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1. Introduction

The model of Dynamical Triangulations (DT) is based on the formalism of pa#yrals
and lattice regularizatior{ ][] 2]. Its objective is to quantize a theory ofigign. In the path
integral formulation of quantum gravity, the role of a particle trajectory isquildyy the geometry of
four-dimensional spacetime. Dynamical Triangulations define the way thdmiagral should be
calculated and specifies the class of spacetime histories which should etantoikhe path integral.
The discretization appears only as a regularization intended to be remaveddantinuum limit.
No ad hoc discreetness of spacetime is assumed from the outset.

According to general theory of relativity, gravitation is encoded in sfiaeegeometry. The
considered degree of freedom is the geometry associated with the metrig,fjéld. A nonzero
curvature of the underlying spacetime geometry is interpreted as a graaldigld. The con-
struction of the quantum theory starts from the gravitational path integealgmometries,

Z:/DM€§W. (1.1)

Dynamical Triangulations provide a lattice regularization of the formal funefiontegral and
assumes that it can be represented via a sum over simplicial manifolds beduidteral four-
simplices,

Z= ;eSRW I, (1.2)

A four-simplex is a generalization of a triangle to four dimensions, it is congposéve vertices
connected to each other. The metric inside a simplex is flat. The four-simptegtuad pairwise
along tetrahedral faces and the curvature is localized on triangles.

Because in DT all four-simplices are identical and equilateral, the clagsiesiein-Hilbert
action

g = —léTG/d“x\ /detg(R—2A), (1.3)

has a very simple realization, the so-called Regge action,
ST = —KkaNa + KaNa, (1.4)

whereN; is the number of triangles and, number of four-simplices. Bare coupling constants
Ko, Kg4 are related to the bare Newton’s const@mwnd the bare cosmological consténtrespec-
tively.

In the continuum limit, the bare cosmological constant has to be tuned to its cuilued
K4 ~ Kg. For k4 below the critical value the partition function is divergent. Effectively rsomdel
has one coupling constanks. Two non-physical phases were observed, namelyctbhepled
phase anthranched polymersphase. The transition point turned out to be of first orfJer [3]. Usually,
for critical systems on a lattice one can only associate continuum field theéoties fixed points
if the transition is higher than first order.

1.1 Themeasureterm

As DT is a lattice regularization of Euclidean geometries it is natural to considarged
coupling constant space involving higher curvature teffins [4]. Additionapling constants may
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enrich the phase structure and lead to a continuum transition. It was shatvmatter fields can
prevent the collapse into branched polymers. For example, for more than-2ompact) (1)

gauge fields, the back-reaction of matter on geometry is strong enouginséotra the branched
polymer phase into smoother crinkled phdse [6]. In the path intdgrhl @cR)teéangulation carries
the same weight. Even in the continuum itis not clear which measjgiesbould be chosen for the
geometries. In the past, number of different choices of the measureusdimensional DT was
proposed. A quasi-equivalence was showrJn [6] between the modetuaiitte fields and with a

modified measure, \
2ot 9

whereq, is an order of triangle. Such modified measure introduces additional paranBetBecent
work has renewed interest into probing the phase space of DT includagnseasure termp|[7].

1.2 The numerical setup

Taking advantage of computer power we have today, we use Monte Gatlasons to probe
ensemble of combinatorial triangulations. Every four-simplex is uniquelneefby a set of 5 dis-
tinct vertices. and two adjacent four-simplices share exactly one fameMbnte Carlo algorithm
uses a set of 5 ergodic local Pachner moves. We work in a pseudaicahensemble of manifolds
with topologyS*, and use the partition function

N>

2002, ke B) = 3 rlotﬁ e [HeN ke e(Ne =Ny ] (1.6)
T t=

The quadratic term proportional ®fixes the total volume around some prescribed valyeTo
achieve this the bare cosmological constant has to be tuned to its criticalkyatuey. To deter-
mine the phase diagram of this model we will be exploring the coupling corsgtang k>, 8). For
given values of the coupling constants, we will approximate the expectatlars/of observables
¢ over Monte Carlo generated configurations:

1 Noonf
O)eont = i, 1.7
< >conf Nconf i; i ( )

where Neont is the number of independent configurations afds the value of observable
calculated for thé™ configuration.

