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1. Introduction

The dynamics of SWN) gauge theories with adjoint fermions is expected to depend crucially
on the number of flavori¢. This is suggested by inspecting tRiedependence of the beta function
B. The first two coefficients g8 expressed in terms of 't Hooft couplidg= g°N arebgy = (4N —
11) /241 andb; = (16Nf — 17)/192m*. Asymptotic freedom requires thiag should be negative,
so onlyN¢=1 and 2 are allowed (in this talk we do not consider half-intedeicorresponding
to Majorana fermions). FoN:=1, b; is also negative, so we naturally expect that the theory is
confining as ordinary QCD. Fd¥;=2, on the contraryp; is positive, indicating that there could
be an infrared fixed point at finite value of the 't Hooft coupling where the beta function becomes
zero. Since no dimensional scale exists at the infrared fixed point, this theory is conjectured to be
conformal. In fact, foN=2 (minimal walking technicolor), there are now many lattice simulations
indicating that the theory is conformal at vanishing fermion nfijss|

The purpose of the present talk is to study bWl and 2 theories in the larde limit. It
is quite obvious that the direct application of the usual lattice simulation is unpractical for large
N. Our idea is to use the twisted space-time reduced model defined 6radtide, recently
proposed by the present authBs[We point out that, in recent years, many authors have stud-
ied space-time reduced models of lalgeQCD with adjoint fermions using periodic boundary
conditionsB, [ B [§]. It turns out, however, that these models have too large fivitrrections
compared with those based on twisted boundary condi@bdl[ casting doubts on whether the
former models are of practical use. The main fil\tecorrections of the twisted reduced model
for N = L2 amount to the finite volume corrections of ordinary Lattice Gauge Theory drf an
lattice[2 [7]. Thus, by choosing\ = 172 = 289, we can study largd QCD with adjoint fermions
on an effectively 17 lattice within the present computer resources. From a practical point of view,
the most important property of the reduced model is its rather small memory size. In fact, the size
of four SU(289) matrices is only 5 MB, which can be fitted into cache memory, resulting in a rather
high performance of computations. By making use of these advantages of the reduced model, we
will analyze the properties of lardé QCD with adjoint fermions and clarify the differenceldf=1
and 2 fermions.

2. Formulation

We consider the SUW) group withN = L2, L being some positive integer. Then the action of
the twisted space-time reduced model of QCD wWithadjoint fermions is given biZ]

4
S= -bN Tr [zuwUuUoU U]

u#v=1
=Y MWWk Yy (Wi VU WU+ W1+ y,)ufwiu,}
=1 n=1
4 Nt _ )
= —bN Tr [ZUpUWUUJ] — 2 5 Tr[WiDwW!] . (2.1)
u#v=1 j=1

U, are four SUN) link variables and¥! areNs Grassman-valuetl x N matrices transforming
in the (N, N) color representation. Spinor indices®f are not explicitly shownb is the inverse
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(lattice) 't Hooft couplingb = 1/g°N andk is the hopping parameter of Wilson fermions. The
symmetric twist tensazy,, is an element of 4(), whose explicit form is

2m

The integerk represents the flux through each plateandL should be co-prime, and a general
prescription for choosing andL to minimize the finiteN corrections is given in Ref2]. The
condition is essentially the same as the one imposed in the pure gauge model to prieyeptriz(
metry breakindf], which is necessary for reduction to wdg{I{]. We recall that our prescription
is to take bothk/L andE/L (definedkE: 1 modL) large enough. Throughout this paper we use
L=17 (N = L? = 289),k=5, and thuk=7. We have studied the model with = 2 by means of the
Hybrid Monte Carlo method. Fd¥s = 1, we have used the Rational Hybrid Monte Carlo method.
Simulations have been done at two values of the inverse 't Hooft coupling.35 and 0.36.
For N¢=2, we have made simulations at eight valueg &f 0.05, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15
and 0.16. FoN¢=1, we attempted to make simulations at the same eight values Bbwever,
we found that, fox > 0.155, the CG iteration during the molecular dynamics evolution does not
converge. Hence, fa¥;=1 we tookk = 0.05, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15 and 0.155 instead.
For every configuration we calculated the expectation value @ﬂﬁl)r for1</¢<(L-1),
which are the order parameters of th&([2) symmetry. We confirm that, in all the simulations
presented here, the quantitiesTr(Ufj) > are compatible with zero within statistical errors. For
randomly chosen gauge configurations, we also calculated all traces of open loops within the ef-
fective L* box, checking that traces of all open loops are zero within statistical errors.

