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Dynamical Triangulations provide us with a lattice regularization of four-dimensional Euclidean

quantum gravity within the realm of ordinary quantum field theory. We add a local measure term,

which can also serve as a generalized higher curvature term,and explore an extended coupling

constant space. We determine the phase diagram of this modelusing non-degenerated triangu-

lations. A first order phase transition line is observed, butno second order transition point is

located. In consequence we cannot attribute any continuum physics interpretation to the so-called

crinkled phase of 4D dynamical triangulations.
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1. Introduction

The model of Dynamical Triangulations (DT) is based on the formalism of pathintegrals
and lattice regularization [1, 2]. Its objective is to quantize a theory of gravitation. In the path
integral formulation of quantum gravity, the role of a particle trajectory is played by the geometry of
four-dimensional spacetime. Dynamical Triangulations define the way the path integral should be
calculated and specifies the class of spacetime histories which should contribute to the path integral.
The discretization appears only as a regularization intended to be removed inthe continuum limit.
No ad hoc discreetness of spacetime is assumed from the outset.

According to general theory of relativity, gravitation is encoded in spacetime geometry. The
considered degree of freedom is the geometry associated with the metric fieldgµν(x). A nonzero
curvature of the underlying spacetime geometry is interpreted as a gravitational field. The con-
struction of the quantum theory starts from the gravitational path integral over geometries,

Z =
∫

D[g]e−SEH [g]. (1.1)

Dynamical Triangulations provide a lattice regularization of the formal functional integral and
assumes that it can be represented via a sum over simplicial manifolds built ofequilateral four-
simplices,

Z = ∑
T

e−SR[T ]. (1.2)

A four-simplex is a generalization of a triangle to four dimensions, it is composed of five vertices
connected to each other. The metric inside a simplex is flat. The four-simplices are glued pairwise
along tetrahedral faces and the curvature is localized on triangles.

Because in DT all four-simplices are identical and equilateral, the classicalEinstein-Hilbert
action

SEH [g] =−
1

16πG

∫

d4x
√

detg(R−2Λ) , (1.3)

has a very simple realization, the so-called Regge action,

SR[T ] =−κ2N2+κ4N4, (1.4)

whereN2 is the number of triangles andN4 number of four-simplices. Bare coupling constants
κ2, κ4 are related to the bare Newton’s constantG and the bare cosmological constantΛ, respec-
tively.

In the continuum limit, the bare cosmological constant has to be tuned to its criticalvalue
κ4 ∼ κc

4. Forκ4 below the critical value the partition function is divergent. Effectively, such model
has one coupling constantsκ2. Two non-physical phases were observed, namely thecrumpled
phase andbranched polymers phase. The transition point turned out to be of first order [3]. Usually,
for critical systems on a lattice one can only associate continuum field theoriesto the fixed points
if the transition is higher than first order.

1.1 The measure term

As DT is a lattice regularization of Euclidean geometries it is natural to considerenlarged
coupling constant space involving higher curvature terms [4]. Additionalcoupling constants may
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enrich the phase structure and lead to a continuum transition. It was shownthat matter fields can
prevent the collapse into branched polymers. For example, for more than 2non-compactU(1)
gauge fields, the back-reaction of matter on geometry is strong enough to transform the branched
polymer phase into smoother crinkled phase [6]. In the path integral (1.2) each triangulation carries
the same weight. Even in the continuum it is not clear which measure D[g] should be chosen for the
geometries. In the past, number of different choices of the measure for four-dimensional DT was
proposed. A quasi-equivalence was shown in [6] between the model withgauge fields and with a
modified measure,

∑
T

→ ∑
T

N2

∏
t=1

oβ
t , (1.5)

whereot is an order of trianglet. Such modified measure introduces additional parameterβ . Recent
work has renewed interest into probing the phase space of DT including such measure terms [7].

1.2 The numerical setup

Taking advantage of computer power we have today, we use Monte Carlo simulations to probe
ensemble of combinatorial triangulations. Every four-simplex is uniquely defined by a set of 5 dis-
tinct vertices. and two adjacent four-simplices share exactly one face. The Monte Carlo algorithm
uses a set of 5 ergodic local Pachner moves. We work in a pseudo-canonical ensemble of manifolds
with topologyS4, and use the partition function

Z(κ2,κ4,β ) = ∑
T

N2

∏
t=1

oβ
t · e−[−κ2N2+κ4N4+ε(N4−N̄4)

2]. (1.6)

The quadratic term proportional toε fixes the total volume around some prescribed valueN̄4. To
achieve this the bare cosmological constant has to be tuned to its critical valueκ4 ≈ κc

4. To deter-
mine the phase diagram of this model we will be exploring the coupling constantspace(κ2,β ). For
given values of the coupling constants, we will approximate the expectation values of observables
O over Monte Carlo generated configurations:

〈O〉con f =
1

Ncon f

Ncon f

∑
i=1

Oi, (1.7)

whereNcon f is the number of independent configurations andOi is the value of observableO
calculated for theith configuration.