2. Thephasediagram

In order to determine the phase structure of the model we measured| sdbsmevables such
as the average number of triangl@é) and its susceptibility( (Nz) = ((N2) — (N2)?) /Ng. These
observables have been used in the past to distinguish between the crpimwedand the branched
polymers phase. Another observable is the radius volume pkéfile We define a geodesic dis-
tance between two four-simplices as the length of the shortest path comgnése simplices.
Each path consists of linear segments joining centers of neighboring simpBoe= a configu-
ration 7 and a initial simplexo, V (r,ig,.7") denotes the number of simplices at geodesic distance
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Figure 1: Density plots of the susceptibility (N) (left) and the average radius (right) in tke— 3 plane
for (N4) = 160000

r fromig. The averag® (r) over configurations and initial points, and the average raftiuare
then given by

V(r)z(l\t S V(5o 7)), <r>z|\tZr-V(r). 2.1)

We also look for the presence of so-calleaby universes separated by minimal necks. A minimal
neck correspond to the smallest nontrivial boundary of a four-dimeakgmplicial manifold. It
is a set of five tetrahedra, connected to each other, and forming a 4-siwligileh is not present in
the triangulation. Cutting the triangulation along a neck splits the triangulation intséywarate
parts. Because a minimal neck may contact other minimal necks, they equguteiaons with a
graph structure.

2.1 Thegrid

The original approach of Euclidean Dynamical Triangulations cormdpto = 0. In this
case there exist onlgrumpled phase andranched polymers phase, separated by a first order
transition atk, ~ 1.29 [3]. At this point, we observe a peak of susceptibilitig,) and a jump
in (r). There is also an abrupt change in baby universe structure, fribapsed graph (left of Fig.
f) to a fractal branched polymer structure (right of Hi§j. 2). The additicoupling constang
may introduce new phases. We investigated a grid of points iRtheB plane with( between 0
and—2 varied in steps 03 = 0.2 andk;, between (b and 15 varied in steps obk, = 0.1. This
region embraces the transition popit= 0, k2 ~ 1.29. Plots of the susceptibility (N») (left) and
the average radius (right) for the grid points ¢ horizontal axis3 - vertical axis) are shown in
Fig. [1. For negativg8 the maximum of variancg(N;) (blue line) and a jump irfr) (red line) do
not coincide any more. The branch polymer phase corresponds to/kdrges of(r) and the peak
of susceptibility is not a signal of phase transition.
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Figure2: Minimal baby universe graph of a typical configuration irsgectively from left to right, crumpled
phase, crinkled region and branched polymer phase.

We observe also a new hypotheticainkled region where properties of typical configuration
are between those in crumpled phase and branch polymer phase. lttesllacaund poink, =
2.0, = —2.0. The minimal baby universe structure in the crinkled region is very @iffefrom
the one in crumpled phase (cf. middle of Fig. 2). It is similar to a tree structesept in the
branched polymer phase, but contains loops which are identified with lemafhigh order. Such
triangles are not present in the two generic phases. The maximal orliemngfies seem to behave
like (Maxoy) O fo-le. The transition from branched polymers to crinkled region is clear. Thg ba
universe structure does not change abruptly, but there is a jurip and a peak irx (logo) (cf.
Fig. [4). Below, we outline properties of typical configurations from trenbhed polymers phase,
the crumpled phase and the hypothetical crinkled region.