Histogram of %ReTr(U’f) at N,=2, b=035
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Figure 1: Histogram of%ReTr(U";) for Ny=2 andb = 0.35. (a)k=0.15. (b)k=0.16.

During the simulations we also caIcuIatec{U,!;). We point out that this quantity could have
a non-zero value without breaking thé(EZ) symmetry of the reduced model. The association
of our system with an ordinary lattice system of siZe indeed suggests that at sufficiently weak
coupling a non-zero expectation value would be observed. However, we confirmedlﬁihl};) >
is statistically compatible with zero for all our simulations except for two runBlsat 2 and
k = 0.16. This s illustrated in Fiffl where we display the histogram éReTr(U";) atk=0.15 and
0.16 forb = 0.35. While the histogram is centered,—ﬂgReTr(Ub)zo fork=0.15, itis slightly shifted
towards positive values fat=0.16. We observe the same phenomenla=8t36. We expect the
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change of pattern to take place when a certain correlation length of the system becomes comparable
to the effective size of the bdx. Indeed, as shown in sect. 4, fer0.16 the dimensionless ratio
1/(L\/0) reaches-0.6.

3. Quark massmy

One of the simplest quantities that one can study is the low-lying spectrum of the square
of the hermitian Wilson Dirac matri? = (Dws)?. The lowest eigenvalue provides a possible
definition of the quark mass as follows; = v/A, where we use the lattice unigs1. There is
a small correction here since the boundary conditions prohibit zero-momentum states. Thus, the
lowest eigenvalue contains a smajiNL correction to the mass, which we have neglected. On
the other hand, the bare quark mass is giveVi)) = 3(+— ?ls>- Renormalization implies the
necessity of an additive renormalization and multiplicative renormalization of the mass. Thus, we

can parametrize the dependence as follows

1 1\° 1 1
quA(zK—ZKC) [HB(K_KCN (3.1)

where we have included a possilid¢m) correction since we are dealing with Wilson fermions.
For a QCD-like theory one expeads= 1 [1I]. However, if the theory has an infrared fixed-point
atk = K¢, the exponent could be different from 1. We have fitted our parameterization to our data
in the rangex = 0.10— 0.15. The data ak=0.05 is too far to neglect higher order corrections in
my. On the other hand, we excludee0.16, since in that case the system might suffer from finite
size effects. The results, however, do not change significantly when including this value. Good fits
are obtained a¥l; = 2 and the fitting parameters ade= 0.914(11), k. = 0.17443) atb=0.35, and

0 = 0.920(14), k. = 0.17225) atb=0.36. In both cases th®e= 1 value is statistically disfavored.

We have repeated the same analysidNprl. Here we use the data in the range- 0.10— 0.155.

We get ath=0.35,0 = 1.010(14), k. = 0.18345) and ath=0.36,0 = 1.021(11), k. = 0.1804(3),
compatible with the naively expected behavdsrl. Thus, we conclude that the quark mass

gives evidence of a different critical behavior féy=2 and 1. The results fang as a function ok

for both cases are displayed in fi@and3, together with the best fit lines.