2. The phase diagram

In order to determine the phase structure of the model we measured several observables such
as the average number of triangles〈N2〉 and its susceptibilityχ(N2) ≡ (〈N2

2〉− 〈N2〉
2)/N4. These

observables have been used in the past to distinguish between the crumpledphase and the branched
polymers phase. Another observable is the radius volume profileV (r). We define a geodesic dis-
tance between two four-simplices as the length of the shortest path connecting these simplices.
Each path consists of linear segments joining centers of neighboring simplices.Given a configu-
rationT and a initial simplexi0, V (r, i0,T ) denotes the number of simplices at geodesic distance
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Figure 1: Density plots of the susceptibilityχ(N2) (left) and the average radius (right) in theκ2−β plane
for 〈N4〉= 160000

r from i0. The averageV (r) over configurations and initial points, and the average radius〈r〉 are
then given by

V (r)≡ 〈
1

N4
∑
i0

V (r, i0,T )〉T , 〈r〉 ≡
1

N4
∑
r

r ·V (r). (2.1)

We also look for the presence of so-calledbaby universes separated by minimal necks. A minimal
neck correspond to the smallest nontrivial boundary of a four-dimensional simplicial manifold. It
is a set of five tetrahedra, connected to each other, and forming a 4-simplex which is not present in
the triangulation. Cutting the triangulation along a neck splits the triangulation into twoseparate
parts. Because a minimal neck may contact other minimal necks, they equip triangulations with a
graph structure.

2.1 The grid

The original approach of Euclidean Dynamical Triangulations corresponds toβ = 0. In this
case there exist onlycrumpled phase andbranched polymers phase, separated by a first order
transition atκ2 ≈ 1.29 [3]. At this point, we observe a peak of susceptibilitiesχ(N2) and a jump
in 〈r〉. There is also an abrupt change in baby universe structure, from collapsed graph (left of Fig.
2) to a fractal branched polymer structure (right of Fig. 2). The additional coupling constantβ
may introduce new phases. We investigated a grid of points in theκ2−β plane withβ between 0
and−2 varied in steps ofδβ = 0.2 andκ2 between 0.5 and 1.5 varied in steps ofδκ2 = 0.1. This
region embraces the transition pointβ = 0,κ2 ≈ 1.29. Plots of the susceptibilityχ(N2) (left) and
the average radius (right) for the grid points (κ2 - horizontal axis,β - vertical axis) are shown in
Fig. 1. For negativeβ the maximum of varianceχ(N2) (blue line) and a jump in〈r〉 (red line) do
not coincide any more. The branch polymer phase corresponds to largevalues of〈r〉 and the peak
of susceptibility is not a signal of phase transition.
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Figure 2: Minimal baby universe graph of a typical configuration in, respectively from left to right, crumpled
phase, crinkled region and branched polymer phase.

We observe also a new hypotheticalcrinkled region where properties of typical configuration
are between those in crumpled phase and branch polymer phase. It is located around pointκ2 =

2.0,β = −2.0. The minimal baby universe structure in the crinkled region is very different from
the one in crumpled phase (cf. middle of Fig. 2). It is similar to a tree structure present in the
branched polymer phase, but contains loops which are identified with triangles of high order. Such
triangles are not present in the two generic phases. The maximal order oftriangles seem to behave
like 〈Maxot〉 ∝ N0.16

4 . The transition from branched polymers to crinkled region is clear. The baby
universe structure does not change abruptly, but there is a jump in〈r〉 and a peak inχ(logot) (cf.
Fig. 4). Below, we outline properties of typical configurations from the branched polymers phase,
the crumpled phase and the hypothetical crinkled region.