] Branched ponmer$ Crumpled \ Crinkled ‘
Geometry elongated collapsed between
Singular none two verticeso, [1 N4 | triangles of high ordel
sub-simplices link of orderoy 0 NZ/3 o O N6
Baby universes dominate only small many, but no large
Baby universe tree-like collapsed contains loops
structure
Hausdorff dimensiory dh=2 dp = large or infinite
Spectral dimension ds=4/3 ds = large or infinite
2.2 Thepath

In order to verify the existence of the hypothetical crinkled phase memntibaetore, we need
to perform simulations for various total volumes and check scaling of salks. We follow a
one-dimensional path shown in F[d. 3 (left). It starts at a point in crumgied@and continuously
leads through crinkled region to stop at branched polymers phase.réf iha phase transition
between crumpled and crinkled phase, the path will have to cross it. Asnsimofsig. [3, the
path consists of three segments marked with different colors: a vertigalesgl at k, = 0.5, a
horizontal segment at 3 = —2.0, a vertical segmeritl at k; = 2.0. The measurements were
performed for three values of total voluriig = 40k, 80k and 160k.
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Figure 3: Left: A tentative phase diagram and a path (color pointanfooumpled phase - through crinkled
region - to branched polymer phase. The thick gray line dentlie phase transition between branched
polymers and other phases, based on the grid measuremégtts. Rot of (N2) /N4. Successive points of
the path are on the-axis.

When searching for a phase transition it is natural to look at parametaitggate to coupling
constants. The basic observable, scaled average number of trigNgJ¢Bls is conjugate tas
and is shown in Fig.[]3 (right). The successive points on the path arerpegson thex-axis
and the vertical lines separate segments |, Il and Ill. We do not obsety jump of(Nz) on
the path between the crumpled phase and crinkled region. There is alsonpdptween the
branched polymer phase and crinkled region, in contragt60. However the scaling withis
changes exactly at the transition point (middle of segment Ill). Insiderdneched polymer phase
(N2) O N4, while this scaling does not hold outside. Curves for different volumesrge, as can
be seen on the left side of Fid. 3 (right).

Another observable is an average logarithm of triangles’ ordego;). Becausglogo) is
conjugate tq3, it increases whep increases. The behavior dbgo) is qualitatively similar to
(No). The plot of the variancg(logo) = ((logo;)?) — (loga;)? is presented in Fid] 4 (left). There
is a peak of the susceptibility(logot) in segment |, but it is decreasing with the total voluhge
and can thus not be viewed as signaling a first or second order transéiareen the crumpled
phase and hypothetical crinkled phase. While there are no other siisalsms there is no phase
transition associated with the maximum of susceptibility. There is also a small pekwariance
at the transition to branched polymer phase in segment lll. It is not @siaggwith the total volume
and is a signal of the first order transition being a remnant of a pe@k=a0. Behavior ofy(Ny)
is similar tox (logoy), but the latter peak is even less pronounced.

In branched polymer phase, the Hausdorff dimensipsa 1/2 and the average radius scales
as(r)J Ni/z. As shown in Fig[]J1 and Fid] 4 (right), in this phasé is relatively large. The jump
of (r) at the boundary of branched polymer phase is a clear signal of a phaséion. Fig.[}
shows that the jump ofr) becomes sharper as the total voluNeincreases. There is no sign of
any transition between crumpled and crinkled phase.

Following the path from crumpled phase to crinkled region, the baby wsewgaph dissolves
gradually from one huge collapsed clump (left graph of Hig. 2) to a nettstre (middle graph
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Figure4: Left: Plot of x (logo;) for points along the path. Right: Plot (rf)/Nj/2 for points along the path.

of Fig. @) without a distinct hub but with many loops, associated with triangidsgh order.
Although the baby universe structure is very different in the crumpleldcainkled region, we do
not observe any abrupt change. When approaching the branchadegy phase, the loops - and
high order triangles - disappear, and a tree-like fractal structure es\é@ight graph of Fig[]2).

2.3 Conclusions

We were not able to observe a phase transition point where continuusicgliy recovered.
There is no signal, strengthening with the total volume, of a phase transitiareda® crumpled
phase and crinkled phase. Configurations in the crinkled region look emmgated\{ (r), minbu
trees, spectral dimension), but the change is gradual when recedingtfe crumpled phase and
it seems to be a finite size effect. We observed a first order phase traséitie at the boundary of
the branched polymers phase. It is a continuation of the transition oliserginally at3 = 0.
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