N=2 N=1
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Figure 2: k dependence ofy, for N¢=2. Figure 3: k dependence afy, for N¢=1.
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4. String tension

The string tensiow is extracted from the large behavior of the square Creutz raj{dR R)
as follows:
W(R+0.5,T +0.5W(R-0.5T —0.5)
W(R+0.5T —0.5W(R-0.5T+0.5)
X(R,R)FH—W>G+2R—Z+%+-~. 4.1)
This method has been used successfully for the pure gauge theory (twisted Eguchi-Kawai model)
[I2), where the three parameter,(n andé&) formula describes the data very well. For our adjoint
fermion case, the smaller effective sizel7 and fewer statistics limits the rangeR¥alues that
can be fitted to EqEJ). This introduces strong correlations among the parameters and a rather
poor determination of the dependence of each parameter. A better way to proceed is to fix one
of the parameters and study the evolution of the other parameter\aitial the inverse ‘t Hooft
couplingb. From that point view the best choice s since it is dimensionless and its value is
connected to universal properties of an effective bosonic string theory, not expected to depend on
K orb.

To determine the value af to use, we perform a simultaneous fit to all the data (wit0.05)
fixing the value ofnp and marginalizing over the remaining parameters. The resulting chi-square
profiles (x2/n.o.d) are plotted in Figdl for Ny=2 and 1. The figure shows that our hypothesis of a
common value of; is statistically satisfactory. The minimum of the chi-square curve determines
the best choice fon, given byn=0.26 forN:=2 andn=0.24 forN¢=1. The curve also provides a
value for the error of ordet(0.04— 0.05).

X(RT)= —log

chi-square per degree of freedom
25 T T T T

N2+
N=L

2 |
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Figure 4: Chi-square per degree of freedggf/n.o.d as functions ofy both forN¢=2 and 1.

Fixing the value ofp we can obtain good fits to the Creutz ratios using the parameterization
of Eq. @.1). The resulting values of the string tensioras a function ofn, for Ny=2 at b=0.35
are displayed in Figh The central black symbols are obtained with0.26, while red and blue
symbols are obtained by takingto 0.21 and 0.30, respectively. From these values it is clear that
the string tension value depends uniformlyrpnThe band covered between the valuesfef.21
and 0.30, serves as a rough estimate of the systematic error.

If the theory is governed by an infrared fixed point deformed with a relevant massrtféﬁw,
all physical quantities having positive mass dimensions should vanisk as0. In particular, the
string tension having dimensions of mass squared should behave as
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Figure 5: my dependence af for Ns=2 at b=0.35. Figure 6: mq dependence af for N¢=2 at b=0.36.

0 = Anf(1+Bmy) 4.2)

where we have included possib@ mg) corrections. OulN¢ = 2 data are perfectly consistent
with this formula as shown in Fiddl for b = 0.35 and Figl@ for b = 0.36. Unfortunately, the
exponenta has a large uncertainty. A fit in the rangec [0.10— 0.15] for the b =0.35+=0.26
data giveso =1.17. Varyingn within the allowed range produces a systematic error.b2 OFor
theb =0.36=0.26 data one gets =1.42 with a systematic error ofZb.
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Figure 7: myq dependence af for N¢=1 at b=0.35. Figure 8: mq dependence af for N¢=1 at b=0.36.

The previous results show that, for tNe = 2 case, the string tension seems to vanish at the
critical pointmg = 0, in accordance with the infrared fixed point hypothesis. This contrasts with
the results folN;=1, summarized in Figgland8 The data seems to approach a non-zero value at
the critical point, as expected for a QCD-like theory, with confinement and spontaneous symmetry
breaking.

From the vanishing of the string tension at the critical point one can obtain a determination of
the mass anomalous dimensigrat the infrared fixed point. Equating the exponahof (1/k —
1/kc) with 2/(1+ y.) one gets values of. = 0.87 and 053 forb =0.35 and 0.36 respectively. The
determination is dominated by the systematic error of oftl€@ 3 — 0.4). There is no fundamental
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difficulty in reducing these errors significantly. As mentioned previously, an important source
comes from the small effective lattice volurh& = 17* of our data. However, increasiig= L?

poses an important challenge within the present computer power. A more promising approach
follows by employing partial volume reductioid [14]. In particular, one can reduce the system

to a 2 lattice, which at large N should behave as living if2a/N)* box. A finer analysis of the
dependence close iq is also important. Alternatively, one can use other observables to determine
Y.. One possibility is to use the distribution of eigenvalue®éf Some results using this method
have already been presentddj|
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