Branched polymers Crumpled Crinkled

Geometry elongated collapsed between

Singular none two vertices,ov ∝ N4 triangles of high order

sub-simplices link of orderol ∝ N2/3
4 ot ∝ N0.16

4

Baby universes dominate only small many, but no large

Baby universe tree-like collapsed contains loops
structure

Hausdorff dimension dh = 2 dh = ∞ large or infinite

Spectral dimension ds = 4/3 ds = ∞ large or infinite

2.2 The path

In order to verify the existence of the hypothetical crinkled phase mentioned before, we need
to perform simulations for various total volumes and check scaling of observables. We follow a
one-dimensional path shown in Fig. 3 (left). It starts at a point in crumpled phase and continuously
leads through crinkled region to stop at branched polymers phase. If there is a phase transition
between crumpled and crinkled phase, the path will have to cross it. As shown in Fig. 3, the
path consists of three segments marked with different colors: a vertical segmentI at κ2 = 0.5, a
horizontal segmentII at β = −2.0, a vertical segmentIII at κ2 = 2.0. The measurements were
performed for three values of total volumeN4 = 40k,80k and 160k.
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Figure 3: Left: A tentative phase diagram and a path (color points) from crumpled phase - through crinkled
region - to branched polymer phase. The thick gray line denotes the phase transition between branched
polymers and other phases, based on the grid measurements. Right: Plot of〈N2〉/N4. Successive points of
the path are on thex-axis.

When searching for a phase transition it is natural to look at parameters conjugate to coupling
constants. The basic observable, scaled average number of triangles〈N2〉/N4 is conjugate toκ2

and is shown in Fig. 3 (right). The successive points on the path are presented on thex-axis
and the vertical lines separate segments I, II and III. We do not observe any jump of〈N2〉 on
the path between the crumpled phase and crinkled region. There is also no jump between the
branched polymer phase and crinkled region, in contrast toβ = 0. However the scaling withN4

changes exactly at the transition point (middle of segment III). Inside the branched polymer phase
〈N2〉 ∝ N4, while this scaling does not hold outside. Curves for different volumes diverge, as can
be seen on the left side of Fig. 3 (right).

Another observable is an average logarithm of triangles’ order,〈logot〉. Because〈logot〉 is
conjugate toβ , it increases whenβ increases. The behavior of〈logot〉 is qualitatively similar to
〈N2〉. The plot of the varianceχ(logot) = 〈(logot)

2〉−〈logot〉
2 is presented in Fig. 4 (left). There

is a peak of the susceptibilityχ(logot) in segment I, but it is decreasing with the total volumeN4

and can thus not be viewed as signaling a first or second order transitionbetween the crumpled
phase and hypothetical crinkled phase. While there are no other signals,it seems there is no phase
transition associated with the maximum of susceptibility. There is also a small peak of the variance
at the transition to branched polymer phase in segment III. It is not decreasing with the total volume
and is a signal of the first order transition being a remnant of a peak atβ = 0. Behavior ofχ(N2)

is similar toχ(logot), but the latter peak is even less pronounced.

In branched polymer phase, the Hausdorff dimensiondh = 1/2 and the average radius scales
as〈r〉 ∝ N1/2

4 . As shown in Fig. 1 and Fig. 4 (right), in this phase〈r〉 is relatively large. The jump
of 〈r〉 at the boundary of branched polymer phase is a clear signal of a phasetransition. Fig. 4
shows that the jump of〈r〉 becomes sharper as the total volumeN4 increases. There is no sign of
any transition between crumpled and crinkled phase.

Following the path from crumpled phase to crinkled region, the baby universe graph dissolves
gradually from one huge collapsed clump (left graph of Fig. 2) to a net structure (middle graph
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Figure 4: Left: Plot of χ(logot) for points along the path. Right: Plot of〈r〉/N1/2
4 for points along the path.

of Fig. 2) without a distinct hub but with many loops, associated with triangles of high order.
Although the baby universe structure is very different in the crumpled and crinkled region, we do
not observe any abrupt change. When approaching the branched polymer phase, the loops - and
high order triangles - disappear, and a tree-like fractal structure emerges (right graph of Fig. 2).

2.3 Conclusions

We were not able to observe a phase transition point where continuum physics is recovered.
There is no signal, strengthening with the total volume, of a phase transition between crumpled
phase and crinkled phase. Configurations in the crinkled region look moreelongated (V (r), minbu
trees, spectral dimension), but the change is gradual when receding from the crumpled phase and
it seems to be a finite size effect. We observed a first order phase transitions line at the boundary of
the branched polymers phase. It is a continuation of the transition observed originally atβ = 0.
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