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1. Introduction
In recent years a supersymmetric lattice regularization/of= 4 super Yang-Mills has been

developed [1, 2, 3]. A preliminary numerical exploration of the phaserdiagvas conducted in [4]
and evidence that the theory (at least for gauge gtb(#)) was not subject to a sign problem was
reported in [5, 6, 7]). In this article we analyze the spectrum of the fermp@mator in this theory.
The spectrum is important since it can yield important information on both the amsaalous
dimension of the theory and the fluctuations in the phase of the Pfaffiandabalts after one
integrates over the fermions in the theory. In this note we present prelimiaawts from an
analysis at several values of the 't Hooft parameter, the scalar matsdg@a to regularize the flat
directions) and several lattice sizes.

The lattice theory results from discretization ofveistedform of the super Yang Mills the-
ory. While in flat space it is equivalent to the usual theory the fields apmgea the twisted
model appear quite different; the twisted fermions appear as antisymmetiic temsponents of
a Kahler-Dirac field and the bosons fields are packaged into 5 compleg#iagk fields. Further-
more, the natural lattice associated with the discrete theory isfHattice whose basis vectors
correspond to the fundamental weightsStd(5). All fields are associated to links in this lattice.
The action for this theory is

N v ) 1) 1
S=_— QTr | —ixXapZa  (n)—n(n)(i%a ' %a(n)— =d(n)
2A n,a,;:,d,e { [ ? ( a 2 ﬂ
Nt [+ iy + fie) 24 il 1.1
— g5 T EabecXaeN+ Ry + iy + Ac) 78 Xa(n+He) } (L1)

where the lattice field strength is given by
[ [ ~ ~
Fap(N) = —§@§+)%b(n) =g <%a<n)%b(n + Ha) — U (N)%a(n + Hb)) - (1.2)

and the covariant difference operators appearing in this expressigivan by

¢ f(n) = %(n)f(n+He) — f(n)%(n), (1.3)

S g(n) = %(n) fa(n+ i) — fa(N)Ze(n+ fig), (1.4)
C fe(n) = fo(mZ (n) — 2 (n— i) fe(n — Bo), (1.5)
PE fap(n) = Fan(M 2T (n—Tig) — % T (n+ [+ [l — ) fan(n — ). (1.6)

The action of the scalar supercharge on the fields in the twisted theoryeis lgyv

QUs = Yy a.7)
QP =0 (1.8)
QU4 =0 (2.9)
QXab = ﬁab (1-10)
2n =d (1.11)
2d =0 (1.12)

Supersymmetric invariance of tl@-exact part of the action then follows from the nilpotent prop-
erty of 2 while an exact lattice Bianchi identity ensures tiénvariance of the2-closed term. We
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Figure1: Time series of eigenvalue measurement®tb for L = 6 and various\ andu. The eigenvalue
measurements thermalize relatively quickly, althodghk 1.0, u = 0.5 is noticeably slower than the others.

simulate this theory by first integrating out the twisted fermions and using the @Hliglorithm
to reproduce the resultant (phase quenched) Pfaffian. We have inmiéahaan Omelyan multistep
integrator to improve the efficiency of the update and employ a GPU accelenalémass solver

for speedup when available.

In practice we have introduced a small mass shift in the fermion operatooid am exact
zero mode (we use periodic boundary conditions in all directions) anel ddged an additional
scalar mass term to regulate the flat directions in the model of the form

AS= p?

Xa

> <:1Tr (U a(X)%a(X)) — 1)2

(1.13)

We have conducted simulations for a range of 't Hooft couplingcalar masg and lattice sizé..

2. Results

We simulate withdt = 0.2 (and a trajectory length of 1) and carry out measurements every
ten trajectories. For each volume and parameter choice, we measure tee20@eigenvalues of
DD using the ARPACK package [8]. This implements a Krylov subspace tectfidgunumerical
diagonalization called the implicitly restarted Arnoldi algorithm. The eigenval@iesitooperator
come in real pairs, so we obtain 100 distinct eigenvalues.LFei8, each call to ARPACK takes
about an hour to complete. The total computer time used to generate the catifigsiand analyse
the eigenspectra presented here is approximately a hundred thousasdResults of simulations
from ten independently thermalized lattices were used for each parameieg.ch

In most cases, the eigenspectrum seems to thermalize relatively quickiyvas i Figure 1.

The exception seems to Be= 1, u = 0.5, although other quantities do not exhibit the same issue;

its precise origin is unclear.
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Figure 2: Full eigenvalue distribution fok = 8 and various\ andu. The median eigenvalue is shown in
black, and the red and grey bands identify the quartilesaretgenvalue distribution. Our further analyses
in this paper start with the 65th eigenvalue shown in thegtspl

To be conservative, we discard the first fifty measurements from eachsénes and then
bin based on an autocorrelation time measurement for the rest. The numl@bofed) mea-
surements varied from at least 5000 fore= 2 to L = 6 down to around 1000 for = 8. Ten
independently thermalized ensembles were used for each parameterabie@ume to achieve
the required statistics.

Figure 2 shows typical eigenspectra for our parameter choices at gestaolumel = 8.
Amongst other finer details, clear jumps can be seen at the 16th, 32ndadBiB4th eigenval-
ues. Furthermore, the scaling with volume of the first 64 eigenvalues is dumhelfferent from
subsequent ones (see Figure 3(a) for the clear volume scaling seehg).

