the precise origin of the
correspondence between the two observed in the local-analysis of propagators.

The plateau at 15 <t < 31 in a(z) for T ~ 2T, disappears, as the temperature increases to
T ~ 4T,. Translating this fact into Conformal QCD is that the plateau in o(z) at 15 <t < 31
observed as the IR behavior of Ny = 7 disappears for Ny = 8.

41 Ny=T7and T /T, ~2

We note that both in the Ny = 7 case of Conformal QCD and at T ~ 27, in High Temperature
QCD, we have a plateau in the o/(¢) at large ¢ (15 <t < 31). In the both cases the IR behavior of
the state is well described by a meson unparticle model. [7].

The value of a(t) at plateau(r = 15 ~ 31) is 0.8(1) for K = 0.1452 and K = 0.1459 in the
Ny =7 case. Applying the formula a(f) =2 — y*, we have y* = 1.2(1). Although this value
should be refined in the future by taking the continuum limit, this value implies the anomalous
mass dimension is of order unity.
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Figure 5: The correspondence of the local exponent o (¢) for High Temperature QCD (left) and for Confor-
mal QCD (right).