These 64 modes can be analysed as one exact zero mode (and 15htanpligs correspond-
ing to trace modes) followed by 48 light, constant modes that receive @rmagenvalue due to
interactions. They are clearly separated from the rest of the eigengpeloy a large gap. Fur-
thermore, these low lying modes have a markedly different scaling with volsegeTable 1). We
therefore feel the decision to discard the first 64 eigenvalues frdireiuainalysis is well-motivated.

Next we attempt to fit for an expone@iL Y. We discard the data fdr < 5 from the fit
(leaving four data points per coupling choice). This improves the redyéeslue for the fit, and
visual inspection seems to suggest that these data points are severahsigyngustifying their
rejection (see Figure 3(a)). The expongntabulated in Table 1 is therefore a fit to data lfor 5
toL =8 only.

We use a jackknifed least squares fit to the logarithmic data. A jackknifeused for this
stage of the analysis because of its robustness to heteroscedasticity iiegtiingarameters and
their error.
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Figure 3: Plots of the scaling with volume fotgs at variousA andu. In (a) the eigenvalues are shown,
unscaled, on a doubly logarithmic plot. In the linear plottte eigenvalues have been scaled By

n

A =05

A=10

A=20

u=0.5

u=10

u=0.5

u=10

u=0.5

u=10

9
17
25
33
41
49
57
65
73

3.97+£0.01
1.444+0.04
1.524+0.04
2.28+0.02
2.42+0.06
2.16+0.01
2.12+0.02
1.76+£0.03
1.77+0.03

4.03+£0.00
1.78+0.05
1.80+0.04
2.13+0.03
2.23+0.03
2.09+0.04
2.094+0.02
1.75+£0.01
1.75+0.02

3.93+£0.04
1.77+0.28
1.83+0.25
2.30+0.22
2.36+0.26
2.22+0.16
2.14+0.12
1.83+0.04
1.85+0.03

4.09+£0.01
1.824+0.09
1.904+0.08
2.23+0.06
2.33+£0.07
2.22+0.02
2.15+£0.01
1.73+£0.02
1.73+0.03

3.75+£0.08
0.54+0.38
0.95+0.31
1.53+0.29
1.65+0.30
1.36+0.24
1.13+0.24
1.07£0.23
0.99+0.17

3.84+0.07
2.61+0.12
2.71+0.13
3.29+0.38
3.28+0.42
2.93£0.33
2.75£0.28
2.61£0.26
2.37£0.23

Table1: Results of fitting{An(L)) to C,L ¥ for severah at variousA andp (n= 1 is an exact zero mode);
the values ofy, are tabulated. The fits exclude data lfor: 5. Note that the results forgs can be compared

directly with earlier plots.

2.1 Attempting to measurethe anomalous mass dimension
As we are limited to rather small volume it may seem optimistic to hope that one can abtain
estimate for the anomalous mass dimension from these measurements, butrademstimation
is still possible following the method of Ref. [9]. Better results along the sams Vielld be easy
to obtain if data for larger volumes were readily available.
The basic quantity is the integrated eigenvalue density that yields the mode mpenhait

volume

V<Q>=/OQdA p(V);

p(A) = lim

V—00

(6(A —A))-

(2.1)

In the thermodynamic limit the sum over Dirac delta functions could be interpliezealy, but at
finite volume the measure is necessarily less sharp.
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Figure4: Plot of the integrated eigenvalue density withk= p = 0.5 for L = 8. The fitted region is shown.
A bootstrap error analysis yields an estimate,of 0.11+ 0.02 for this case, witlx?/d.o.f. ~ 0.99.

We show the result of calculating(Q) in Figure 4 forL =8 atA = 0.5, u = 0.5. The
finite volume effects on the eigenvalue spectrum are already quite clear pldhi®r w > 0.27,
justifying our decision only to calculate the lowest-lying 200 eigenvaluesgidaitices would
need to use more sophisticated methods such as the projection technigssetisolRef. [9].

Despite having limited data, we continue. We repeat the analysis of Refy @émpting to
fit the ansatz

V(Q) = o+ A[QZ - mE|TF 2.2)

to our data for the integrated eigenvalue density. We tgke 0 as fitting with this as a parameter
leads to results consistent with zero. In any case, Figure 4 suggeststieedire no low eigenmodes
that we can exclude in this manner.

A nonlinear least squares fit is carried out to deternfine andy., using the data shown in
Figure 4. Note that the error bars for the integrated eigenvalue densi@i¢chtpoint are, of course,
correlated. With that in mind we first systematically scan all rang€sfof that yielding a reduced
chisquare closest to unity, then vary the lower and upper ranges of sepéirately to try and locate
a ‘plateau’ nearby.

The results of this procedure yield a valye= 0.11+0.02. A consistent result is obtained
carrying out the same analysis on &ue 7 configurations. Therefore, despite the small volume, it
is possible to use the integrated eigenvalue density in this context to measigast arudely — the
mass anomalous dimension. Given the limited volume we would argue that thisisesuisistent
with an expectation that. would be zero in a more comprehensive study.

3. Conclusion

We have carried out a study of the behaviour of the Dirac eigenspedtum lattice im-
plementation of /" = 4 SYM. The low-lying eigenvalues have a very different structure treat w
interpret as being due to the approximate zero modes and trace modeshiatirethe theory.
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A preliminary calculation of the integrated spectral density was carried ondiya see that the
mass anomalous dimension is very small and consistent with zero. Futureilogquire studies
at substantially larger volumes to put this analysis on a more robust footirggeTcalculations are
underway.
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